
 

Chapter 2 
First order differential equation 

 
________________________________________________________________________ 
2.1. Linear equations 
 
2.1.1 Method of solution 

We consider a first-order differential equation given by 
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((Note)) Separation variable method 
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Final result is 
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2.1.2 Example 

Solve  
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((Solution)) 
The integrating factor C(x) is obtained as follows. 
 

02  xy
dx

dy
 

 
or 
 

  xdxdy
y

2
1

 (separation variable). 



 
Then we have 
 

)exp()()exp()( 22 xxCxCxy   
 
with  
 

)exp(4
)(

)(' 2xx
dx

xdC
xC   

 
Then we have 
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The solution is given by 
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((Mathematica)) 
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________________________________________________________________________ 
2.2 Solution of the differential equation by Mathematica 

We use the Mathematica to solve a differential equation. We use the following 
command. 
 
DSolve[eqn,y,x] 
find a formal solution for the ordinary differential equations eqn for the function y with 
the independent variable x 
 
1. Write down the differential equation such as 
 

][][]['1 xExpxxyxyeq   
 
With initial condition y[0]=1. 
 
2. Using DSolve, we solve the differential equation  
 

]],[},1]0[,1[{2 xxyyeqDSolveeq   
 
3. Using the conventional technique (this is a very convenient technique) 
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You can get the solution of y(x). 
 
4. Next we make a plot of y[x] as a function of x. For example, 
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5. We can make a plot of the phase space given by {y[x],y’[x]}. For example, 
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_______________________________________________________________________ 
2.3. Numerical solution by Mathematica  
 
We use the Mathematica to solve a complicated differential equation numerically. We 
use the following commands. 
 
NDSolve[eqns,y,{x, xmin, xmax}] 
finds a numerical solution to the ordinary differential equations eqns for the function y 
with the independent variable x in the range xmin and xmax 
 
1. Write down the differential equation such as 
 

][][]['1 xExpxxyxyeq   
 
2. Using NDSolve we solve the differential equation with the boundary condition (in 

this case, y[0]=1) for 0≤x≤x0 (=10).  
 

}]10,0,{],[},1]0[,1[{2 xxyyeqNDSolveeq   
 
3. Using the conventional technique (this technique is very convenient. You must 

memorize). 
 

]]1[[2./][_][ eqxyxy   
 
You can get the solution of y(x) for 0≤x≤x0 (=10). 
 
4. Next we make a plot of y[x] as a function of x for 0≤x≤10. The command 

Evaluate is very important for the process of changing the parameters into 
numerical values 
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5. We can make a plot of the phase space given by {y[x],y’[x]}. 
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_______________________________________________________________________ 
2.4. Exact differential equation 
 
2.4.1 Definition 

Here we consider the exact differential equation, 
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The condition for the exact differential equation is  
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Then we have the solution of the exact differential equation;  
 

 = constant. 
 
2.4.2 Example 

Solve 
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((Solution)) 
Since 
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this differential equation is an exact equation. 
 

)(
2

3
)3( 2 yFyxxdxyx    = c1. 

 

Since x
y

yxB 






),( , F’(y) = 0 or F(y) = c2.Then we have a final solution 

 

cccyxx  21
2

2

3
 

 
((Mathematica)) 
 

DSolvex y'x  3 x  yx  0, yx, x
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ContourPlot of cyxx  2
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3 , where c = -2 to 2.  
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2.5. Inexact differential equation 



2.5.1 Definition 
We now consider a differential equation, 
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If we multiply ),( yx  on this equation, 
 

0),(),(),(),(  dyyxQyxdxyxPyx  , 

 

then this becomes exact differential equation. 
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Suppose that (x,y) is a function of only x: (x,y) = a(x) for simplicity 
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2.5.2 Example 

Solve  
 

02)34( 2  xydydxyx  
 



((Solution)) 
 

P(x,y)=4x+3y2, Q(x,y) = 2xy 
 

y
y

yxP
6

),(





, y
x

yxQ
2

),(





 

 
So the differential equation is not exact. We multiply (x) on both sides of the original 
equation. 
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The condition for the exact differential equation is  
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From the first equation, we get 
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From the second equation, we have 
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((Mathematica)) 
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Cleary;
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2.6 RL circuit 

We consider an RL circuit (battery  -R – L are connected in series); 
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for t>0, where I(t = 0) = 0 as initial condition. We note that I(t) (= IL(t)) is ideal variable 
for the RL circuit. In other words, I(t) is continuous at t = 0. The reason is as follows. The 
voltage across the inductance L is expressed by 
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Then the current flowing through the inductance is given by 
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This means that I(t) slowly varies with time t even if VL(t) drastically changes with time. 
The current I(t) flowing through the inductance is equal to zero at t = 0 and continuously 
changes with time for t>0. 
 
Step -1.  
 

For t→∞, I(t) becomes independent of time; 
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is given by 
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where A is determined from the initial condition (I(t = 0) = 0), 
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where the relaxation time  is 
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Fig. The blue line is the tangential line at t = 0. At t/ = 1 (the point P) the 

tangential line reaches at I/I0 = 1.  
 
((Note)) Another solution 
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In the limit of t t , we have  
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Using Eq. (2), Eq.(1) can be rewritten as 
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The solution of this equation is given by 
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where A is a constant to be determined from the initial condition. When I(t = 0) = 0, we 
have 
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2.7 RC circuit 

We consider an RC circuit (battery  -R – C are connected in series); 
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for t>0, where VC(t = 0) = 0 as initial condition. IC(t) is the current flowing through the 
capacitor C. VC(t) is the voltage across the capacitor C. The differential equation for VC(t) 
is given by 
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We note that VC(t) is ideal variable for the RC circuit. In other words, VC(t) is continuous 
at t = 0. The reason is that the voltage across the capacitor is given by 
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This means that VC(t) slowly varies with time t even if IC(t) drastically changes with time. 
The current VC(t) flowing through the inductance is equal to zero at t = 0 and 
continuously changes with time for t>0. 
 
Step -1: 
 



For t→∞, VC(t) becomes independent of time; . 
 
Step-II: 
 
The solution of  
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where A is determined from the initial condition (VC(t = 0) = 0), A . Therefore we 
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Fig. The blue line is the tangential line at t = 0. At t/ = 1 (the point P) the tangential 

line reaches at VC/ = 1.  



 
((Note)) Another solution 
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In the limit of t t , we have  
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Using Eq. (2), Eq.(1) can be rewritten as 
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where A is a constant to be determined from the initial condition. When Vc(t = 0) = 0, we 
have 
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2.8 Example 
 
The solution of 
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is given in the form of (x, y) = constant. We define a field E as 
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Note that the differential equation is an exact differential one. 
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we have 
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Then we have 
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Finally we get the form of  as 
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Here we show the solution of the above equation using the Mathematica. 
((Mathematica)) 
 



Solve

y'x  1
2 yx x

yx2  2
x
  0

Clear"Gobal`";

Cleary;

eq1  DSolvey'x 
1

2 yx x
yx2 

2

x
 0, yx, x;

yx_  yx . eq12
C1

x


2 Logx
x

yx2 x  2 Logx  Simplify

C1

Cleary
  y2 x  2 Logx;

f1  ContourPlotEvaluateTable  , , 5, 5, 0.5,

x, 0.1, 5, y, 5, 5,

ContourStyle  TableHue0.05 i, Thick,

i, 0, 20;  
 



eq1  D, x, D, y;

f2  StreamPloteq1, x, 0.1, 5, y, 5, 5;

Showf1, f2
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Fig. The contour plot of xxyyx ln2),( 2  =const, and the field lines of 

),(
yx 









E  in the (x, y) plane. 


