Chapter 2
 First order differential equation

2.1. Linear equations

2.1.1 Method of solution

We consider a first-order differential equation given by

$$
y^{\prime}+p(x) y=q(x)
$$

First solve the problem: $y_{1}{ }^{\prime}+p(x) y_{1}=0$

$$
y_{1}(x)=C \exp \left[-\int^{x} p(s) d s\right]
$$

$\overline{((\text { Note }))} \quad$ Separation variable method

$$
y_{1}^{\prime}+p(x) y_{1}=0 .
$$

or

$$
\frac{d y_{1}}{d x}+p(x) y_{1}=0, \quad \frac{d y_{1}}{y_{1}}=-p(x) d x
$$

Then we have

$$
\int \frac{d y_{1}}{y_{1}}=-\int p(x) d x=-\int^{x} p(s) d s,
$$

or

$$
\ln \left(y_{1}\right)=-\int^{x} p(s) d s+\text { const }, \quad y_{1}(x)=C_{1} \exp \left[-\int^{x} p(s) d s\right] .
$$

We assume that $C \rightarrow C(x)$

$$
y(x)=C(x) \exp \left(-\int^{x} p(s) d s\right)
$$

$$
\begin{aligned}
y^{\prime} & =-p(x) C(x) \exp \left(-\int^{x} p(s) d s\right)+C^{\prime}(x) \exp \left(-\int^{x} p(s) d s\right) \\
& =-p(x) y+C^{\prime}(x) \exp \left(-\int^{x} p(s) d s\right)
\end{aligned}
$$

or

$$
C^{\prime}(x) \exp \left(-\int^{x} p(s) d s\right)=q(x)
$$

or

$$
C^{\prime}(x)=\frac{d C(x)}{d x}=q(x) \exp \left(\int^{x} p(s) d s\right)
$$

Then we have

$$
C(x)=\int^{x} d t q(t) e^{\frac{f}{p(s) d s}}
$$

Final result is

$$
y(x)=C(x) \exp \left(-\int^{x} p(s) d s\right)
$$

2.1.2 Example

Solve

$$
\frac{d y}{d x}+2 x y=4 x
$$

((Solution))
The integrating factor $C(x)$ is obtained as follows.

$$
\frac{d y}{d x}+2 x y=0
$$

or

$$
\int \frac{1}{y} d y=-\int 2 x d x \quad \text { (separation variable). }
$$

Then we have

$$
y(x)=C \exp \left(-x^{2}\right) \rightarrow C(x) \exp \left(-x^{2}\right)
$$

with

$$
C^{\prime}(x)=\frac{d C(x)}{d x}=4 x \exp \left(x^{2}\right)
$$

Then we have

$$
C(x)=\int 4 x \exp \left(x^{2}\right) d x=2 \exp \left(x^{2}\right)+c
$$

The solution is given by

$$
y(x)=2+c \exp \left(-x^{2}\right)
$$

((Mathematica))

DSolve [y' $[x]+2 x y[x]=4 x, y[x], x]$

$$
\left\{\left\{y[x] \rightarrow 2+e^{-x^{2}} c[1]\right\}\right\}
$$

2.2 Solution of the differential equation by Mathematica

We use the Mathematica to solve a differential equation. We use the following command.

DSolve[eqn, y, x]
find a formal solution for the ordinary differential equations eqn for the function y with the independent variable x

1. Write down the differential equation such as

$$
e q 1=y^{\prime}[x]+x y[x]==\operatorname{Exp}[-x]
$$

With initial condition $y[0]=1$.
2. Using DSolve, we solve the differential equation

$$
e q 2=\operatorname{DSolve}[\{e q 1, y[0]==1\}, y[x], x]
$$

3. Using the conventional technique (this is a very convenient technique)

$$
y[x]=y[x] / . e q 2[[1]]
$$

You can get the solution of $y(x)$.
4. Next we make a plot of $y[x]$ as a function of x. For example,

$$
\begin{aligned}
& \text { Plot }[\text { Evaluate }[y[x]],\{x, 0,10\}, \text { PlotStyle } \rightarrow\{\text { Hue }[0], \text { Thickness }[0.01]\}, \\
& \text { Background } \left.\rightarrow \text { LightGray, AxesLabel } \rightarrow\left\{" x^{*}, " y^{\prime \prime}\right\}\right]
\end{aligned}
$$

5. We can make a plot of the phase space given by $\{y[x], y$ ' $[x]\}$. For example,

ParametricPlot[Evaluate $\left.\left[\left\{y[x], y^{\prime}[x]\right\}\right],\{x, 0,10\}\right]$

2.3. Numerical solution by Mathematica

We use the Mathematica to solve a complicated differential equation numerically. We use the following commands.

NDSolve[eqns, $y,\left\{x, x_{\min }, x_{\max }\right\}$]
finds a numerical solution to the ordinary differential equations eqns for the function y with the independent variable x in the range $x_{\min }$ and $x_{\text {max }}$

1. Write down the differential equation such as

$$
e q 1=y^{\prime}[x]+x y[x]==\operatorname{Exp}[-x]
$$

2. Using NDSolve we solve the differential equation with the boundary condition (in this case, $y[0]=1$) for $0 \leq x \leq x_{0}(=10)$.

$$
e q 2=\operatorname{NDSolve}[\{e q 1, y[0]==1\}, y[x],\{x, 0,10\}]
$$

3. Using the conventional technique (this technique is very convenient. You must memorize).
$y\left[x_{-}\right]=y[x] / . e q 2[[1]]$
You can get the solution of $y(x)$ for $0 \leq x \leq x_{0}(=10)$.
4. Next we make a plot of $y[x]$ as a function of x for $0 \leq x \leq 10$. The command Evaluate is very important for the process of changing the parameters into numerical values

Plot[Evaluate[y[x]],\{x,0,10\},PlotStyle $\rightarrow\{$ Hue[0],Thickness[0.01]\},
Background \rightarrow LightGray, AxesLabel $\left.\rightarrow\left\{" x^{\prime \prime}, " y^{\prime \prime}\right\}\right]$
5. We can make a plot of the phase space given by $\left\{y[x], y^{\prime}[x]\right\}$.

ParametricPlot[Evaluate $\left.\left[\left\{y[x], y^{\prime}[x]\right\}\right],\{x, 0,10\}\right]$

2.4. Exact differential equation

2.4.1 Definition

Here we consider the exact differential equation,

$$
d \phi=A(x, y) d x+B(x, y) d y=\frac{\partial \phi}{d x} d x+\frac{\partial \phi}{d y} d y=0
$$

with

$$
A(x, y)=\frac{\partial \phi(x, y)}{\partial x}, \quad B(x, y)=\frac{\partial \phi(x, y)}{\partial y} .
$$

The condition for the exact differential equation is

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial^{2} \phi(x, y)}{\partial y \partial x}=\frac{\partial^{2} \phi(x, y)}{\partial x \partial y}=\frac{\partial B(x, y)}{\partial x} .
$$

Then we have the solution of the exact differential equation;

$$
\phi=\text { constant. }
$$

2.4.2 Example

Solve

$$
x \frac{d y}{d x}+(3 x+y)=0, \quad \text { or } \quad(3 x+y) d x+x d y=0
$$

with

$$
A(x, y)=3 x+y, \quad B(x, y)=x .
$$

((Solution))
Since

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x}=1
$$

this differential equation is an exact equation.

$$
\phi=\int(3 x+y) d x=\frac{3}{2} x^{2}+y x+F(y)=c_{1} .
$$

Since $B(x, y)=\frac{\partial \phi}{\partial y}=x, F^{\prime}(y)=0$ or $F(y)=c_{2}$. Then we have a final solution

$$
\frac{3}{2} x^{2}+y x=c_{1}-c_{2}=c
$$

((Mathematica))

$$
\begin{aligned}
& \text { DSolve }\left[x y^{\prime}[x]+3 x+y[x]=0, y[x], x\right] \\
& \left\{\left\{y[x] \rightarrow-\frac{3 x}{2}+\frac{C[1]}{x}\right\}\right\}
\end{aligned}
$$

ContourPlot of $\phi=\frac{3}{2} x^{2}+y x=c$, where $\mathrm{c}=-2$ to 2 .

2.5. Inexact differential equation

2.5.1 Definition

We now consider a differential equation,

$$
P(x, y) d x+Q(x, y) d y=0 .
$$

If we multiply $\alpha(x, y)$ on this equation,

$$
\alpha(x, y) P(x, y) d x+\alpha(x, y) Q(x, y) d y=0
$$

then this becomes exact differential equation.

$$
\frac{\partial \phi}{\partial x}=\alpha(x, y) P(x, y), \text { and } \quad \frac{\partial \phi}{\partial y}=\alpha(x, y) Q(x, y)
$$

or

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial y \partial x} & =\frac{\partial}{\partial y} \alpha(x, y) P(x, y) \\
\frac{\partial^{2} \phi}{\partial x \partial y} & =\frac{\partial}{\partial x} \alpha(x, y) Q(x, y)
\end{aligned}
$$

Suppose that $\alpha(x, y)$ is a function of only $x: \alpha(x, y)=a(x)$ for simplicity

$$
\begin{aligned}
& \frac{\partial}{\partial y} \alpha(x) P(x, y)=\frac{\partial}{\partial x} \alpha(x) Q(x, y) \\
& \alpha(x) \frac{\partial P(x, y)}{\partial y}=\frac{d \alpha(x)}{d x} Q(x, y)+\alpha(x) \frac{\partial Q(x, y)}{\partial x} \\
& \alpha(x)\left[\frac{\partial P(x, y)}{\partial y}-\frac{\partial Q(x, y)}{\partial x}\right]=\frac{d \alpha(x)}{d x} Q(x, y)
\end{aligned}
$$

or

$$
\ln [\alpha(x)]=\int \frac{1}{Q(x, y)}\left[\frac{\partial P(x, y)}{\partial y}-\frac{\partial Q(x, y)}{\partial x}\right] d x
$$

2.5.2 Example

Solve

$$
\left(4 x+3 y^{2}\right) d x+2 x y d y=0
$$

((Solution))

$$
\begin{array}{ll}
P(x, y)=4 x+3 y^{2}, & Q(x, y)=2 x y \\
\frac{\partial P(x, y)}{\partial y}=6 y, & \frac{\partial Q(x, y)}{\partial x}=2 y
\end{array}
$$

So the differential equation is not exact. We multiply $\alpha(x)$ on both sides of the original equation.

$$
\begin{aligned}
d \phi & =\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y \\
& =\alpha(x)\left(4 x+3 y^{2}\right) d x+2 \alpha(x) x y d y=0
\end{aligned}
$$

The condition for the exact differential equation is

$$
\frac{\partial}{\partial y}\left[\alpha(x)\left(4 x+3 y^{2}\right)\right]=\frac{\partial}{\partial x}[2 \alpha(x) x y]
$$

or

$$
6 y \alpha(x)=2 \alpha^{\prime}(x) x y+2 y \alpha(x)
$$

or

$$
\int \frac{1}{\alpha(x)} d \alpha(x)=\int \frac{2}{x} d x \quad(\text { separation variable })
$$

or

$$
\alpha(x)=x^{2}
$$

Then we have

$$
\begin{aligned}
\frac{\partial \phi}{\partial x} & =\alpha(x)\left(4 x+3 y^{2}\right) \\
& =4 x^{3}+3 x^{2} y^{2}
\end{aligned}, \quad \frac{\partial \phi}{\partial y}=\alpha(x)(2 x y)=2 x^{3} y
$$

From the first equation, we get

$$
\phi(x, y)=x^{4}+x^{3} y^{2}+F(y)=c_{1}
$$

From the second equation, we have

$$
2 x^{3} y+F^{\prime}(y)=2 x^{3} y
$$

or

$$
F^{\prime}(y)=0
$$

Then we have

$$
\phi(x, y)=x^{4}+x^{3} y^{2}=c
$$

((Mathematica))

$$
\begin{aligned}
& \text { Clear ["Gobal`"] } \\
& \text { Clear }[y] ; \\
& \text { eq2 }=\text { DSolve }\left[4 x+3 y[x]^{2}+2 x y[x] y^{\prime}[x]=0, y[x], x\right] \\
& \left\{\left\{y[x] \rightarrow-\sqrt{-x+\frac{C[1]}{x^{3}}}\right\},\left\{y[x] \rightarrow \sqrt{-x+\frac{C[1]}{x^{3}}}\right\}\right\} \\
& y[x-]=y[x] / . \operatorname{eq2}[[1]] \\
& -\sqrt{-x+\frac{C[1]}{x^{3}}} \\
& x^{3} y[x]^{2} / / \text { Expand } \\
& -x^{4}+C[1]
\end{aligned}
$$

2.6 RL circuit

We consider an RL circuit (battery $\varepsilon-R-L$ are connected in series);

$$
L \frac{d I(t)}{d t}+R I(t)=\varepsilon
$$

for $t>0$, where $I(t=0)=0$ as initial condition. We note that $I(t)\left(=I_{\mathrm{L}}(t)\right)$ is ideal variable for the RL circuit. In other words, $I(t)$ is continuous at $t=0$. The reason is as follows. The voltage across the inductance L is expressed by

$$
V_{L}(t)=L \frac{d I(t)}{d t} .
$$

Then the current flowing through the inductance is given by

$$
I(t)=\frac{1}{L} \int V_{L}\left(t^{\prime}\right) d t^{\prime} .
$$

This means that $I(t)$ slowly varies with time t even if $V_{\mathrm{L}}(t)$ drastically changes with time. The current $\mathrm{I}(\mathrm{t})$ flowing through the inductance is equal to zero at $t=0$ and continuously changes with time for $t>0$.

Step -1.
For $t \rightarrow \infty, I(t)$ becomes independent of time; $I_{0}=\frac{\varepsilon}{R}$.

Step-II:

The solution of

$$
L \frac{d I_{1}(t)}{d t}+R I_{1}(t)=0
$$

is given by

$$
I_{1}(t)=A \exp \left(-\frac{R}{L} t\right)
$$

Then

$$
I(t)=I_{1}(t)+I_{0}=A \exp \left(-\frac{R}{L} t\right)+\frac{\varepsilon}{R},
$$

where A is determined from the initial condition $(I(t=0)=0), A=-\frac{\varepsilon}{R}$. Therefore we get

$$
I(t)=I_{0}(t)+I_{\infty}=\varepsilon\left[1-\exp \left(-\frac{R}{L} t\right)\right]=I_{0}\left[1-\exp \left(-\frac{t}{\tau}\right)\right]
$$

where the relaxation time τ is $\tau=\frac{L}{R}$.

Fig. \quad The blue line is the tangential line at $t=0$. At $t / \tau=1$ (the point P) the tangential line reaches at $I / I_{0}=1$.
((Note)) Another solution

$$
\begin{equation*}
L \frac{d I(t)}{d t}+R I(t)=\varepsilon \tag{1}
\end{equation*}
$$

In the limit of $\mathrm{t} t \rightarrow \infty$, we have

$$
\begin{equation*}
R I_{\infty}=\varepsilon . \tag{2}
\end{equation*}
$$

Using Eq. (2), Eq.(1) can be rewritten as

$$
L \frac{d}{d t}\left[I(t)-I_{\infty}\right]+R\left[I(t)-I_{0}\right]=0 .
$$

The solution of this equation is given by

$$
I(t)-I_{\infty}=A \exp \left(-\frac{R}{L} t\right)
$$

where A is a constant to be determined from the initial condition. When $I(t=0)=0$, we have

$$
I(t)=I_{\infty}\left[1-\exp \left(-\frac{R}{L} t\right)\right]
$$

2.7 RC circuit

We consider an RC circuit (battery $\varepsilon-R-C$ are connected in series);

$$
V_{C}(t)+R I_{C}(t)=\varepsilon,
$$

and

$$
I_{C}(t)=C \frac{d V_{C}(t)}{d t}
$$

for $t>0$, where $V_{\mathrm{C}}(t=0)=0$ as initial condition. $I_{\mathrm{C}}(t)$ is the current flowing through the capacitor $C . V_{\mathrm{C}}(t)$ is the voltage across the capacitor C. The differential equation for $V_{\mathrm{C}}(t)$ is given by

$$
V_{C}(t)+R C \frac{d V_{C}(t)}{d t}=\varepsilon .
$$

We note that $V_{\mathrm{C}}(t)$ is ideal variable for the RC circuit. In other words, $V_{\mathrm{C}}(t)$ is continuous at $t=0$. The reason is that the voltage across the capacitor is given by

$$
V_{C}(t)=\frac{1}{C} \int I_{C}\left(t^{\prime}\right) d t^{\prime}
$$

This means that $V_{C}(t)$ slowly varies with time t even if $I_{\mathrm{C}}(t)$ drastically changes with time. The current $V_{\mathrm{C}}(\mathrm{t})$ flowing through the inductance is equal to zero at $t=0$ and continuously changes with time for $t>0$.

Step -1:

For $t \rightarrow \infty, V_{C}(t)$ becomes independent of time; ε.

Step-II:

The solution of

$$
R C \frac{d V_{1}(t)}{d t}+V_{1}(t)=0
$$

is given by

$$
V_{1}(t)=A \exp \left(-\frac{1}{R C} t\right)
$$

Then

$$
V_{C}(t)=V_{1}(t)+\varepsilon=A \exp \left(-\frac{1}{R C} t\right)+\varepsilon .
$$

where A is determined from the initial condition $\left(V_{C}(t=0)=0\right), A=-\varepsilon$. Therefore we get

$$
V_{C}(t)=\varepsilon\left[1-\exp \left(-\frac{t}{\tau}\right)\right]
$$

where the relaxation time τ is $\tau=\frac{1}{R C}$.

Fig. The blue line is the tangential line at $t=0$. At $t / \tau=1$ (the point P) the tangential line reaches at $V_{C} / \mathcal{E}=1$.
((Note)) Another solution

$$
\begin{equation*}
V_{C}(t)+R C \frac{d V_{C}(t)}{d t}=\varepsilon . \tag{1}
\end{equation*}
$$

In the limit of $t t \rightarrow \infty$, we have

$$
\begin{equation*}
V_{\infty}=\varepsilon . \tag{2}
\end{equation*}
$$

Using Eq. (2), Eq.(1) can be rewritten as

$$
R C \frac{d}{d t}\left[V_{c}(t)-V_{\infty}\right]+\left[V_{c}(t)-V_{0}\right]=0
$$

The solution of this equation is given by

$$
V_{c}(t)-V_{\infty}=A \exp \left(-\frac{1}{R C} t\right)
$$

where A is a constant to be determined from the initial condition. When $V_{\mathrm{c}}(t=0)=0$, we have

$$
V_{c}(t)=V_{\infty}\left[1-\exp \left(-\frac{1}{R C} t\right)\right] .
$$

2.8 Example

The solution of

$$
\frac{d y}{d x}=-\frac{1}{2 y x}\left(y^{2}+\frac{2}{x}\right)
$$

is given in the form of $\phi(x, y)=$ constant. We define a field \boldsymbol{E} as

$$
\mathbf{E}=\left(-\frac{\partial \phi}{\partial x},-\frac{\partial \phi}{\partial y}\right) .
$$

Note that the differential equation is an exact differential one.

$$
\left(y^{2}+\frac{2}{x}\right) d x+2 x y \frac{d y}{d x}=A(x, y) d x+B(x, y) d y=0
$$

where

$$
\frac{\partial A(x, y)}{\partial y}=2 y, \quad \frac{\partial B(x, y)}{\partial x}=2 y .
$$

Since

$$
\frac{\partial \phi}{\partial x}=A(x, y)=y^{2}+\frac{2}{x}, \quad \frac{\partial \phi}{\partial y}=B(x, y)=2 x y
$$

we have

$$
\phi(x, y)=x y^{2}+2 \ln x+F(y), \frac{\partial \phi(x, y)}{\partial y}=2 x y+F^{\prime}(y)=2 x y
$$

Then we have

$$
F^{\prime}(y)=0, \quad F(y)=c_{1}(\text { constant })
$$

Finally we get the form of ϕ as

$$
\phi(x, y)=x y^{2}+2 \ln x+c_{1}=c_{2}
$$

or

$$
x y^{2}+2 \ln x=c=c_{2}-c_{1}
$$

Here we show the solution of the above equation using the Mathematica. ((Mathematica))

Solve

$$
y^{\prime}[x]+\frac{1}{2 y[x] x}\left(y[x]^{2}+\frac{2}{x}\right)=0
$$

Clear["Gobal`"];
Clear[y];
eq1 $=\operatorname{DSolve}\left[y^{\prime}[x]+\frac{1}{2 y[x] x}\left(y[x]^{2}+\frac{2}{x}\right)=0, y[x], x\right] ;$
$y\left[x_{-}\right]=y[x] / . \operatorname{eq1}[[2]]$
$\sqrt{\frac{C[1]}{x}-\frac{2 \log [x]}{x}}$
$y[x]^{2} x+2 \log [x] / /$ Simplify
C [1]

Clear [y]
$\phi=y^{2} x+2 \log [x] ;$
f1 = ContourPlot[Evaluate[Table[$\phi=\alpha,\{\alpha,-5,5,0.5\}]$], $\{x, 0.1,5\},\{y,-5,5\}$,
ContourStyle \rightarrow Table[\{Hue[0.05i], Thick\},
\{i, 0, 20\}]];

```
eq1 \(=\{-\mathrm{D}[\phi, \mathrm{x}],-\mathrm{D}[\phi, \mathrm{y}]\} ;\)
```

f2 = StreamPlot [eq1, $\{x, 0.1,5\},\{y,-5,5\}]$;

Show[f1, f2]

Fig.
The contour plot of $\phi(x, y)=x y^{2}+2 \ln x=$ const, and the field lines of $\mathbf{E}=\left(-\frac{\partial \phi}{\partial x},-\frac{\partial \phi}{\partial y}\right)$ in the (x, y) plane.

