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Isidor Isaac Rabi (29 July 1898 — 11 January 1988) was a Galician-born American
physicist and Nobel laureate recognized in 1944 for his discovery of nuclear magnetic
resonance.

http://en.wikipedia.org/wiki/Isidor Isaac Rabi

29S.1 Maser

A maser is a device that produces coherent electromagnetic waves through
amplification due to stimulated emission. Historically the term came from the acronym
"microwave amplification by stimulated emission of radiation", although modern masers
emit over a broad portion of the electromagnetic spectrum. This has led some to replace
"microwave" with "molecular" in the acronym, as suggested by Townes. When optical
coherent oscillators were first developed, they were called optical masers, but it has
become more common to refer to these as lasers.
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|1> when the nitrogen is up.
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|2> when the nitrogen is down.

We consider the parity operator 7, such that
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Therefore the kets |1> and |2> are not the eigenkets of 7. Since
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7 is regarded as the Pauli matrix &, . The eigenkets of &, are |i>x.
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These two states are the eigenkets of 7. We now consider the Hamiltonain H . The
symmetry of two physical configuration suggests that
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What about the off-diagonal elements? The vanishing of <2|I:| |1> would mean that a

molecule initially in the state |1) would remain in that state. If <2|I:I |1> #0, there is a

small amplitude for the system to mix between the two states.
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This Hamiltonian commutates with the parity operator: [H,7]= 0.
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Eigenvalue problem
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29S.2 Application of electric field
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When the electric filed is applied along the X axis (the axis of the electric dipole
moment), the Hamiltonian is changed into
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The new Hamiltonian H does not commutate with the parity operator 7 .
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and
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where
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Thus we have

H|+) =(E, +./(ue)’ + A2 )|),

A B ue
— cosf = —
(ue) "+ A (ue)"+A

EJ=E,+A /
2AI

E'=E,-A \

(symmetric) electric field €

In a weak electric field
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Let us consider NHj in a region where ¢ is weak but where & has a strong gradient in the
X-direction (i.e., along the axis of molecules).
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The molecules in the state |¢)s> are subjected to a force parallel to the X axis:

Similarly, the molecules in the state |(pa> are subjected to an opposite force:
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This is the basis of the method which is used in the ammonia maser to sort the molecules
and select those in the higher energy state.

Maser cavity (frequency m)
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In the ammonia maser, the beam with molecules in the state

9"} and with the higher
energy is sent through a resonant cavity.
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or

Schrédinger equation
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First we write
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where

EPY—EY =hw,=2A

We consider the case:



£(t)=2¢,cosawt = g,(e'* +e7'™)
Then we have

o dy (t i -
Ih 7/dat( ) — #go[el(a)+w0)t + e—l(a)—(x)o)t ]7/5 (t)

Ih dys (t) — lugo[ei(a)—a)o)t + e—i(a)+w0)t ]73 (t)

29S.3 Rotating wave approximation
The terms with (@ + @) oscillate very rapidly about an average value of zero and,

therefore do not contribute very much on the average to the rate of change of 7.

H d]/ (t) IUEO —i(w—wy)t —iAt
———=="¢ Ty (t)=T,e t
dt h 75() 0 7/5()

Sdy () e, i(@—wp)t iAt

i——==""e 0 t)=T,e t
dt h 7a() 0 7a()

7.(0) =1, 75(0)=0

where

Q= e + F02 (Rabi frequency)

Using the Mathematica (see below), we get the solution

1.
—it(2Q+A
B ( )

y.(0) = GTQQ CA+e2 20+ A)]

1.

y.(t) = —i%ezlA Sin(Qt) .

The probability for finding the system in the antisymmetric state is



40° + A+ (4Q° — A¥) cos(2Qt)

P = ;
8Q
_ 2T,° + A + 2T cos(y/ A” + 4T, ’t)
A +4T,

The probability for finding the system in the symmetric state is

o _ L sin’(QD)]
S
41, sinz(;w/Az +41,°1)]
B N 14T,
Note that
P,+P =1

When A= 0 (at resonance),

P, =cos*(T}t), P, =sin’(Tt).
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t in units of 7A/(2ueq)




Let us suppose that it takes the time T to go through the cavity. If we make the cavity
just long enough so that we,T /i =7 /2, then a molecules which enters in the upper state

(p§°)> will certainly leave it in the lower state (0§0)>.
6., LLe.
cavity

In other words, its energy is decreased, and the loss of energy cannot go anywhere else
but into the machinery which generate the field.

In summary, the molecules enter the cavity, the cavity field-oscillating at exactly the
right frequency-induces transition from the upper to the lower states, and the energy
released is fed into the oscillatory field. The molecular energy is converted into the
energy of an external electromagnetic field.

((Mathematica))



Clear["Global "%"];

A=w - w0, F02+~I = Q, 1"0:“60

eql =1 D[ya[t], t] ==TOEXp[-1 A t] yS[t];
eq2 =i D[ys[t], t] ==TO0 Exp[i A t] ya[t];

s11 = DSolve[{eql, eq2, ya[0] == 1, ¥ys[0] = 0}, {ya[t], ys[t]}, t] //
Simplify[#, {a >0, r0>0}] &;

2 2 1 1 -
512=311/_{\/ 4102 +4%2 5 20, —-)2—}//S|mpllfy;
V4102 +a? @

ya[t ] =ya[t] /. s12[[1]] // FullSimplify

1.
1t a2 .
e 2 1t (aen) (—A+2Q+e21tQ(A+2Q))

40

yS[t ] =ys[t] /. s12[[1]1] // FullSimplify

ita _
ie 2 TOSIN[tQ]

Q

SuperStar /: expr_* z= expr /. {Complex[a_, b_] :» Complex[a, -b]}

Pa = ya[t]*ya[t] // FullSimplify

£2+40% - (n2-40%) Cos[2tQ]

8 o?
\V4T10% +42 o
Pal = Pa /. {Q—» —} // Simplify
2
2102+ 2% + 2T0% Cos [t/ 4T0% + 12 |
4102 + p?

Ps = ys[t]* ys[t] // FullSimplify

702 Sin[t Q)2

o2
\V4T10% +42 o
Psl1 =Ps /. {Q—»—} // Simplify
2
. 2
4T0%Sin[ 2 €1/ 410%+ 47 |
4102 + p?

Pal+Psl // Simplify
1

Pa2 =Pal /. a-0//Simplify[#, r0O> 0] &

Cos[t POJ2

Ps2=Psl/.aA-0//Simplify[#, TO>0] &

Sin[tT0]?2



29S.4 Laser Physics

Light amplification by stimulated emission of radiation. A laser operates by
adsorbing energy and emitting it at a well-defined wavelength by a stimulated emission
process (Einstein A, B coefficient).

A two-level laser
It is necessary to remove more than 50 % of the atoms from their ground state into the
excited state.

E2 r_
— — — 3 light
pump emission
E1 \ 4

A three-level laser
The population-inversion is much easier to attain, especially if the lower excited state can
relax rapidly into the ground state.

E3
———————— P light
Emission
E2 A 4 I
L — heat
Pump | >
= * Radiationless decay

We consider the two level-system in the Dirac picture
.. 0 .
'ha|‘//| (t)> =V, (t)|W| (t)>

with



iHt

v ®)=e " [ys®)

i £ ol ) = 3 oV, ojm)my, )

Ht

V() =e" "V.(t)e "

(N, ®]m) =e* " (N, 0] m) = e (nV, )| m)
where
V,(t) = Ve + Ve

he,, =(E, —E,), Bohr frequency

m

ih%cn (t)=> e (nN,(t)m)c,(t)

absorption emission
E; |'//f> E O |V/i>
ho =E; -E =hw,
ho =E-E;=-hw,
NN
E O, |‘//i> = |‘//f>

(E,>E) (E <E)

n=1 and 2 (two-level system)

o)k it (o)

<1N5(t)|2>eia)lz :<1[\7eiwt +\i+e—iwt|2>eia,lzt
= <1[\7|1>ei(a)12t+aﬁ) + <1[\7+|2>e—i(w—w12)t



(2N, e = (2 4V g
= <2[\7|l>ei(—wlzt+m n <2[\7+|1>e—i(w+wlz)t

We assume that
(v, [1)=0
(2N, (0]2) =0
(N, D] 2)e ~ (1NV]2)e - = seis
(2N, (O[1)e = = (2N [1)e oo = oo
where
Azo-my,  r={N).
Then we have

ihg G\ 0 }/eiAt c,
ot C2 - }/e—iAwt 0 C2

Initial condition:

¢(0)=1, c,(0)=0

ic,(t) =%e‘“cz(t) =T,e"c, (1) 0
iC2 (t) = %e*mtcl (t) - roe*iAtcl (t) (2)
where
Y
I, = %

and



2
Q=, ’AT + FO , (Rabi frequency).

The solutions for ¢;(t) and cx(t) are given by

Wut(zg A)
¢ (t)= —Q[zg + A+ (2Q-A)]
and
T, -l
c,(t)=-l Q e 2 sin(Qt)
respectively.

The probability that at a time t the system is in the lower state is
41, t
P.(t) =|C, ()] =1-—52—sin®(= /4T, + A’
(1) =[C,(V)] IR (2 0 )
The probability that a time t the system is in the upper state is

P,(t)=|C, (t)| sm( 1/4r +A)

With the perfect tuning (A=0),
P,(t) =sin’(Tt), and P (t) = cos’(Tt)

The system returns to its original state after a time T = 274/7.
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Fig. Time dependence of P;(t) (red) and P,(t) (blue), The parameter A =w—-w,, = 0.
Pi(t) + P,(t) = 1. The absorption occurs for /ot=n 7- (n+1/2)7(n=0, 1, 2, ...),
while the absorption occurs for 7ot =(n+1/2)z-nz(n=0, 1, 2, ...).
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Fig.  Plot of the maximum of the probability P, as a function of A4/7y. FWHM (full-
width at half maximum) 475.

29S.5 Induced electric dipole moment
V,(t) = Ve' + Ve
where
V=—qi &
with <0 and & is the amplitude of electric field.
7= (N ]2) = (] -aze,/2)=~a5,(112)
or

v
N 7
> qé,

4

(1

We calculate the expectation of the electric dipole moment p(t)

p(t) = (v, (t)|az]w, (1)) = (v, (t)|e5”°t(qz>e7”"t| w, (1)

t . ¥
IZ (t)>=(c1( )j, o= o <o)

C, (1)
i i i7Et it iEt
—H, A~ Ho ! 0 “n !
ehH t(_qgoz)e | iOEt " ¥ j o —(i)Et
0 en B 0 0 e’
0 7/eiAt
= 7/efiAt 0

or

i AO _le 0 iAt
eth(qi)e th:_i( N e J
&\ e 0

Then the electric dipole moment p(t) is given by



IRINA . 0 ~“Yc
p(t) = ( go>(c1 ® (t)Lew i Lmj

p(t) = (e, (B, () + ™, (t)c, ()]

&y
2
_ I 2A sin®(Qt)
0
2
=_@_24Ar0 sin®(| 2+
& N +4I, 4
where
A2
A=ow-w,, Q= ?+F02
and
1
@y, :%(Ez -E)

29S.6 Nuclear magnetic resonance: formulation
Proton has a magnetic moment given by

nie Oute
= = I =
u=mx 5 , O

with

h

l=—0
2

where | is a total angular momentum, gy (=2.0) is the nuclear g factor, and [, is the
magnetic moment; W, = 2.79270 py = 1.410606633 x10-23 emu. yis the gyromagnetic
ratio, given by

gy
_INFp
"
. eh
and py is the nuclear magneton: g, = Mo =5.05951 x 10-24 emu.

p
We consider the magnetic moment



h
H=75 0= 1o

in the presence of magnetic fields, B = B, e,.The Hamiltonian is given by

A

H, = —1,B, = —yg B,o,.

The eigenstate:
I:|0|i>=—y§BO&Z|i>=¢7§BO|J_r>
E_—E, =B, =ho,

where

fo (MHz)= ay/2n = 4.258 B (kOe)
Further we apply the AC magnetic field By = 2 B; cos(at) e, (lineary polarized) is given
by

B, =2B, cos(at)e,
=[B, cos(at)e, + B, sin(wt)e, ] +[B, cos(at)e, — B, sin(wt)e, ]



N

Here we pick up the clock-wise rotating magnetic field.

B, = B, cos(at)e, — B, sin(at)e,
Then Hamiltonian H is given by

H =—u-B(t)

-2 (B-0)

= —7%[302 + B, cos(at)o, — B, cos(at)o, ]

or

_ h B() Bleiwt
H= 75 ot .
2\-Be B,

Suppose that the eigenket is given by

(3
|W“»_(%0J



@, = 1By, @, =18,
Schrédinger equation:

da,

.. 0 dt
lha|z/x(t)> i da,

dt
a0) 72l ge" B )a

or

da,
B4 i
da, | " 2(—wet o, \a(t)

dt

Unitary transformation:

U(t) R—exp(— ato,) = [2“’ .J

0 e?

' n by (t) e_%wt 0 (al(t)J
) =U O]y ()= = :
|y ©)=U O]y ®) (bz(t)] [ . e] a0

or

2,() =exp( )b, ()

2,(t) =exp(— aby(1)

Then we have

da(t) 1 o ()

G 2° [|a)b(t) +2——(1)]
day() 1 L b 1),
o [el®F2= =



ot
—a)le (ON

I_[ @, a)le‘“‘] elz.aﬁbl(t) B %eEWt(a)obl(t)"'wlbz(t)
2 : N '

e a,() —;e'zl“’t(colbl(t)—wobza)

Thus
do (1. il
a0 2
EL éa’l __;(wo_a’) b,

For simplicity we put
A=o-w,.

We now consider the Schrodinger equation,

db,
ih dt :E A _a)l bl
db, | 2\~@, -A )b,
dt
or
1 d 1 Al 1
ih |y )=y )
t
where
QVZE(A —a)lj
2\~ —-A
and

Cen[(Bi(®
|wa»-(@aJ

The solution of this equation is given by



') =exp(- 0]y (E=0)

29S.7 Eigenvalue problem
We can also solve the eigenvaule problem as follows. The Hamiltonian is given by

~ h{ A —-o hooo R
H':—[ IJZE(AUZ_G)IO-X)

2\~ —A

or

H =§(A&Z _06)

__g\/m(\/ﬁ_fwf i \/Aza—)il— o %)

or

A== 2 8 4 07 (6 m)
where

(6-mj), =4},
or

|:|v

h h
i>n:—5w/A2+a)f(a n)+) = 51/ o |E)

Thus |i>n is the eigenket of H' with the eigenvalues ¥E with

E =10

with
Q:%,/Az + o)

4 = cos(§)|+> N sin<§)|_>



where
cosd = A —_ZA,
N+ol  Q
sint9=L=2—A
Brar ©
Here

[+)=cos(]+), —sin()-),

29S.8 Transition probability: Rabi’s formula
We assume that the initial condition is given by

ly'(t=0))=|w(t=0)=|+)

What is the probability P, _(t) for finding the spin in the state |-)

(1)) = exp(— "*T'I)| )= exp(- ”*T't>[cos(§)| #),-sin( ),
= exp(iQt)[cos(§)| +) - sin(g) exp(-iQt)|—) ]

or

(~ly'®) = exp(iQt)[cos(§)<—| +) - sin(g) exp(—iQt)(—|+) ]

= cos(g) sin(g)[exp(iQt) —exp(—iQt)]
=i sin #sin(Q)

Lo .
=1——sin(Qt
0 (Qt)

Then the Rabi’s formula becomes



2 2
) ) t
P (t)=——sin*(Qt) = L_sin’(—+A + @]
+—() 492 ( ) A2+a)12 (2 1 )

((Mathematica))

LA

iH
We calculate the matrix exp(—7t) directly using Mathematica.

l_,\l':ﬁ A _a)l
2\~ —A

Claculation of exp(_?iHl t)
n

Clear["Global +"];

(3 S)soc= (2 3):

°2=1p -1 10

h

H1 = - (A0z - wloX);
2

~i
sl = MatrixExp[— H1 t] // Simplify;
h

1 1
rulel:{\/ —A% _ w12 -120Q, - -

-A2 - 12

s11 =sl1 /. rulel // FullSimplify;
sll // MatrixForm

Cos[tQ] - i ASINn[tQ] i wl SIn[t Q]
20 2Q
iwlSIn[tQ] Cos[tQ] + i ASIN[tQ]
20 20

sl11 // MatrixForm

Cos[t Q] - LasSin[te] iwlSin[to]
20 20
st Cos[t Q] + LAoSIn[to]
2Q 206

-1 [¥+o
2 1



Ao=0-o,

b, (t) iH't
o) =[x e -0
2
where
"y cos(Qat) — 1ASINEN) i sin(Qt)
exp(——-1) = o 0 20 iA sin(Qt)
h i ZsinQt)  cos(Qt) +—n)
20 20
We assume that
1
lw(t=0))= 0
by (t) iH't (1
=[5
2
2 o sin*(Qt)
P._ =, =14T
2 2
P =l :1_%2(90
Pi_(t)
1.0+
: 1
0.8F
0.6
! 1
0.4+
02- /2 /
ASAR é/ SR AL
B 3 5 7 9 @
0 5 T 7 2 7 3r 7 4 7

1t



Fig.  Plotof P,_(t) vs ot, where A/@, is changed as a parameter. A= - @;.
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