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31.1 System of particles 1 and 2

ISHILY

ay=lk)IkD, ) =[k), k),

Even though the two particles are indistinguishable, mathematically |y/a> and |Wb> are

distinct kets for |k'>¢|k”>. In fact we have <l//a|l//b>=0. Suppose we make a

measurement on the two particle system.

|k'> : one particle and |k"> : the other particle.

We do not know a priori whether the state ket is |l/la> = | k'>1| k">2 or |1//b> = | k">1| k'>2 or -

for that matter- any linear combination of the two: ¢, | v, > +C, | t//b> .

31.2 Exchange degeneracy

A specification of the eigenvalue of a complete set of observables does not

completely determine the state ket.

Mathematics of permutation symmetry:

A

P>

Wa>: FA)12|k'>1|k">2 :|k">1|k'>2 :|Wb>'

Clearly
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A

FA>21:F}2, and F}zzzl'

Under P,, particle 1 having k') becomes particle 1 having |k"); particle 2 having |Kk")

becomes particle 1 having | k'> . In other words, it has the effect of interchanging 1 and 2.

((Note))

Matrix element of If’21 = FA}Z in terms of |wa> :|k'>l|k">2 and |1,//b> :|k">l|k'>2

A

P>

A

P

Matrix element of I%l = I%z

or
| Wa> | l//b >
ol 0 1
<l//b | 1 0
Eigensystem[ IS12 ]

A =1 (symmetric):

P>

Wsymm> = l//symm>

1 ' n n '
V/Symm> :Edk >1| k >2 +|k >1|k >2)
A =-1 (antisymmetric)

I:)12 | W anti > = _| W anti >

1
|Waﬂti> - ﬁd kv>1| k">2 _| k">1| k'>2)
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Our consideration cane be extended to a system made up of many identical particles.
A transposition is a permutation which simply exchange the role of two of the particles,
without touching others.

The transposition operators P, are Hermitian (P," = P))

22
Pij =1

A

So that Isij is Unitary operator. The allowed eigenvalues of B, are £1. It is important to

note, however, that in general
[F.R]#0.
Now we consider a permutation operator FA}B for
P K1), [k, [ k), =), [ ) k), = (ke [, k),

for the system of 3 identical particles (| k'> 1| k">2| k"’>3)

1 2 3
P123:231

This means replacement of 1 52,2 — 3,3 — 1.

o L123J£123]L213J o b
72 3 1) \2 1 32 3 1) 1728

Quantum mechanically this is not correct. The correct one is
Ry =PsR,

Similarly,

o L123J [123JL132J -
272 3 1) U 3 2)2 3 1) B

or quantum mechanically
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A

I:123 =M Hs

5 (123] L123J(321] -
2731232 1)3 1 2 B

or quantum mechanically

I%32 = I:;12|513
((Proof))

|:A’12F313|k'>1|k">2|k”'>3 = |512|k”'>1|k">2|k'>3 :|k">1|km>2|kv>3
and

Pal ) [k7), k), =), [k [l = [k [k, ),

Therefore we have If}32 = I512I513.
Any permutation operators can be broken into a product of transposition operators.

A AR S A AR S B P 2
Ry =PsR, =P;P; =R,P, =R;R,P =
The decomposition is not unique. However, for a given permutation, it can be shown that

the parity of the number of transposition into which it can be broken down is always the
same: it is called the parity of the permutation.

I%32 = A23 F312 = A13 A23 = A12 A13 = A23 A12 A232 = even parity

IETZ} = ”12 |£’23 = A13 Alz even parity

|:323 odd parity

éz odd parity

|531 odd parity
((Note))

Pl32 = Pszl = le3

31.3 Symmetrizer and antisymmetrizer
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Now we consider the two Hermitian operators

~ 1 .
S =—) P, :symmetrizer

\
~ 1 A . .
A=— Z ¢, P, : antisymmetrizer

NI
where ¢, =1 if Isa is an even permutation and ¢, = -1 if Isa is an odd permutation.
S'=Sand A" =A.

((Theorem-1))
If P, is an arbitrary permutation operator, we have

ISaOSA = é AaO = é
IsaOA: AA&O = SGOA (1)
((Proof))
This is due to the fact that
.5, =P,
such that
Ep =&, 8,

or

From Eq.(1) we see the following theorem
((Theorem-2))
§?=$
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and
AS =SA=0
((Proof))
1 A A
2—— = — =
S _N!;Pas N';s S

since half the g, are equal to 1 and half the ¢, equal to -1. S and A are therefore
projectors. Their action on any ket |w> of the state space yields a completely symmetric

or completely antisymmetric ket.

PS V/>:§W>
F’SaOAIl//> = gfln A|W>
lws)=Slw)
) =Aw)
((Example))
For N=3,
cola 2 A A A s
Szg[l‘f‘Plz"‘ )3 + Py + P + B,
and
AZ:_[l_Pn_ 3T TRt 132]
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where

>
>

0>

O

Il
~0>

123 = 12P23, 132 12713

SA‘*‘A:%(i"'ISm‘*'ISm)ii

31.4 Symmetrization postulate

The system containing N identical particles are either totally symmetrical under the
interchange of any pair (boson), or totally antisymmetrical under the interchange of any
pair (fermion).

A

l//N,B> =‘l//N,B>’

A

l//N,F> = _‘WN,F> >

where ‘t//N’B> is the eigenket of N identical boson systems and ‘l//N,F> is the eigenket of

N identical fermion systems.
((Note)) It is an empirical fact that a mixed symmetry does not occur.

Even more remarkable is that there is a connection between the spin of a particle and the
statistics obeyed by it:

Half-integer spin particles are fermion, while integer-spin particles are bosons.

31.5 Pauli exclusion principle

Wolfgang Ernst Pauli (April 25, 1900 — December 15, 1958) was an Austrian
theoretical physicist and one of the pioneers of quantum physics. In 1945, after being
nominated by Albert Einstein, he received the Nobel Prize in Physics for his "decisive
contribution through his discovery of a new law of Nature, the exclusion principle or
Pauli principle," involving spin theory, underpinning the structure of matter and the
whole of chemistry.

Identical particles 7 12/23/2010



http://en.wikipedia.org/wiki/Wolfgang Pauli

Electron is a fermion. No two electrons can occupy the same state. We discuss the
framatic difference between fermions and bosons. Let us consider two particles. Each of

which can occupy only two states | k'> and | k"> .

For a system of two fermions, we have no choice
e, k).
For bosons, there are three states.
) K.
) ).
Tl e k).

In contrast, for “classical particles” satisfying Maxwell-Boltzmann (M-B) statitics with
no restriction on symmetry, we have altogether four independentstates.

[ k"), (k) KD,

We see that in the fermion case, it is impossible for both particles to occupy the same
state.

i) [K), and [k"),[k),

31.6 Transformation of observables by permutation
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For simplicity, we consider a specific case where the two particle state ket is
completely specified by the eigenvalues of a single observable A for each of the particle.

Ala)[a), =ala)[a’),

and
Afa) ), =atla) ),
Since
AR, B ), = BAR, ) ),
B4R, B ), = BuA ) Ja),
a2,
- alat) o), = Al 2), = A ) o),
we obtain
AR <A
Similarly,

PiA P21_1 =A
It follows that FA}Z must change the particle label of observables.

There are also observables, such as A] +I_5>2, A]L%Z, which involve both indices
simultaneously.

These results can be generalized to all observables which can be expressed in terms of
observables which can be expressed in terms of observables of the type of A and B,, to
be denoted by O(1,2).

P,O(1,2)P,” =0(2,1)
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where 6(2,1) is the observable obtained from (5(1,2) by exchanging indices 1 and 2
throughout.

(55 (1,2) is said to be symmetric if
0,(1,2) = 0,(2,1)
or
[0.(1,2),R,] =0
Symbolic observables commute with the permutation operator.
In general. the observables és (1,2,3,...,N) which are completely symmetric under

exchange of indices 1, 2, ..., N commute with all the transposition operators, and with all
the permutation operators

31.7 Example
Let us now consider a Hamiltonian of a system of two identical particles.

L

- 1 . A A A
2m pl2 + % p22 + Vpair(lli - r2 |) + Vext (rl) + Vext(rz)

Clearly we have
FAiz H F;lz_l =H
or

[P,,H]=0

A

IS12 is a constant of the motion. Since P,> =1, the eigenvalue of I%z allowed are +1.
Hly)=Ely)

Pulw) = 2w)

or
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It therefore follows that if the two-particle state ket is symmteric (antisymmettric) to start
with, it remains so at all times.

(1) N =2 case
We can define the symmetrizer and antisymmetrtizer as follows.

N 1 A 1 A 1 A 1 A A
52:E(l"'Plz)E(l"‘Plz):Z(l"'zplz+1):I(1+P12):S
A~y 1 A~ 1 A 1 A 1 A "
A 25(1—32)5(1_32)22(1—232 +1):E(1_P12):A

) = (KK, + k) k),
and
) = (KD, e k).

. 1 1
S[k) [k), =5 W+ Bk, [k7), =~ (k) k), + k), [K?),)

A 1 A 1
AI kv>1| k">2 = E(l - PIZ)| k'>1| k">2 = 5(| k'>1| k">2 _| k”>1| k'>2)

(i1) N = 3 Cases
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| e, e,
Alk'>1|k">2|k"'>3=§!|k'>2 |k">2 |km>z

|kv>3 |kn>3 |kvvv>3

Slater determinant
A| k'>1| k"> 2| k"‘>3 is zero if two of individual states coincide. We obtain Pauli’s exclusion

principle.

31.8 Method developed by Tomonaga

Sin-Itiro Tomonaga or Shin'ichird Tomonaga (Tomonaga Shin'ichird, March 31, 1906
— July 8, 1979) was a Japanese physicist, influential in the development of quantum
electrodynamics, work for which he was jointly awarded the Nobel Prize in Physics in
1965 along with Richard Feynman and Julian Schwinger.

http://en.wikipedia.org/wiki/ Sin-Iiro_Tomonaga

We now consider a system consisting of many spins.

S=S§,+S,+S,+..+8S,

or
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Zs +23(S, 8 )—%Zc +— hZ(c -6.)

n<n' n<n'

or

éz
R,

n<n

Here we define an operator

O is Hermitian and [Is,é] =0. We assume that

P.= %(l +6,6,) (Dirac exchange interaction)

A 2 I N(N -1 «

O=—"—"— z 1+ n' (5 ( ) Z(Sn ) Gn']
N(N—l)n<n N(N—l) 22 2n<n,

or

~ 1 2
O=—[1+——Y6, 6,
ol N(N_Dn;n o]

Using the relation,

~ 1 2 2A2__ 1. N-4 4 1
O_E[HN(N—l)(? ) 2[(N—1)+N(N—1)hzs]

[S2,0]=0. When the eigenvalue of S? is given by 7S(S +1), the eigenvalue of O is
equal to
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1 N-4 4SS +D)

2=l PNy

The eigenvalue of o) (y) specifies the symmetry.

(1) For N=2,
Dy x D12 =Dy + Do
;(:%[—2+2S(S +1)]=-1+S(S+1)
When S =1, y=1 (symmetric).
When S =0, y=-1 (anti-symmetric).
(i1) For N =3,
Di2xDipxDip=D3p +2Dypy

1.1 2
= [-—+25(S+1
X 2[2 3( )]

When S =3/2, y =1 (symmetric).
When S=1/2, y=0.

(111)  For N =4,

Dip X Dip x Dy x Dyp =Dy + 3D + 2D

_S(S+1)
=%

For S=2, y=1 (symmetric).
ForS=1, y=1/3.
ForS=0, y=0.

31.9 Two spin 1/2 particles
Dy xDyjp=Dy+Dg

(1) J =1 (spin triplet): symmetric states
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li=Lm=1)=|++)

1,0):%(|+—>+|—+>)
L=1)=[--)

(i)  j =0 (singlet): anti-symmetric state

[=0m=0)=—{(+)-|-+)

31.10 Young's tableau-I
The spin state of an individual electron is to be represented by a box. A single box
represents a doublet

1

spin up |+>

spin down |—>

, , symmetric tableau (spin triplet)

NP

antisymmetric tableau (spin singlet)

((Rule))

We do not consider

because when we put boxes horizontally, symmetry is understood. So we deduce an
important rule. Double counting is avoided if we require that the number (label) not
decrease going from the left to the right. Similarly, to eliminate the unwanted symmetry
states, we require the number (label) to increase as we go down.

General rule
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31.11

(@)

(ii)

(iii)

31.12

In drawing Young tabeleau, going from left to right the number cannot decrease;

going down the number must increase.

Three electrons with spin 1/2

Dy xDyjp x Dyjp = (D1+Dg) X Dyp = D3p*tDy 5Dy 2

j=3/2

31 1
§’E>_f[|++_>+|+_+>+|_++>]

75

1 1 1
3m3) =gl

Young's tableaux I1

:symmetric state

1=32,m=3/2,1/2,-1/2,-3/2

Identical particles 16
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1({1]1 1(1]2 122

21212

m=3/2 m=1/2 m=-1/2

What about the totally antisymmetric states? We may try vertical tableau like

1

: forbidden state

But these are illegal, because the numbers must increase as we go down.

j=12

11 1(2
2 2

>

m=1/2 m=-1/2

31.13 Note

3

m=-3/2

We define a mixed symmetry tableau. The mixed state is orthogonal to the symmetric

state and anti-symmetric state.

= or

1
_

il 2|
_
(2

We consider a mixed state,
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i) =[+==)H==5) = ([, =001, (m

satisfies symmetry under 1<>3, but it is neither symmetric nor anti-symmetric with
respect to 2 <> 3 (or 1 <> 2).

H
) ===+l =l +90), @

satisfies symmetry under 2<>3, but it is neither symmetric nor anti-symmetric with
respectto 1 <> 2 (or 1 <> 3).

Subtraction: Eq.(1) - Eq.(2):

i =lva)=[+==)=|-+-) 3)

This satisfies anti-symmetry under 1<>2, but no longer have the original symmetry under
12,

This corresponds to

23}l el-e)

which is obtained from the Clebsch-Gordan coefficient.

v2) =l+==)=l== =)\, =2+, “)

(b)

This satisfies anti-symmetric under 1<>3.
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a)=[=+=) ===+ = (+),[, =121+

This satisfies anti-symmetric under 2<>3. Addition: Eq.(4) + Eq.(5):

) +lwe) b= —el—e)-2-—+)

1

33} =l prl-e -2

which is obtained from the Clebsch-Gordan coefficient.
(©)
ws)=[+—+)+|++)=(+),[=), +[),[ )]+, -

This satisfies symmetric under 2<>3

o) =[++=)+l=+4) = ()| 2), + =) [H))+),
This satisfies symmetric under 1<>3.

Eq.(7) - Eq.(8)

lws)=lve) =+ =+)=|-++).

This satisfies anti-symmetric under 1<>2.

m=l>:i[|+—+>—|—++>]

|
"_5’ 2/~ 12

(d)
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o) =[++=)=[+=5) = (4,9, =594,

This satisfies anti-symmetric under 2<>3

wa) =[++=)=[=++)=(+)[ 5, =)0+,
This satisfies anti-symmetric under 1<>3.

Subtraction: Eq.(10) - Eq.(11)

Ayl =l )
This satisfies antisymmetic under 1<>2.

Addition: Eq.(10) + Eq.(11)

)l = 2|
or

1 1
m:—>:—[—|—++>+2|++—>—|+—+>]

|
27 2] e

31.14 4 electrons with spin 1/2

-

Dy xDyjp x D1y x Dyjp= (D3 + Dyjp +Dy2) x Dypp
=(Dy+Dy) + (D + Dg) +(Dy + Do)

i =2

Identical particles 20
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[i=2m=2)=|++++)
|2,l>:%[|+++—>+|++—+>+|+—++>+|—+++>]

1

NG

2,0) =—=[|—++-)+|++ =)+ |+ =+ )|+ =) +| -+ =) +|-—++)]

R L e LSRR

22)=|----)

|j:l,m:1>:—L[|—+++>+|++—+>+|+—++>]+§|+++—>]

23

1

J6

L

NG

1L0) = —=[|—++—)+|++——)+|+—+-)] [|[+——+)+|-—++)+|—+—+)]

L L NI RS LR U IEe S )

(i) j=1

[j=1Lm :1>:%[—|—+++>—|+—++>+2|++—+>]
|1,0>:%[—|—++—>+2|++——>—|+—+—>+|+——+>—2|——++>+|—+—+>]

1

o) = el === )2 =)

] :0,m:0>:%[—|—++—>+2|++——>—|+—+—>
—|+ ==y =2 ==+ ) |-+ —+)]

(iv) j=1
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_

NG

lj=Lm=1) [|[+—++)—|-+++)]

1,0>:%[|+—+—>—|—++—>+|+——+>—|—+—+>]

1

oL SR

1-1) =
V) j=0
] :O,m:0>:%[|+—+—>—|—++—>—|+——+>+|—+—+>]

31.15 Young's tableaux

J = 2 symmetric state

{111 (1 1{1]1]2 1{1]2 ]2 1({2]2 |2

2121212
m=-2

J = 1 mixed state

m=1 m=0 m=-1

111
212
m=0

31.16 Simplified model for spin 1/2
Now we introduce a simple way to build a Young diagram.

(a) Two spin 1/2 particles
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2x2=4

® = @
triplet singlet

2x2=3+1
DipxDyp=D;+Dy

(b) Three spin 1/2 particles

® ®
2x2x2=8

® = @
triplet  doublet quartet doublet

3x2=4+2

Dy xDyp=D3p+Djyp

® =
Do xDyp=Djp

((Note))

is forbidden.

(©) Four particles with 1/2

® ® ®
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2x2x2x2=16

®

D3 x Dyjp=Dy+ Dy

Dy x Dyjp=D;+ Dy

®

(d) 5 spin 1/2 particles

®

2x2x2x2x2=32

®

®

@

Dy x Dy =Ds;y + D3y

D x Dy;=D3;t Dyp

@

@

Dox Dy=Dip

31.17 Particles with | =1; m=1, 0, -1 (p electrons)

The labels 1, 2, and 3 may stand for the magnetic quantum number of p-orbitals (I= 1

particle).

Identical particles
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1 2 3

b

m=1 m=0 m=-1

31.18 Two particles with spin 1: 3x3 = 9 states

Forj=1

® = @ , 3x3=613

Dy, Dy Dy, Dy Dy

The horizontal tableau has six states: the tableau is to be broken down into j =- 2
(multiplicity 5) and j = 0 (multiplicity1); both of which are symmetric.

The vertical tableau corresponds to an antisymmetric j = 1 state.

Concretely,
Symmetric
1(1 1(2]11(3 21211213 313
6 states (j =2 and 0)
m=2 m=1 m=0 m=0 m=-1 m=-2
Antisymmetric
1 1 2
23] 1]3

: , , , 3 states (j=1)
m=1 m=0 m=-1

31.19 The three particles with | =1

3 x 3 x3=27 states

® = S 16 x3=7+3 +5+3

Dz, DO X Dl D3, Dl Dz, Dl
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® = @® :3x3=8+1

D1 x D1 Dz, Dl DO

Note:

contains both j =3 (7 states) and j = 1 (3 states).

As for with eight possibilities altogether, the argument is more involved, but we
note that this 8 cannot be broken into 7 + 1 because 7 is totally symmetric, while 1 is
totally antisymmetric when we know that 8 is of mixed symmetry. So the only possibility
is 8 =5+ 3 - in other words j=2 and j = 1.

Finally, therefore

® ® = S @

D1XD1XD1=D3+2D2+3D1+D0

or

3 3 3 7+3 5+3 5+3 1

In terms of angular momentum states, we have

J =3 (7 states) once (totally symmetric)

J =2 (5 states)) twice (both mixed symmetry)

j =1 (3 states) three times (one totally symmetric, two mixed symmetry)
j =0 (1 state) once (totally antisymmetric).

Identical particles 26 12/23/2010



m=3 m=2 m=1
1122 11213 1133
m=1 m =0 m=-1
2| 2] 2 21 213 2133
m=0 m=-1 m=-2
3313
m=-3
1
2
3
m=0
111 111 1|12 112
2 3 2 3
m= m=1 m=1 m=20
1|3 1(3 2 213
2 3 3 3
m=0 m=-1 m=-1 m=-2
31.20 Four particles with |I=1 (Landau) (p)4
® = ®
D3,Dl Dl D45D35D2 DZ,DI,DO
® = @ @

D,,D, D; Dy,D,D;, DyD, D
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Dy, D; D

((Note))

&) 1s forbidden.

111111 1(1(1]2 111]113
m=4 m=3 m=2
1111212 111] 2|3 111(3]3
m=2 m=1 m=0
1121212 1121213 112(3]3
m=1 m=0 m=-1
113]3]3 2121212 212|213
m=-2 m=20 m=-1
2121313 213(3(3 313(3(3
m=-2 m=-3 m=-4

31.21 Two spin states
Hyperfine splitting in hydrogen

The hydrogen atom consists of an electron sitting in the neighborhood of the proton.
There are four states for the ground state of the hydrogen atom.
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|+ +> : electron up, proton up

electron

proton

2

|+ —> : electron up, proton down

&

|— +> : electron down, proton up

<

|— —> : electron down, proton up

&

For any state, the state can be described by the linear combination of these four states.

We use the following formula to set up the eigenkets of two spins with spin S = 1/2.
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We now consider the two spin operators: &, and &,. There are four states:
r). =4 1-)

The spin operator o, and &, work on the first spin state and the second spin state,
respectively.

|++),

G| —+) =—i|++)
G|+ +) =i|]-+)
3 Jey=i—)
&,|-—)=-i|+-)

and
brul—+)=|--)

Sl 4)=1+-)
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A

ro)=

~)=I-+

Oy

In the most general case we could have more complex things.

61,y |+ 4) = 61, (6| +4) = 6|+ +) =|—+)

+=--)

_+>:6-1x(6-2z|_+>):&1x|_+>:|++>

~-)=+)

01405,

+ _> = 6_1x(6_22|+ _> = _6_1x

01405,

- _>) = _OA-IX

01405, __> =0y (O-Zz

34.22 Dirac spin exchange operator

A
A

A=o¢, 0, =0y, "0yt 0y 0,,+0,,:0,,

G Ol ++) =|--), 81y G|+ +)=——-)
Gy G +4) =|+4), Gy Gl =) =]-)
Gy, 6y |+ =) =|—4). 61,6, |+ =) =-+-)
G- Gos|—+)=|+-), 81y 6oyl —+)=]+-)
6\, G| —+) =), G Gl ==) =[++)
Gy Gl—)=—++), 6,65 |-—)=|--)

A+ +)=[++) =2 ++) =] ++)

Identical particles 31

12/23/2010



Now we introduce a new operator FA’12 , which has the following properties

|512 is the exchange operator.
When FA’12 operates on the state |1//> = | a>1| ,3>2 , we have

F312|W>:F312|a>1|ﬂ>2 =|0{>2|,B>1 :|'B>1|a>2

Bl =|++)

P

~)= -]

P, is related to A as

T
or

A 1 A~ 1 A

32=§(1+A):E(1+0‘1-62)

This operator is called the Dirac’s spin exchange operator

31.23 Total spin angular momentum

S, and S, are commute.
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hZ h2

S2=7(&1+&2).(&1+&2)=7(&12+&22+2&1-&2)
h? .
:7(3"‘01'62)
Note that

~ 1 A
P, =E(1+01 *G,)

or

2 2

S’ =%(3+&1 -6,) =%(2+1+&1 -6,)=1*(1+P,)
We also see that
[$%,5,1=0
We can have simultaneous eigenkets of S and §Z . Here we use the basis of

~ MM

S?++) =1 (1+ By)|++) = 21°|++)

|+ +>,

S,|++)= g(&lz +6,,)|++) =H++)
which corresponds to the state |j = I,m =1)

§7--) =11+ =) =2)--)

A o
Sz|__> = E(Glz + 022)|__> = _h|__>
which corresponds to the state |j = ,m =—1)

S?[+ =) =11+ P+ =) = B> (|+ =) +|-+))

SZ|+—>=E(O'IZ +6,,)|+—)=0
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S?|—+)=n*(1+B,)|—+) =h*(|—+) +|+-))
Sz|_+>:E(O-lz +O—22)|_+>:O

We now consider the matrix elements of $? under the subspace of |+ —> and |— +> .

where

)= 5+l

va) =75 ()=l

Note that
SAz Ws> =0
SAz l//A> = 0

Thus |Ws> is the eigenket of S with 24% and of éz with 7 . |1//A> is the eigenket of S
with 0 and of S, with 0.

Eigenket Energy eigenvalue

((Triplet))

[++)
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)=+
)
((Singlet))

va)= ()=

31.24 Exchage interaction

Fig.  The interaction between the magnetic moment of electron (,c.) and the magnetic
moment of proton (14,0,), where £,<0 and 2, >0.

We now consider the spin Hamiltonian between the electron and proton,
H=E, +J6,-6,

(for convenience we assume Eq = 0).

A

H|++)=J|++)

|+ +> is the eigenstate of H with the eigenvalue J.

HI--) = J]--)
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|— —> is the eigenstate of H with the eigenvalue J.
A=) =34-4)-1+-)

Al=+) =3+ |-+)

~ (=J 2] -1 2
H= =J
2) -1 2 -1
((Mathematica))

Clear["Global %"];

H=J(-1 2);

2 -1

egl = Ergensystem[H] // Simplify
{{_3‘-]’ J}’ {{_15 1}’ {1’ 1}}}

E = -3 J (antisymmetric state)

YA = -Normalize[eql[[2, 1]]1]
1 1

Nea
E = J (symmetric states)

%S = Normalize[eql[[2, 2]]1]
{i i}
V2 A2

For E = -3J (anti-symmetric state)

Wa)=

1

NG

Ly
V2
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For E = J (symmetric state)

1
2
ve)= 7 |
V2
In summary we have eigenkets and energy eigenvalues of the system.
Eigenket Energy eigenvalue
((Triplet))
|++) Eo+J
)= e+l £+
--) i)
((Singlet))
1
b=}l €y
-------------------------------------- Eo
4]
y Eo—3J

Fig.  Energy diagram.
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31.25 Zeeman splitting
H=1J66,-p.6 B-pn,6, B

2
"8, = 14,0 (1<),

Magnetic moment of electron:

2
Magnetic moment of proton: %Sz = 14,6 (14,>0)

((Note))
L =-9284.76377 x 107 J/T, 1, = 1410606662 x 10 J/T (NIST)
When the magnetic field B is applied along the z axis,

H=H,+H,

with

>

~

H =-(yo, + “25'2z)B

We calculate
Hl++) = —(,6,, + 1,6,,)Bl++y =—(u, +p,)Bl+ +)
Hl-=) =<6, +1,65,)Bl- =) = (1, + ) B—-)
Hl+ =) = —(,6;, +11,6,,)Bl+ =)= (i, — ) Bl+-)
Hi|-+) =—(W,6,, +1,6,,)B|—+) = (1, — p,)Bl—+)|—+{
Hol++)=J]++)
) =3

A=) =3l-+)-|+-)
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Ai=+) =34} |-+

Thus
I:||++>=[J — (1, +1,)B]++)

|+ +> is the eigenket of H with the enrgy eigenvalue [J — (u, + 1, )B]
H|==) =[J +(u, +1,)B]-~)

|- —) is the eigenket of H with the enrgy eigenvalue [J + (u, + 1, )B]
Hl+ =) =32 =+ -1+-) - (1, - p,)Bl+ -)

Hl=+) = 32+ === ) + (, —p,)Bl+ )

A_[—J—(ul—uz)B 2] J
23 ~J+ (1~ 1,)B

((Mathematica))
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Zeemann energy

Clear["Global " +"];

M_(—J—(ul—uZ)B 2J )
- 2J -J+ (ul - u2) B/’

eql = Eigensystem[M] // Simplify

((ra-Vad?ie? u1-u2)?, 3+/a028? (11 -u2)%),

—\/4J2+82 (ul - pu2)2 +B (-pl+p2) \/4J2+82 (ul-pu2)2 +B (-pl+p2)

( .2 1) 2 L1)))

E4 = eql[[1, 1]];

E3 =eql[[1, 2]]:

E2 = (J-B (ul+pu2));

El= (J+B (ul+pu2));

rulel = {y2 5 -1000 41, J » 1, B> 10B1, ul > 107"};

E11=E1//. rulel // Simplify; E22 =E2 //. rulel // Simplify;
E33 = E3 //. rulel // Simplify;
E44 = E4 //. rulel // Simplify;

fl = Plot[Evaluate[{E11, E22, E33, E44}], {B1, 0, 5},
PlotStyle » Table[{Thick, Hue[0.08 1]}, {1, O, 5}], Background - LightGray,
AxesLabel - {"B (T)", "E"}]1;

T2 = Graphics[{Text[Style["E;", Black, 127, {3, -5}],
Text[Style["E>", Black, 12], {3, -2}], Text[Style["E3", Black, 12], {3, 2.3}],

Text[Style["E:", Black, 121, {3, 4}], Text[Style["J = 1", Black, 15], {1, 5}1}1:

Show[fl, 2]
E
6,
J=1
4+ El

2f E;

B (T)

Figure caption

Zeeman splitting of the ground state of hydrogen.
B = 0 :the levels are denoted as E;, E3, E;, and E4 from the top to the bottom.
B = 0: there are two levels. One level is E4, and another level is degenerate (E;, Es,

Es).
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31.26 Zeeman splitting of the ground state of hydrogen.

We consider the hydrogen atom consisting of an electron with spin S, =7/2 sitting in
the neighborhood of the proton with spin S, =7%/2. There are four states for the ground
state of hydrogen atom. Any components of S; commutes with any component of S,.
[S.B. Crampton, D. Kleppner, and N.F. Ramsey, Phys. Rev. Lett. 11, 338 (1963)].

M1 =He (<0), Hp =H, (>0).
[He| = 1000 p,

He + “p: -H
“He T Hp = 'y

(M and |’ are positive).
El =J+ },LB
E,=J-uB

12 np2

B
E.=J(-1+2,/1+
3 =J( R )

2

2 p2

pn B
E,=-J(+2,/1+% =
4 ( 4J2 )

For B =0, there is one transition line observed (= 1.420405751 GHz)
For B # 0, six lines are observed.

E;-Ej, E - Ey, E,-Ey4
E;-Ey, E; - Ey4 E,-Ey4

31.27 Problems
((Shaum 14-10))

Two spin 1/2 particles are described by an unperturbed Hamiltonian
H, =-AG6, +6,,).
We add the perturbation

H, =&(6,6, +7,,0,,)
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with
&<<A (A>0).

(a) Find eigenvalues and eigenfunctions of I:|0 .
(b) Calculate (exactly) the energy levels and eigenfunctions of I:|0 +H -

(©) Calculate the first-order corrections to the energy levels of I:|0 .
S O
R, :5(1 +6,-6,)

A A

6,-6,=2PF,-1

or
H, = £(6,,0 + 6,,63,) = &(2P, —1-6,,6,,)
Hol++)=-2A++)
Ho[+-)=0
H,l-+)=0
=)= 24--)
Eigenkets Energy eigenvalues
|++) 2A
[+-) 0
-+) 0
|—-) 2A
(b)

|:|1|+ +> = 5(2|312 _1_612622)|++> =0

H |+-)=e@P, ~1-6,,6,,)|+-) = 2¢|—+)
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H|-+) =B, -1-6,,6,,)|—+) =2¢]+-)

|:|1|__>:8(2F312 _i_&lz&zz)|__>

Thus we have
Hl++)=(H, +H)|++)=-2A++)
H|+-)=2¢]-+)
H|—+) = 2¢]+-)
A=) =+ ) =24

We consider the subsystem (|+ —> and |— +>)

i Lo 25J
e 0

((Mathematica))

Clear["Global «"];

H = (206 206);

Eigensystem[H] // Simplify

{{_261 26}’ {{_1’ 1}’ {11 1}}}

For E = 2¢, (symmetric state)
) =7+l
V2

For E = -2¢, (anti-symmetric state)
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wa) =7 (+) ==+

(©) We use the perturbation theory
For the energy level E = 2A (non-degenerate case)

E,y =2A+(——|H,|--)=2A
For the energy level E = -2A (non-degenerate case)

E\=—2A+(++[H |++)=—2A

2A
—— A
s 2e
....................................... 0
g —2e
4A
|++>
Y -2A

31.28 Spin wave
|:| = _izén ’ 6n+1

With this Hamiltonian we have a complete description of the ferromagnet.
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<>
o

2 -1 0 1

ASas

>

X

A

where 6, -6, interchanges the spins of the n-th and (n+1)-th electrons.

For the ground state all spins are up (|+>, so if you exchange a particular pair of

spins, one can get back the original state. The ground state is a stationary state: -J/2 for
each pair of spins. That is, the energy of the system in the ground state is -J/2 per spin.

It is convenient to measure the energies with respect to the ground state. Our new
Hamiltonian is

I:I = _‘Jz(lsn,nﬂ - 1)

|
I I I v I I
5

With this Hamiltonian, the energy of the ground state is zero. Here we define the state
|X'n> where all the spins except for the one on the spin at X,,.

I:IIX5> = _JZ(ISn,nH _I)I X5>

= _‘](If)s,é _I)I X5>_‘I(I§4’5 _I)I X5>
——3(|%e) 2% )+|x, )

where

Pys X5>:IX4>a Pss X5>:IX6>= IS78IX5>:IX5>aand I534IX5>:IX5>~

Similarly,

F||xn>:—J(|xn+1>—2|xn>+|xn71>
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I_’\||Xn+1> =-J (|Xn+2>_2|xn+l>+|xn>

Here we consider
w)=2Cil%,)

Eigenvalue problem

Hly)=Ely)
or
2 CoH[x,) = EX C[x,)
or
> CoH[ %) =E3C,[x,)
or
Zn:(—J)(Cn|xn+1>—2Cn|xn>+Cn|xn_l>: Ezn:Cn|xn>
or
zn:(—J)(C,H —2C, +C,, )%, ) = Ezn:Cn| X, )
or

(_‘] )(Cnfl - 2Cn + Cn+l) = Ecn
Let us take as a trial function
Cn — eian

(—J )(eik(xn—b) _2eian + eik(Xn+b)) — Eeikxn

E =2J[1-cos(kb)] (energy dispersion)
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The difference energy solutions corresponds to “waves” of down spin-called “spin
waves. For kb<<1, E is approximated by

k’b?

E=2A = Ak’b?.
2
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