Chapter 2
First order differential equation

2.1. Linear equations

2.1.1 Method of solution
We consider a first-order differential equation given by

y+p(X)y = q(x)

First solve the problem: y,'+p(X)y, =0

Y,(X) = C exp[—| p(s)ds]

((Note)) Separation variable method
Y+ p(X)y, =0.
or
%-ﬁ- p(x)y, =0, %:—p(x)dx
X Yi

Then we have

dy_ p(x)dx = N p(s)ds,
5

or

In(y,) = —j p(s)ds + const, Yy, (X) =C, exp[— i p(s)ds ].

We assume that C — C(X)

y(x) = C(x)exp(~[ p(s)ds)



y'==P()C)exp(—[ p(s)ds) +C' () exp(=| p(s)ds)

=—p(x)y +C'(X)exp(] p(s)ds)

or
C'(9exp(-] p(s)ds) = A

or
¢ =2 g exp] p(s)c

Then we have

t
[ p(s)ds

C(x)= Idtq(t)e
Final result is
Y(¥) = C(X)exp(~[ p(s)ds)..

2.1.2 Example
Solve

ﬂ+2xy:4x.

dx

((Solution))
The integrating factor C(x) is obtained as follows.

ﬂ+2xy:0

dx

or

.[l dy = —.[ 2xdx (separation variable).
y



Then we have
y(x)=C exp(—Xz) — C(X) exp(—Xz)
with

C'(x)= % = 4xexp(X’)

Then we have

Cx)= j4XeXp(X2)dX =2exp(x’)+cC.
The solution is given by

y(X) =2+ cexp(—X°).
((Mathematica))

DSolve[y " [X] + 2xVy[X] =4 X, Y[X], X]

{{y[x] L2+ Crl] }}

2.2  Solution of the differential equation by Mathematica

We use the Mathematica to solve a differential equation. We use the following
command.
DSolve[eqn,y,x]
find a formal solution for the ordinary differential equations eqn for the function y with
the independent variable X
1. Write down the differential equation such as

eql = y'[x]+ xy[x] == Exp[—X]

With initial condition y[0]=1.
2. Using DSolve, we solve the differential equation

eq2 = DSolve[{eql, y[0] == 1}, y[X], X]

3. Using the conventional technique (this is a very convenient technique)



yIx_1=y[x]/.eq2[[1]]
You can get the solution of y(X).
4. Next we make a plot of y[x] as a function of x. For example,

Plot[ Evaluate[ y[x]],{x,0,10}, PlotStyle — {Hue[0], Thickness[0.01]},
Background — LightGray, AxesLabel — {"x","y"}]

5. We can make a plot of the phase space given by {y[x],y’[X]}. For example,

ParametricPlot[Evaluate[ {y[X], y'[X]}],{X,0,10} ]

2.3.  Numerical solution by Mathematica

We use the Mathematica to solve a complicated differential equation numerically. We
use the following commands.

NDSolve[eqns,Y, {X, Xmin> Xmax} |

finds a numerical solution to the ordinary differential equations eqns for the function y
with the independent variable X in the range Xmin and Xmax

I. Write down the differential equation such as

eql = y'[x]+ xy[x] == EXp[—X]

2. Using NDSolve we solve the differential equation with the boundary condition (in
this case, y[0]=1) for 0<x<x, (=10).

eq2 = NDSolve[{eql, y[0] == 1}, y[X],{X,0,10}]

3. Using the conventional technique (this technique is very convenient. You must
memorize).

yIx_1=y[x]/.eq2[[1]]
You can get the solution of y(x) for 0<x<x, (=10).
4. Next we make a plot of y[X] as a function of X for 0<x<10. The command

Evaluate is very important for the process of changing the parameters into
numerical values



Plot[ Evaluate] y[ x]],{x,0,10}, PlotStyle — {Hue[0], Thickness[0.01]},
Background — LightGray, AxesLabel — {"x","y"}]

5. We can make a plot of the phase space given by {y[X],y’[X]}.

ParametricPlot[Evaluate[ {y[x], Y'[X]}],{X,0,10} ]

2.4. Exact differential equation

2.4.1 Definition
Here we consider the exact differential equation,

dg = A(X,y)dx + B(x,y)dy = %dx +%dy =0,
dx dy

with

26(x,Y)

A(X,Y) =
(X,Y) o

9P(X,Y) _
8X > B(X’ y) -

The condition for the exact differential equation is

OA(XY) _ O’(%.Y) _ O*#(x.y) _ OB(X,Y)
oy Oyox OXoy ox

Then we have the solution of the exact differential equation;

@ = constant.

2.4.2 Example
Solve

x%+(3x+y):0, or (B3x+ y)dx+ xdy =0
with
A(X,y)=3x+Y, B(X,y)=x.

((Solution))
Since



OA(X,y) _ GB(Xy) _
oy OX

L,
this differential equation is an exact equation.
3.2
¢:I(3x+ y)dx:Ex +yx+F(y) =ci.

Since B(x,y) = %f =X, F’(y) =0 or F(y) = C,.Then we have a final solution

3.0
5% +yX=C —-C,=C

((Mathematica))
DSolve[xy"[x] + 3X +y[x] =0, y[x], X]

: C
2x. ey

Hymx -

ContourPlot of ¢ = %Xz +yx=c, where c =-2 to 2.
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2.5. Inexact differential equation



2.5.1 Definition
We now consider a differential equation,

P(x, y)dx +Q(x,y)dy =0.
If we multiply a(X,Y) on this equation,
a (X, )P (X, y)dx + a(x,y)Q(x,y)dy =0,

then this becomes exact differential equation.

Z_f=a(x, Y)P(x,y), and %w(x, YIQ(X,Y),
or

P _0

yox aya(x, Y)P(X,y)

24 o '

oy ox a (X, Y)Q(X,Y)

Suppose that a(X,y) is a function of only X: a(X,y) = a(x) for simplicity

aQa(x)P(x, y) = ia(X)Q(X, y),
y OX

P(xy) _ da(x) 9Q(x, )
a(X) y - dx QX y)+a(x) x

P(X,y) 9Q(X,Y),_ da(x)
a(X)[ o x 1= ™ Q(x,y)
or
_r L OP(xy)  0Q(X.Y)
Infar(x)]= [ o = ol
2.5.2 Example
Solve

(4x+3y*)dx + 2xydy =0



((Solution))

P(x,y)=4x+3y’, Q(X,y) = 2xy
POY) g, QY o
oy OX

So the differential equation is not exact. We multiply e(X) on both sides of the original
equation.

de¢ = %dx + %dy
= a(X)(4x +3y>)dx + 2a(X)xydy =0

The condition for the exact differential equation is

ai[a<x><4x+3y2)]=3[2a(x)xy]
Yy OX

or
6ya(X)=2a'(X)Xy +2ya(X)

or

1 2 . .
j—da(x) = I—dx (separation variable)
a(X) X

or

a(X)=x’

Then we have

o¢ 2

—=a(X)(4x+3

OX (3 y) , g—¢ = a(X)(2xy) =2X’y
=4x* +3x%y’ y
From the first equation, we get

dx,y)=x'+ Xy  +F(y)=c,

From the second equation, we have



or

2x°y + F'(y)=2xy

F'(y)=0

Then we have

dx,y)=x'+xy*=c

((Mathematica))

2.6

Clear["Gobal "]

Clear[y];

eq2 = DSolve[4x + 3y[x]? + 2xy[x] y"[x] =0, Y[x], X]

x 3y[x]? // Expand

x*iCr1]

RL circuit

We consider an RL circuit (battery ¢ -R — L are connected in series);

SW

AW




AO )=

for t>0, where I(t = 0) = 0 as initial condition. We note that I(t) (= I (1)) is ideal variable
for the RL circuit. In other words, I(t) is continuous at t = 0. The reason is as follows. The
voltage across the inductance L is expressed by

dit)

Vi =L= =

Then the current flowing through the inductance is given by
I(t) = ljv (t"dt'
L)t '

This means that I(t) slowly varies with time t even if V(1) drastically changes with time.
The current I(t) flowing through the inductance is equal to zero at t = 0 and continuously
changes with time for t>0.

Step -1.

For t—oo, I(t) becomes independent of time; |, =—

Step-11:

The solution of
dl a,® +RI,(t)=0,

is given by
L) = Aexp(—%t) .

Then

) =1,@t)+1, = Aexp(—%t)+%,

where A is determined from the initial condition (I(t=0)=0), A= —%. Therefore we get



1O = 1,0+ 1, =2l - exp(— ] = 1,11 - exp(-].

. ) L
where the relaxation time 7is 7 = E )
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Fig. The blue line is the tangential line at t = 0. At t/7 = 1 (the point P) the
tangential line reaches at I/lp = 1.
((Note)) Another solution
di(t
Ld—(t)+ RI(H) =¢. (1
In the limit of tt — oo, we have
RI,=¢. (2)

Using Eq. (2), Eq.(1) can be rewritten as

d —
L AIO-LI+RI® - 1,]=0.

The solution of this equation is given by

(-1, = Aexp(—%t)

where A is a constant to be determined from the initial condition. When I(t = 0) = 0, we

have



It)=1_[1- exp(—%t)] .

2.7  RCcircuit
We consider an RC circuit (battery ¢-R — C are connected in series);

Ve@®+RIc () =¢,
and

dVe ()

le()=C=¢=

for >0, where V¢(t = 0) = 0 as initial condition. l¢(t) is the current flowing through the
capacitor C. V(1) is the voltage across the capacitor C. The differential equation for V(t)
is given by

dVe (1) _
Ve(t)+RC=C=

We note that V(1) is ideal variable for the RC circuit. In other words, V(1) is continuous
att = 0. The reason is that the voltage across the capacitor is given by

Ve (1) =éj I (t)dt'.

This means that V(1) slowly varies with time t even if I¢(t) drastically changes with time.
The current V¢(t) flowing through the inductance is equal to zero at t = 0 and
continuously changes with time for t>0.

Step -1:



For t—o0, V(1) becomes independent of time; &.

Step-11:

The solution of

4V,

RC——=
dt

+V1 (t) = 0 )
is given by
V(1) = Aex (—Lt)
1 p RC
Then

1
V. =V,t)+ &= Aexp(—1t) +¢.
cO=Vih+e xp( RC)

where A is determined from the initial condition (Vc(t = 0) = 0), A=—¢. Therefore we
get

Ve () =1 - exp(—%)] ,

) ) ) 1
where the relaxation time 7is 7 = E
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Fig.  The blue line is the tangential line at t = 0. At t/7=1 (the point P) the tangential
line reaches at Vc/e= 1.



((Note)) Another solution

Ve (t) + RC———= dVe (t) (1)
dt
In the limit of tt — oo, we have
V, =¢. 2)

Using Eq. (2), Eq.(1) can be rewritten as
d
RCE[VC(U =V 1+ [V (1) -V, ]=0.
The solution of this equation is given by
V. (1)-V,_ = Aex (—Lt)
c o P RC

where A is a constant to be determined from the initial condition. When V(t = 0) = 0, we
have

V.(t)=V_[1- exp(—%t)] .

2.8 Example
The solution of

dy 1 2,2
dx 2yx(y +x)

is given in the form of @(X, y) = constant. We define a field E as

a¢ o4

oy

Note that the differential equation is an exact differential one.
dy
(y* + )dx + 2xyd— A(X,y)dx+ B(x,y)dy =0

where



OA(X.Y) _

BRY) _,,

2y,
y OX

Since

o¢ 2,2 o¢
D oAxy) =y +2 D@ -B(x,y)=2
5 - Ay =Y S~ BOeY) =2

we have

=2xy+ F'(y)=2xy

B(X,y) = xy> +2Inx + F(y), %

Then we have
F'(y)=0, F(y)=c, (constant)
Finally we get the form of ¢ as
d(X,y)=Xxy> +2Inx+¢, =cC,
or
Xy’ +2Inx=c=c, —¢,

Here we show the solution of the above equation using the Mathematica.
((Mathematica))



Clear["Gobal "];

Clear|[y];
1 2
eql = DSoIve[y'[x] + — (y[x]2+ —) =0, y[x], x];
2y[x] x X
yI[x_]1=yI[x] /- eql[[2]]
\/C[l]__ZLog[x]

X X

y[x]%x + 2Log[x] // Simplify
Cl1]

Clear|[y]

¢ =y?>x + 2Log[X]:
Tl = ContourPlot[Evaluate[Table[¢ == a, {a, -5, 5, 0.5}]1,
{x, 0.1, 5}, {y, -5, 5},
ContourStyle » Table[{Hue[0.05 1], Thick},
{i, 0, 20}11;



eql = {_D[¢’ X] ’ _D[¢1 y]};
f2 = StreamPlot[eql, {x, 0.1, 5}, {y, -5, 5}1;

Show[f1l, T2]

The contour plot of @(X,y) = Xy* + 21n x=const, and the field lines of
E= (—%,—%) in the (X, ) plane.
ox oy



