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Schrodinger picture
Heisenberg picture
Dirac picture

Erwin Rudolf Josef Alexander Schrodinger (12 August 1887— 4 January 1961) was an
Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is
famed for a number of important contributions to physics, especially the Schrédinger
equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after
extensive correspondence with personal friend Albert Einstein, he proposed the
Schrédinger's cat thought experiment.

http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger

Werner Heisenberg (5 December 1901- 1 February 1976) was a German theoretical
physicist who made foundational contributions to quantum mechanics and is best known
for asserting the uncertainty principle of quantum theory. In addition, he made important
contributions to nuclear physics, quantum field theory, and particle physics. Heisenberg,
along with Max Born and Pascual Jordan, set forth the matrix formulation of quantum
mechanics in 1925. Heisenberg was awarded the 1932 Nobel Prize in Physics for the
creation of quantum mechanics, and its application especially to the discovery of the
allotropic forms of hydrogen.
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http://en.wikipedia.org/wiki/Werner_Heisenberg

Paul Adrien Maurice Dirac (8 August 1902 — 20 October 1984) was a British
theoretical physicist. Dirac made fundamental contributions to the early development of
both quantum mechanics and quantum electrodynamics. He held the Lucasian Chair of
Mathematics at the University of Cambridge and spent the last fourteen years of his life
at Florida State University. Among other discoveries, he formulated the Dirac equation,
which describes the behavior of fermions. This led to a prediction of the existence of
antimatter. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrédinger,
"for the discovery of new productive forms of atomic theory."

http://en.wikipedia.org/wiki/Paul_Dirac

29.1 Time evolution operator
We define the Unitary operator as

() = U (t, )| w k)
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(r®]= (W)U tt)
Normalization

w®lw®)=(wt)|rt)) =1
Then

(¥ (t) U (U L)y (t)) = () |w ()
or

U *(t,to)lj (t,t,) =1 (Unitary operator)

We note that

[ (t,)) =U (t, )]y (1) =U (. t)U (4. t)|w ()
This should be

U(t,,t,) =U(t,t)U(t,t,)

29.2 Infinitesimal time-evolution operator
We consider the infinitesimal time evolution operator

|V/(to + dt)> =U (t, + dtvto)|‘//(to)>
with

limU (t, +dt,t,) = 1

We assert that all these requirements are satisfied by

Ult, +dt,t,) =1—iQdt
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The dimension of Q is a frequency or inverse time.

U (t, +dt,t,)U (t, +dt,t,) = A—iQdt)" (1 —iQdt)
= 1+iQ'dt)dL-iQdt)

=1+i(Q" - Q)dt
-1
or
0 =0 (Hermitian)
We assume that
L
h
where H is a Hamiltonian.
29.3 Schrodinger equation
t;) t t+-dt

A

Gt +dtt,) = (1 —i%dt)ﬁ tt)

or
. ) b
U(t+dtt) -0 (L) =i dl(.t)
im0+ AUt A g
dt—0 dt 71

or
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0 .~ H -

LU0 t,) =—i—U(tt

U Gt) =-i—-U )
or

.~ "
i U(t.t) = HU t.t;)

This is the Schrodinger equation for the time-evolution operator.

20t () = AU 6w )
or
in-2 |y (0) = Hlw )
ot

29.4  Unitary operator

What is the form of Lj(t,to) when H is independent of t?

A

Y

t—t,
N

At =

nm[l—ﬂ<t oy —exp[——(t )]

or

A

Gitt,) =exp[—i%<t—to>]

29.5 Ehrenfest’s theorem
Schrédinger equation
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.. 0 N 0 [N
Ihalw(t» = H|y (1)) or 5|'//(t)> = —ngw(t»
Taking the Hermitian conjugate of both sides,
.. 0 ~, N
—IhaW(t)I:(t//(t)lH =(w(®)H
or

0 N X
Svol=( ol =;1—<t//(t)|H

We now consider the time dependence of the average defined by <1//(t)|A|1//(t)>

d

S OAOY ) - (%@z(t)pﬁw(t» + <w(t)|it—A|w(t)> + <z//(t)|A(§|w(t)>)

=%<w(t>|ﬁ2\|w(t)>+<w(t>|%lw(t)>+<w(t>|/3<—%>lw(t>>
- _%<W(t)|[,&, ﬁ]|w(t)>+<w(t)lz—?lw(t)>

or

d - i - oA
a(w(t)lAlw(t» = —%(w(t) [A H]w(t)+ (w(t)lalw(t»
29.6 Example Simple harmonics

We consider a particle in a stationary potential.

n a2
H=2F
2m

+V(X)
So that we can write

Sy O ) =~y OI% ATl )
WOIR 2y )

2m

i
h
_ —%ih<w(t)|%]|§//(t)>
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or

; A .
W ORY©)= <t//(t)|%]|l// ®)
or
d 1
X ={p)
Similarly
%(W(t)mp/(t)) = _;;_W(t)'[ B, HIw (®))
- _72—<;//(t)|[ B,V (R)w ()
- 0
= O V@l )
or
S @by @) =~ O 2V @v )
m R
or

d dv

a( p) = —<a>
The equations

d 1

S0 =—(p),
and

d dv

a( p)= _<W>

express the Ehrenfest’s theorem. These forms recall that of classical Hamiltonian-Jacobi
equations for a particle.

29.7 Example: Spin precession
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We consider the motion of spin S (=1/2) in the presence of an external magnetic field
B along the z axis. The magnetic moment of spin is given by

Then the spin Hamiltonian (Zeeman energy) is described by

~

" - 2 -
A=—iB=—(-252)8 = 1,58
. . eh
Since the Bohr magneton pg is given by x4 = 2_mc
_eBh _heB_h
M ome  2me 20
or
eB _
Wy =— (angular frequency of the Larmor precession)

mc

Thus the Hamiltonian can be rewritten as

N
H :Ea)oa

z

Thus the Schrodinger equation is obtained as
) = expl—- Aty (¢ = 0) = expl— e, (¢ = O)
Note that the time evolution operator coincides with the rotation operator
R, (@,t) = exp[——iza)0 o,t]
We assume that
¢ 0
e? cos(E)

-0}, ooty oot Lot
e? sin(E)
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R, (w,t) = exp[——lza)o &.t]
The average

(8.}, = O ©) =3, (Hexplz 0 to, expl-3 611+),

(5)),

(W O,y ©) =5 (+ ool 046 o, expl-—- o 11+),

(5.), = (W OIS w0) =3, (Pl tlo, exl-3 ad.1+),

Here we have

itwg

P P 01
exp[lzwoffztlaxeXp[—%woazt]= ¢ 9& 1 oj . QL
0 e ? 0 e ?

B O eitwo

e—i’[wo 0

. . .
epl oo, opl—adl= T O, [ Jez By

- P 1 0
exp['E w,0,t]o, exp[—%cooazt] = J
Thus we have

(S,), = gsin O cos(w,t + ¢)

= %sin O[cos(m,t) cos ¢ —sin(w,t) cos ¢]

<Sy>t = gsin O[sin(w,t) cos ¢ + cos(w,t) sin @]
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h
(S,), :Ecose
Att=0,

no.
(Se)y =sin 0cos ¢
<Sy>0 :gsin gsing

h
(S,), :Ecosﬁ

Using this we have
(Se), = (S, )o cOS(@rt) (S, ), sin(eyt)

<Sy>t =(S,), sin(apt) + <Sy>0 cos(m,t)

—
NU)
-~
I
—
N(D
~—

o
I
I
(@}
(@}
w
D)

(5., = (W OIS w0) =2 (+[exvL 6,16, e[ 6.11+),

=2 (6. cos(@) -6, sin(ayt) +),
where
h .
<SX>0 =§n<+|o-x|+>ﬂ
We also get

(8,), = w®IS,lv ) =§n<+le><p[i§ 0,6 116, eXp[—iEwo&ztn +)

2 (HBsin(a) +, cos(@)+),
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(S}, =3a +16,1+),

and
(S.), = (O[S, |w®))
L (el 06,06, expl- 6,114,
(L), =(8.),
Then
(Se), = (S,)o cos(@rt) (S, ), sin(eyt)
(S,), = (S )oSin(egt) +(S, ) cos(eyt)
and
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29.8 Baker-Hausdorf lemma

In the commutation relations, [J,,J,]=i4J, , we put J, :g&z and J, :%&X
Then we have

N | St

[g&z, &X]=ihg&y or  [6,6,]=26,.

Similarly, we have
[6,,0,]1=2i5,, [6,.0,]=2ic,

We notice the following relations which can be derived from the Baker-Hausdorf
lemma:

exp(Ax) B exp(—Ax) = B+%[A, B]%[A,[A, B]]%[A,[A,[A, BT+ ...

expli g&z]&x exp[-i g&z] =0,C0860 -0, sind
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O~ - 0 -~ -
exp[lzaz]ay exp[—lzaz] =0, 8ind+ o,cosd

((Proof))

We note that

[AB]=[6,,6,]=2i6,
Then we have

| =exp[xo,]o, exp[-xo6,]1=06,+— [0 ax]+x72l[&z,[a c ]]+X3 [6,.[0,.[0,,6,]11]

+ %[OA-Z ! [6-2 ! [62 7[62 1 &x]]]] RN

|=&X+%%2 0y+%(i§j [&Z,Zi&y]+§(lfj [6,.[6,.2i5,]]+— ('gj [6,.[6,.[6,,2i6,T1]+.

or
0? i
| =6,-6c +|22 [O'y,G] 3( ZI)[GZ,[Gy,O']]-i-——( 2i)[5,.[0,.[0,,6]11].....
2 3
=0,-0c +|%2|0' —ée—s( 2|)(2|)[az,a]+£6)—( 2i)(2i)[5,,[0,,6,11+...
or
0. 16, o~ 1O .
|l =5, -00, —70' _5?( 2i)(21) O'y+Z?(—2I)(2I)(2I)(—2I)O'X+...
2 93 4
=0,-00,—~—06,+—0,+——0,+
2 34
R 0> o R 0
=0, 7+Z---) oy ( 3 +..)

=0,C0s0—c, cosd
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29.10 Schrodinger picture

The Schrodinger equation

(1)) =|w. ()

v, () =U ()| (t)
where L](t,to) is the time evolution operator;

U (tt,)=U(t.t,).

In the Schrodinger picture, the average of the operator )Bg in the state |y/S (t)) is defined

by
(v, )| Alw, (1))

29.11 Heisenberg picture
The state vector, which is constant, is equal to

|lr//H (t)> = |‘//s (t0)>-

From the definition

W A Olwn) = (v, A O,
or
A1) =U" (LA U L),
In general, A,(t) depends on time, even if A_(t) does not.

29.12 Heisenberg’s equation of motion
The Schrodinger equation can be described in the Schrodinger picture

.. 0 ~

or
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ih%o(t,to)ws(to» = H.OU ). (6)

or
o d - A
'hEU (tt,) =H, U t.t,)
or
iO(t )——lﬁ(t)d(tt)
dt ’tO - h S 140
and

—U (t, to)__U (LK) H, )
where I:|5*(t) = I:|S(t) . Therefore

dA, (t) _dU" (tt) dU(tt)

AOUE)+0 (A0 L 0 ) B0 )

dt
:%U%t,to)Hs(t)As(t)U(t,to)—U*(t,to)As(t)%Hs(t)L](t,to)+U*(t,to)%0(t,to)
=%W(t,to)[ﬁs(t),As(t)]ti(t,to)+0+(t,to)%u(t,to)
i A dA, (1)
=2 TH . A O+ (5
where

Hy (1) =07 () H, U (t )

Finally we obtain the Heisenberg’s equation of motion
|h;j A,t) = [A (1), H q (O] +ia(——= A())H

29.13 Simple example

H{(H)=H, A=A
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Then we have the Heisenberg’s equation of motion:
in A, =[A,,F,]
dt S

We get an analogy between the classical equations of motion in the Hamiltonian form
and the quantum equations of motion in the Heisenberg’s form. A, is called a constant

of the motion, when[AH : ﬁH ]=0at all times.

Therefore [AH , I:IH] means [AS,I-]S] =0

29.14 Ehrenfest’s theorem: free particle

[%,, P’ 1=U"[%, p*IU
=2in0 " pU
= 2inp,,

Heisenberg’s equation for the free particles,
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ihdt)A(H:[)A(H’ H]:2 [)A(H' H]
or
d . SN 1.
aXH =[XH'HH]=EpH
Similarly
o d o A i T+ra amna T+r A
ih= By =[P H,1=U [B.HI =U [p,
or
d o V(R
ot P =(-) %,

We consider a simple harmonics.
- 1 -
V(%) =Ema)2xH2

d . 2n
— Py =—MarX,

dt

Now consider the linear combination,
d
dt
- i . L
Xy +——Pu) =Aqe It

mw
or

d . [ . A i
—(Ry —— Py) =i0(Ry ——
dt( H T me Py) =lw(X, ma))

A~

i . ~ .
X, - — B ela)t
( H Mo pH) H

Time evolution of system

A i . . A i
— (X, +m_a) Py) =—lo(X, +m_co Py)

0 ~ 2 2 ...
— =—1Ihap,,
aﬁH pH 2m pH
PPN Z
V(XU = (-7

(O =( )0,)QH

V(Xy)
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where AH and E§H are time-independent operators:

A

A,

%, (0)+—— .y (0)
Mo

s [
BH XH(O)_m_a)pH(O)

Note that X, (0) and p,, (0) correspond to the operators in the Schrédinger picture. From
these equations, we get final results

X, = Xy (0)cosmt +i P, (0)sinat
o)

Py = Py (0)coswt —maX,, (0)sin wt

These look to the same as the classical equation of motion. We see that X,, and p,
operators oscillate just like their classical analogue.

An advantage of the Heisenberg picture is therefore that it leads to equations which are
formally similar to those of classical mechanics.

((Note))
d?> . dX P, 1., Mo’ . 2y @ s ~25 @ .

Ihdtz Xg =1 d:’ H]=[FH’HH]=_[ H' Y Xu ]=7[pH'XH ]:E |_2XH
or

WXH —Q XH
with the initial condition

d . 1. . A

EXH |t:O:EpH 0), Xy l=0= Xy (0)

The solution is

Xy = él cos(at) + éz sin(awt)
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)?H 0)= él’

dR . ) s
| o=[-asin(a) + o, cosn(at)], = o, = 0

Thus we have

¢, - PO
Mo

and

X, = X, (0)cos(wt) + Msin(a)t)
maw

Paul Ehrenfest (January 18, 1880 — September 25, 1933) was an Austrian and Dutch
physicist and mathematician, who made major contributions to the field of statistical
mechanics and its relations with quantum mechanics, including the theory of phase
transition and the Ehrenfest theorem.

http://en.wikipedia.org/wiki/Paul_Ehrenfest

29.15 Analogy with classical mechanics
In the classical mechanics, dynamical variables vary with time according to the
Hamilton’s equations of motion,

dg; _oH

dt  op,’

where gjand p; are a set of canonical co-ordinate and momentum, and H is the
Hamiltonian expressed as a function of them,

H =H (0, 8y, Ggrevers Gy Pry Pas Paree- Pp)
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where n is the degree of freedom.

For a given variable A =Vv(d,,0,,05,--, Qs Py Pos P3oe Pry)

Adq, oA dp;,
dt Z[aqJ dt ap. dt

]

_z(aA oH oA GHJ

8qJ 8pJ ap,. 6qj
=[AH]

classical

[ Jeiassicai:@ classical definition of a Poisson bracket.

29.16 Dirac picture (Interaction picture)
H=H,+V.,(t)

where I:|0 is independent of t.

)= "y, )

or

v, ©) =™y, 0)
We assume that

(w1 OIA Oy, ©) = (v O|Alw. ®)
For convenience, A, is independent of t,

or

.0 ™™ A O™ 1,0) = (r. O ALy )
or

—Hgt A

Tt A i
e Ae =A
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or

gt

~ iﬁot ~

At)=e" Ae"
or

d oA R R lHAot ~ —il:|0t lﬁot ~ —il:|0t ~

|haA|(t):|h%[Hoeh Ase h _eh Ase h Ho]
=[A (1) Ho]

Thus every operator behaves as if it would in the Heisenberg representation for a non-
interacting system.

0 D 1A,
|ha|l//| (t)> = |h5ehH t|

w,(t))
- _ﬁoe?ﬁ“ws (t)>+e"ﬁ°tih§|y/s (1)
Since

i 2, 0) =, +V. 0w, )

ih%hf/. )= ihgehﬁ“lws ©)=-Fee" w,0) + e, +V O ©)

or
i 2o, ) ="V 0y, )=V, Oy, )
or
-2y, ) =V, Ol )
where

ot

V() ="V (t)e " (Schrodinger-like)
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which is a Schrodinger equation with the total H replaced by \7,.

We assume that
|‘//| (t)> = Lj| (tvto)|‘//| (to)>
satisfies the equation
.0 ~
'ha|'//| (t)> =V, (t)|W| (t)>
Then we have the following relation.
.0~ aan
Ihaul (t.t) =V, (OU, (t,t,)
with the initial condition
A i L. A
U (1) =1=— [V, (0U, (' )dt
)
We can obtain an approximate solution to this equation [Dyson series].

- i fn NI
U.(t,to)=1—%tj0V. (t)[l—%thV. (tU, (t",t,)dt Tdt

=1+ (—%)j\i, (t')dt'+(—%)2jdt'}dt"v, W, (") +...

to to

29.17 Transition probability
Once U, (t,t,) is given we have

|‘//| (t)> = le (t!to)|l//| (to)>

where

) =e "), o p®)=e" o)

and
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v () =U (t,t)|w, (t,))

0

v, ) =& 0, (), (1))

';Flot A —éHAoto
=e" U (tt)e |W| (t0)>

Then we have

~ Tt ~ Lt
U (tt)=e" U tt)e "’

Let us now look at the matrix element of LJ, (tt,)

Ho[m) = E|n)

(U, @) m)=e (iU, (t,t,)| m)

(00, @ t)m)| =[(nId, t.t)m)f

((Remark))

When

[H,, A]#0 and [H,,B]=0

Aa)=ala) and  B|b)=Dbb’
in general,

(CYSHOIS Y CVAES [N

Because
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(b0, (Lto)la = 3 (e ™)l k.t )e )

i
—Yet
n,m

(Ent=Ento)

([ m){nlJ, (& t)| m){m| )

29.18 Application of Schrédinger and Heisenberg pictures
Simple harmonics:

The operator in the Heisenberg picture is defined by

A

ALAA The~ e
A, =U"AU =e" Ae "
where H is the Hamiltonian

2
H :iﬁZ LGS,
2m 2

Using the equation of Heisenberg picture, we obtain

A 4 1 .. .
Xy = XCOSwt + —— psin wt
Maw

and
P, = Pcos mwt — mwXsin wt

The matrix of X and p are given by

0

0

0
Ja
0

oo oo
oo to
Lo %0 4o
So o o

and
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0 V1 o0 0 o
-1 0 V2 0 o0

s Mo, | 0 -¥2 0 V3 0 -
=2l 0 0 -3 o0 A
0 0 0 -4 0

((Discussion))
What are the expectation values (y (t)[X|w (t)) and (w (t)|p|w (t))?
(WOl 1) = (w(0)[%|w(0))
= (y(0)|Xcos et + L psin at|y (0))
mo
~ (y(O)|%(0)) cos ct + miw<y/(0)|@|y/(0)>sin ot
(w(0)[Pn|w(0))

(y(0)|pcos at — maksin wt|y (0))
<w(0)| [3|1//(0)>C03a)t - mw(w(0)|f(|l//(0)>sin wt

{w ()| Plw (1))

Suppose that
@ w@)=(0)+21)+]2)

we can calculate the matrix elements (i (0)|%|y(0)) and (i (0)||w(0)) as follows.

1
1 2 1)1 o L0 ?
<W(o)|x|,,,(o)>:[_ 2z _j_{1 0o V2|2
6 /6 /642 NG
Plo V2 o 1
NG

1 2

_\/_T,BE(H\/E)
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0o 1
wOplw)=|= = —=|7=£-1 0

@  vo)-—(o)+1)
1
oo 3l 2
72
1
O[5 izj%ﬂ(_ol (1)} V2

W O[Ry ) = \/_%ﬁcos o
and

(W ®[plw ()= —}T‘;sin ot
[[Another method (Schrodinger picture)]]

)= (0)+[1)

(e—iEOt/h|0>+e—iE1t/h|1>)
Bt/
= _[e—iElt/hJ

<l//(t)|:%(eiEot/h iElt/h)

N"‘%l"_‘
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A 1 ? 1 iEgt/h iEt/h 0 1 TRt
woso-( 3 e (0

:1 1 (eiEot/h iEgt/h e =t
Zﬁﬂ e—iEot/h
1 1 iwgt —imyt 1
==~ (e +e ") = —=—cosm,t
2725 T
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