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Isidor Isaac Rabi (29 July 1898 – 11 January 1988) was a Galician-born American 
physicist and Nobel laureate recognized in 1944 for his discovery of nuclear magnetic 
resonance. 
 

 
 
http://en.wikipedia.org/wiki/Isidor_Isaac_Rabi 
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29S.1 Maser 

A maser is a device that produces coherent electromagnetic waves through 
amplification due to stimulated emission. Historically the term came from the acronym 
"microwave amplification by stimulated emission of radiation", although modern masers 
emit over a broad portion of the electromagnetic spectrum. This has led some to replace 
"microwave" with "molecular" in the acronym, as suggested by Townes. When optical 
coherent oscillators were first developed, they were called optical masers, but it has 
become more common to refer to these as lasers. 
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We consider the parity operator ̂ , such that 
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These two states are the eigenkets of ̂ . We now consider the Hamiltonain Ĥ . The 
symmetry of two physical configuration suggests that  
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What about the off-diagonal elements? The vanishing of 1ˆ2 H  would mean that a 

molecule initially in the state 1  would remain in that state. If 01ˆ2 H , there is a 

small amplitude for the system to mix between the two states. 
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This Hamiltonian commutates with the parity operator: 0̂]ˆ,ˆ[ H .  
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29S.2  Application of electric field 
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When the electric filed is applied along the x axis (the axis of the electric dipole 
moment), the Hamiltonian is changed into 
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The new Hamiltonian Ĥ  does not commutate with the parity operator ̂ . 
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In a weak electric field 
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Let us consider NH3 in a region where  is weak but where 2 has a strong gradient in the 
x-direction (i.e., along the axis of molecules). 
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The molecules in the state s  are subjected to a force parallel to the x axis: 
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Similarly, the molecules in the state a  are subjected to an opposite force: 
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This is the basis of the method which is used in the ammonia maser to sort the molecules 
and select those in the higher energy state. 
 

Maser cavity (frequency 0)

vT

s

all
electric field

NH3

s

a

 2

 
 

In the ammonia maser, the beam with molecules in the state )0(
a  and with the higher 

energy is sent through a resonant cavity. 
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or 
 
Schrödinger equation 
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First we write 
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29S.3 Rotating wave approximation 

The terms with ( + 0) oscillate very rapidly about an average value of zero and, 

therefore do not contribute very much on the average to the rate of change of . 
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  (Rabi frequency) 

 
Using the Mathematica (see below), we get the solution 
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The probability for finding the system in the antisymmetric state is 
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The probability for finding the system in the symmetric state is 
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Let us suppose that it takes the time T to go through the cavity. If we make the cavity 
just long enough so that 0T /   / 2 , then a molecules which enters in the upper state 

)0(
a  will certainly leave it in the lower state )0(

s . 
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In other words, its energy is decreased, and the loss of energy cannot go anywhere else 
but into the machinery which generate the field. 

In summary, the molecules enter the cavity, the cavity field-oscillating at exactly the 
right frequency-induces transition from the upper to the lower states, and the energy 
released is fed into the oscillatory field. The molecular energy is converted into the 
energy of an external electromagnetic field. 
 
 
((Mathematica)) 
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29S.4 Laser Physics 

Light amplification by stimulated emission of radiation. A laser operates by 
adsorbing energy and emitting it at a well-defined wavelength by a stimulated emission 
process (Einstein A, B coefficient). 
 
A two-level laser  
It is necessary to remove more than 50 % of the atoms from their ground state into the 
excited state. 
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A three-level laser 
The population-inversion is much easier to attain, especially if the lower excited state can 
relax rapidly into the ground state. 
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We consider the two level-system in the Dirac picture 
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n = 1 and 2 (two-level system)  
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We assume that  
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Initial condition: 
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The solutions for c1(t) and c2(t) are given by 
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The probability that at a time t the system is in the lower state is 
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The probability that a time t the system is in the upper state is 
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The system returns to its original state after a time T = 2/0.  
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Fig. Time dependence of P1(t) (red) and P2(t) (blue), The parameter 12   = 0. 

P1(t) + P2(t) = 1. The absorption occurs for 0 t = n - (n+1/2) (n = 0, 1, 2, ...), 
while the absorption occurs for 0 t = (n+1/2) - n (n = 0, 1, 2, ...). 
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Fig. Plot of the maximum of the probability P2 as a function of /0. FWHM (full-
width at half maximum) 40. 

 
29S.5 Induced electric dipole moment 
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We calculate the expectation of the electric dipole moment p(t) 
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Then the electric dipole moment p(t) is given by 
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29S.6 Nuclear magnetic resonance: formulation 

Proton has a magnetic moment given by 
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where I is a total angular momentum, gN (=2.0) is the nuclear g factor, and µp is the 

magnetic moment; µp = 2.79270 µN = 1.410606633 x10-23 emu.  is the gyromagnetic 
ratio, given by 
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and µN is the nuclear magneton: 
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We consider the magnetic moment 
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in the presence of magnetic fields, B = B0 ez.The Hamiltonian is given by  
 


ˆ H 0   z B0  



2
B0

ˆ z . 

 
The eigenstate: 
 

 000 2
ˆ

2
ˆ BBH z




   

 

E  E  B0  0  
 
where 
 

fo (MHz)= 0/2π = 4.258 B0 (kOe) 
 
Further we apply the AC magnetic field B1 = 2 B1 cos(t) ex (lineary polarized) is given 
by 
 

])sin()cos([])sin()cos([

)cos(2

1111

11

yxyx

x

tBtBtBtB

tB

eeee

eB







 

 



x

y

z

B0

B1

 
 
Here we pick up the clock-wise rotating magnetic field. 
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Suppose that the eigenket is given by 
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Schrödinger equation: 
 


















































)(

)(

2)(

)(

)(

2

1

01

10

2

1

2

1

ta

ta

BeB

eBB

ta

ta
H

dt

da
dt

da

it
t

i

ti

ti













 

 
or 
 

da1

dt
da2

dt


















i

2

0 1e
it

1e
it 0











a1(t)

a2 (t)









 

 
Unitary transformation: 
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For simplicity we put 
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We now consider the Schrödinger equation, 
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29S.7 Eigenvalue problem 

We can also solve the eigenvaule problem as follows. The Hamiltonian is given by 
 

)ˆˆ(
22

'ˆ
1

1

1
xzH 


















 

 
or 
 

)ˆˆ(
2

)ˆˆ(
2

'ˆ

2
1

2

1

2
1

2

2
1

2

1

xz

xzH

























 

 
or 
 

)ˆ(
2

'ˆ 2
1

2 n 
H  

 
where 
 

nn
 )ˆ( n  

 
or 
 

nnn
H  2

1
22

1
2

2
)ˆ(

2
'ˆ  




n  

 
Thus 

n
  is the eigenket of ˆ H ' with the eigenvalues E  with  

 

E    
 
with 
 

2
1

2

2

1   

 

 n  cos(

2

)   sin(

2

)   

 



 )
2

cos()
2

sin(


n
 

 
where 
 










2
cos

2
1

2 
 , 

 








2

sin
2
1

2

1


  

 
Here 
 

nn
 )

2
sin()

2
cos(


 

 
29S.8 Transition probability: Rabi’s formula 

We assume that the initial condition is given by 
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Then the Rabi’s formula becomes 
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We calculate the matrix 
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We assume that  
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Fig. Plot of P (t) vs 1t, where /1 is changed as a parameter.  =  - 1.  
____________________________________________________________________ 
REFERENCES 
R.P. Feynman, R.,B. Leighton, and M. Sands, The Feynman Lectures in Physics, 6th 

edition (Addison Wesley, Reading Massachusetts, 1977). 
I.I. Rabi, Phys. Rev. 51, 652 (1937). 
J.J. Sakurai, Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading 

Massachusetts, 1994). 
R. Loudon, The Quantum Theory of Light, 2nd-edition (Clarendon Press, Oxford, 1983). 
M. Sargent III, M.O. Scully, and W.E. Lamb, Jr., Laser Physics (Addison-Wesley, New 

York, 1974). 
C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963). 
 


