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31.1 System of particles 1 and 2  
 

'k , "k  

 

21
"' kka   

21
'" kkb   

 
Even though the two particles are indistinguishable, mathematically a  and b  are 

distinct kets for "' kk  . In fact we have 0ba  . Suppose we make a 

measurement on the two particle system. 
 

'k : one particle and "k : the other particle. 

 
We do not know a priori whether the state ket is 

21
"' kka   or 

21
'" kkb   or -

for that matter- any linear combination of the two: bbaa cc   . 

 
31.2 Exchange degeneracy 

A specification of the eigenvalue of a complete set of observables does not 
completely determine the state ket. 
 
Mathematics of permutation symmetry: 
 

ba kkkkPP  
21211212 '""'ˆˆ . 

 
Clearly 
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ˆ P 21  ˆ P 12 , and ˆ P 12

2 1. 
 
Under ˆ P 12 , particle 1 having 'k  becomes particle 1 having "k ; particle 2 having "k  

becomes particle 1 having 'k . In other words, it has the effect of interchanging 1 and 2. 

 
((Note)) 
Matrix element of ˆ P 21  ˆ P 12  in terms of 

21
"' kka   and 

21
'" kkb   

 

ba kkkkPP  
21211212 '""'ˆˆ  

 

ab kkkkPP  
21211212 "''"ˆˆ  

 
Matrix element of ˆ P 21  ˆ P 12  
 











01

10
1̂2P  

 
or 
 

01

10

b

a

ba





 

 

Eigensystem[ 12P̂ ] 
 
 = 1 (symmetric):  
 

symmsymmP  12  

 

)'""'(
2

1
2121

kkkksymm   

 
= -1 (antisymmetric) 
 

antiantiP  12  

 

)'""'(
2

1
2121

kkkkanti   
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Our consideration cane be extended to a system made up of many identical particles. 

A transposition is a permutation which simply exchange the role of two of the particles, 
without touching others. 
 

..............."'..............."'ˆ
1
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i
ij kkkkkkkkkkP







   

 
The transposition operators ˆ P ij  are Hermitian ( ˆ P ij

  ˆ P ij ) 

 
ˆ P ij

2  1 

 
So that ˆ P ij  is Unitary operator. The allowed eigenvalues of ˆ P ij  are ±1. It is important to 

note, however, that in general 
 

[ ˆ P ij ,
ˆ P kl ]  0 . 

 
Now we consider a permutation operator ˆ P 123  for  

 

321132321123 "''"'""''""'ˆ kkkkkkkkkP   

 
for the system of 3 identical particles (

321
'''"' kkk ) 

 

P123 
1 2 3

2 3 1









 

 
This means replacement of 12, 2 3, 3 1. 
 

P123 
1 2 3

2 3 1











1 2 3

2 1 3











2 1 3

2 3 1









 P12P13  

 
Quantum mechanically this is not correct. The correct one is  
 

ˆ P 123  ˆ P 13
ˆ P 12  

 
Similarly, 
 

P123 
1 2 3

2 3 1











1 2 3

1 3 2











1 3 2

2 3 1









 P23P12  

 
or quantum mechanically 
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ˆ P 123  ˆ P 12
ˆ P 13  

 

P132 
1 2 3

3 1 2











1 2 3

3 2 1











3 2 1

3 1 2









 P13P12  

 
or quantum mechanically 
 

ˆ P 132  ˆ P 12
ˆ P 13 

 
((Proof)) 
 

321321123211312 ''''"'"'''ˆ'''"'ˆˆ kkkkkkPkkkPP   

 
and 
 

321213321132 ''''"'''"''''"'ˆ kkkkkkkkkP   

 
Therefore we have ˆ P 132  ˆ P 12

ˆ P 13. 
Any permutation operators can be broken into a product of transposition operators. 

 
ˆ P 132  ˆ P 23

ˆ P 12  ˆ P 13
ˆ P 23  ˆ P 12

ˆ P 13  ˆ P 23
ˆ P 12

ˆ P 23
2  ...  

 
The decomposition is not unique. However, for a given permutation, it can be shown that 
the parity of the number of transposition into which it can be broken down is always the 
same: it is called the parity of the permutation. 
 

 
ˆ P 132  ˆ P 23

ˆ P 12  ˆ P 13
ˆ P 23  ˆ P 12

ˆ P 13  ˆ P 23
ˆ P 12

ˆ P 23
2  ...  even parity 

 
ˆ P 123  ˆ P 12

ˆ P 23  ˆ P 13
ˆ P 12 : even parity 

 
ˆ P 23 odd parity 

 
ˆ P 12  odd parity 

 
ˆ P 31 odd parity 

 
((Note)) 
 

ˆ P 132  ˆ P 321  ˆ P 213  
 
31.3 Symmetrizer and antisymmetrizer 
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Now we consider the two Hermitian operators 
 

ˆ S 
1

N!
ˆ P 


 : symmetrizer 

 
ˆ A 

1

N!
 ˆ P 


 : antisymmetrizer 

 
where   =1 if ˆ P   is an even permutation and   = -1 if ˆ P   is an odd permutation. 
 

ˆ S   ˆ S  and ˆ A   ˆ A . 
 
((Theorem-1)) 
If ˆ P 0  is an arbitrary permutation operator, we have 
 

SPSSP ˆˆˆˆˆ
00    

 
ˆ P 0

ˆ A  ˆ A ̂  P 0   0 A (1) 
 
((Proof)) 

This is due to the fact that  
 

 PPP ˆˆˆ
0    

 
such that 
 

  0
  

 
or 
 

0
   0

2    

 
ˆ P 0

ˆ S 
1

N!
ˆ P  0

ˆ P 

 

1

N!
ˆ P 


  ˆ S  

 
ˆ P 0

ˆ A 
1

N!
 ˆ P 0

ˆ P 

 

1

N!
 0 ˆ P 


  0

ˆ A  

 
From Eq.(1) we see the following theorem 
 
((Theorem-2)) 
 

SS ˆˆ2   
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AA ˆˆ 2   
 
and 
 

0ˆˆˆˆ  ASSA  
 
((Proof)) 
 

SS
N

SP
N

S ˆˆ
!

1ˆˆ
!

1ˆ 2  


  

 

AA
N

AP
N

A ˆˆ
!

1ˆˆ
!

1ˆ 22  





   

 

0ˆ
!

1ˆˆ
!

1ˆˆˆ  





  S
N

SP
N

ASA  

 
since half the  are equal to 1 and half the  equal to -1. ˆ S  and ˆ A  are therefore 

projectors. Their action on any ket   of the state space yields a completely symmetric 

or completely antisymmetric ket. 
 

 SSP ˆˆˆ
0   

 

  AAP ˆˆˆ
00   

 

 SS
ˆ  

 

 AA
ˆ  

 
((Example)) 
 
For N = 3, 
 

]ˆˆˆˆˆ1̂[
6

1ˆ
132123312312 PPPPPS   

 
and 
 

]ˆˆˆˆˆ1̂[
6

1ˆ
132123312312 PPPPPA   
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where 
 

2312123
ˆˆˆ PPP  ,  1312132

ˆˆˆ PPP   

 

1̂)ˆˆ1̂(
3

1ˆˆ
132123  PPAS  

 
31.4 Symmetrization postulate 

The system containing N identical particles are either totally symmetrical under the 
interchange of any pair (boson), or totally antisymmetrical under the interchange of any 
pair (fermion). 
 

BNBNijP ,,
ˆ   , 

 

FNFNijP ,,
ˆ   , 

 

where BN ,  is the eigenket of N identical boson systems and FN ,  is the eigenket of 

N identical fermion systems. 
 
((Note)) It is an empirical fact that a mixed symmetry does not occur. 
 
Even more remarkable is that there is a connection between the spin of a particle and the 
statistics obeyed by it: 
 
Half-integer spin particles are fermion, while integer-spin particles are bosons. 
 
31.5 Pauli exclusion principle 

Wolfgang Ernst Pauli (April 25, 1900 – December 15, 1958) was an Austrian 
theoretical physicist and one of the pioneers of quantum physics. In 1945, after being 
nominated by Albert Einstein, he received the Nobel Prize in Physics for his "decisive 
contribution through his discovery of a new law of Nature, the exclusion principle or 
Pauli principle," involving spin theory, underpinning the structure of matter and the 
whole of chemistry. 
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http://en.wikipedia.org/wiki/Wolfgang_Pauli 
 

Electron is a fermion. No two electrons can occupy the same state. We discuss the 
framatic difference between fermions and bosons. Let us consider two particles. Each of 
which can occupy only two states 'k  and "k . 

For a system of two fermions, we have no choice 
 

)'""'(
2

1
2121

kkkk  . 

 
For bosons, there are three states. 
 

21
'' kk , 

 

21
"" kk , 

 

)'""'(
2

1
2121

kkkk  . 

 
In contrast, for “classical particles” satisfying Maxwell-Boltzmann (M-B) statitics with 
no restriction on symmetry, we have altogether four independentstates. 
 

21
"' kk , 

21
'" kk , 

21
'' kk  and 

21
"" kk  

 
We see that in the fermion case, it is impossible for both particles to occupy the same 
state. 
 
31.6 Transformation of observables by permutation 
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For simplicity, we consider a specific case where the two particle state ket is 
completely specified by the eigenvalues of a single observable ˆ A  for each of the particle. 
 

21211 "''"'ˆ aaaaaA   

 
and 
 

21212 "'""'ˆ aaaaaA   

 
Since 
 

21

1
121122112

1
12112 '"ˆˆˆ"'ˆˆˆˆ aaPAPaaPPAP    

 

1112221221

2112

211122112
1

12112

"'ˆˆ'"ˆ'"'

"'ˆ'

"'ˆˆ"'ˆˆˆˆ

aaPAaaAaaa

aaPa

aaAPaaPPAP







 

 
we obtain 
 

ˆ P 12
ˆ A 1

ˆ P 12
1  ˆ A 2  

 
Similarly, 
 

ˆ P 21
ˆ A 2

ˆ P 21
1  ˆ A 1 

 
It follows that ˆ P 12  must change the particle label of observables. 
 
There are also observables, such as ˆ A 1  ˆ B 2 , ˆ A 1

ˆ B 2 , which involve both indices 
simultaneously. 
 

ˆ P 12 ( ˆ A 1  ˆ B 2)
ˆ P 12

1  ˆ A 2  ˆ B 1  
 

ˆ P 12
ˆ A 1

ˆ B 2
ˆ P 12

1  ˆ P 12
ˆ A 1

ˆ P 12
1 ˆ P 12

ˆ B 2
ˆ P 12

1  ˆ A 2
ˆ B 1  

 
These results can be generalized to all observables which can be expressed in terms of 
observables which can be expressed in terms of observables of the type of ˆ A 1  and ˆ B 2 , to 

be denoted by ˆ O (1,2). 
 

ˆ P 12
ˆ O (1,2) ˆ P 12

1  ˆ O (2,1) 
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where ˆ O (2,1) is the observable obtained from ˆ O (1,2) by exchanging indices 1 and 2 
throughout. 
 
ˆ O s (1,2)  is said to be symmetric if 

 
ˆ O s (1,2)  ˆ O s(2,1) 

 
or 
 

[ ˆ O s (1,2), ˆ P 12]  0  
 
Symbolic observables commute with the permutation operator. 
 
In general. the observables ˆ O s (1,2,3,..., N) which are completely symmetric under 
exchange of indices 1, 2, ..., N commute with all the transposition operators, and with all 
the permutation operators 
 
31.7 Example 

Let us now consider a Hamiltonian of a system of two identical particles. 
 

ˆ H 
1

2m
ˆ p 1

2 
1

2m
ˆ p 2

2  Vpair ( ˆ r 1  ˆ r 2 )  Vext (ˆ r 1)  Vext(ˆ r 2 ) 

 
Clearly we have 
 

ˆ P 12
ˆ H ˆ P 12

1  ˆ H  
 
or 
 

[ ˆ P 12, ,
ˆ H ]  0 

 
ˆ P 12 is a constant of the motion. Since ˆ P 12

2 1, the eigenvalue of ˆ P 12 allowed are ±1. 
 

 EH ˆ  

 

 12P̂  

 

  2
12

2
12

ˆˆ PP  

 
or 
 

= ±1. 
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It therefore follows that if the two-particle state ket is symmteric (antisymmettric) to start 
with, it remains so at all times. 
 
(i) N = 2 case 

We can define the symmetrizer and antisymmetrtizer as follows. 
 

)ˆ1(
2

1ˆ
12PS    )ˆ1(

2

1ˆ
12PA   

 

1̂ˆˆ  AS  
 

SPPPPS ˆ)ˆ1(
1

1
)1ˆ21(

4

1
)ˆ1(

2

1
)ˆ1(

2

1ˆ
12121212

2   

 

APPPPA ˆ)ˆ1(
2

1
)1ˆ21(

4

1
)ˆ1(

2

1
)ˆ1(

2

1ˆ
12121212

2   

 

)'""'(
2

1
2121

kkkkS   

 
and 
 

)'""'(
2

1
2121

kkkkA   

 

)'""'(
2

1
"')ˆ1(

2

1
"'ˆ

2121211221
kkkkkkPkkS   

 

)'""'(
2

1
"')ˆ1(

2

1
"'ˆ

2121211221
kkkkkkPkkA   

 
(ii) N = 3 Cases 
 

ˆ S 
1

6
(1  ˆ P 12  ˆ P 23  ˆ P 31  ˆ P 123  ˆ P 132 ) 

 
ˆ A 

1

6
(1 ˆ P 12  ˆ P 23  ˆ P 31  ˆ P 123  ˆ P 132 ) 

 
ˆ S  ˆ A 

1

3
(1 ˆ P 123  ˆ P 132 )  1 
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333

222

111

321

'''"'

'''"'

'''"'

!3

1
'''"'ˆ

kkk

kkk

kkk

kkkA   

 
Slater determinant 

321
'''"'ˆ kkkA  is zero if two of individual states coincide. We obtain Pauli’s exclusion 

principle. 
 
 
31.8 Method developed by Tomonaga 
 
Sin-Itiro Tomonaga or Shin'ichirō Tomonaga (Tomonaga Shin'ichirō, March 31, 1906 
– July 8, 1979) was a Japanese physicist, influential in the development of quantum 
electrodynamics, work for which he was jointly awarded the Nobel Prize in Physics in 
1965 along with Richard Feynman and Julian Schwinger. 
 

 
http://en.wikipedia.org/wiki/Sin-Itiro_Tomonaga 
 
 
We now consider a system consisting of many spins. 
 

NSSSSS ˆ...ˆˆˆˆ
321   

 

)ˆ...ˆˆˆ()ˆ...ˆˆˆ(ˆˆ
321321 NN SSSSSSSSSS   

 
or 
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'

'
2

1

2
2

'
'

1

22 )ˆˆ(
2

1
ˆ

4
)ˆˆ(2ˆˆ

nn
nn

N

n
n

nn
nn

N

n
n σσσSSSS 


 

 
or 
 





'

'2

2

)ˆˆ(
2

1

4

3ˆ

nn
nn

N
σσ

S


 

 
Here we define an operator 
 





'

'
ˆ

)1(

2ˆ
nn

nnP
NN

O  

 

Ô  is Hermitian and 0]ˆ,ˆ[ OP . We assume that 
 

)ˆˆ1(
2

1ˆ
'' nnnnP σσ    (Dirac exchange interaction) 

 

]ˆˆ
2

1

2

)1(

2

1
[

)1(

2
)ˆˆ1(

2

1

)1(

2ˆ
'

'
'

' 











nn
nn

nn
nn

NN

NNNN
O σσσσ  

 
or 
 

]ˆˆ
)1(

2
1[

2

1ˆ
'

'






nn

nnNN
O σσ  

 
Using the relation, 
 





'

'2

2

)ˆˆ(
2

1

4

3ˆ

nn
nn

N
σσ

S


, 

 
we get 
 

]ˆ1

)1(

4

)1(

4
[

2

1
)]

2

3ˆ2
(

)1(

2
1[

2

1ˆ 2
2

2
2 SS

 









NNN

NN

NN
O  

 

0]ˆ,ˆ[ 2 OS . When the eigenvalue of 2Ŝ  is given by )1(2 SS , the eigenvalue of Ô  is 
equal to 
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]
)1(

)1(4

)1(

4
[

2

1









NN

SS

N

N  

 

The eigenvalue of Ô  )( specifies the symmetry. 
 
(i) For N = 2, 
 

D1/2 x D1/2 = D1 + D0 
 

)1(1)]1(22[
2

1
 SSSS  

 
When S = 1,  = 1 (symmetric). 
When S = 0,  = -1 (anti-symmetric). 
 
(ii) For N = 3, 
 

D1/2 x D1/2 x D1/2 = D3/2 + 2 D1/2 
 

)]1(
3

2

2

1
[

2

1
 SS  

 
When S = 3/2,  = 1 (symmetric). 
When S = 1/2,  = 0. 
 
(iii) For N = 4, 
 

D1/2 x D1/2 x D1/2 x D1/2 = D2 + 3D1 + 2D0 
 

6

)1( 


SS  

 
For S = 2,  = 1 (symmetric). 
For S = 1,  = 1/3. 
For S = 0,  = 0. 
 
________________________________________________________________________ 
31.9 Two spin 1/2 particles 
 

D1/2 x D1/2 = D1+D0 
 
(i) j = 1 (spin triplet): symmetric states 
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 1,1 mj  

 

)(
2

1
0,1   

 
1,1  

 
(ii) j  = 0 (singlet): anti-symmetric state 
 

][(
2

1
0,0  mj  

 
31.10 Young's tableau-I 

The spin state of an individual electron is to be represented by a box. A single box 
represents a doublet 
 

1
 spin up    

 

2
 spin down  

 

: 
1 1

,
1 2

, 
2 2

 symmetric tableau (spin triplet) 
 m=1 m=0 m=-1 
 

:  

1

2
     antisymmetric tableau (spin singlet) 

 m = 0 
 
((Rule)) 
 

We do not consider 
 

2 1
 

 
because when we put boxes horizontally, symmetry is understood. So we deduce an 
important rule. Double counting is avoided if we require that the number (label) not 
decrease going from the left to the right. Similarly, to eliminate the unwanted symmetry 
states, we require the number (label) to increase as we go down. 
 
General rule 
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In drawing Young tabeleau, going from left to right the number cannot decrease; 
going down the number must increase. 

 
31.11 Three electrons with spin 1/2 
 

D1/2 x D1/2 x D1/2 = (D1+D0) x D1/2 = D3/2+D1/2+D1/2 
 
(i) j = 3/2 
 


2

3
,

2

3
mj  

 

][
3

1

2

1
,

2

3
  

 

][
3

1

2

1
,

2

3
  

 


2

3
,

2

3
 

 
(ii) j = 1/2 
 

]2[
6

1

2

1
,

2

1
 mj  

 

]2[
6

1

2

1
,

2

1
  

 
(iii) j = 1/2 
 

][
2

1

2

1
,

2

1
 mj  

 

][
2

1

2

1
,

2

1
 , 

 
31.12 Young's tableaux II 
 

:symmetric state 
 

 j = 3/2, m = 3/2, 1/2, -1/2, -3/2 
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1 1 1
, 

1 1 2
, 

1 2 2
, 

2 2 2
 

 m=3/2 m=1/2 m=-1/2 m=-3/2 
 
What about the totally antisymmetric states? We may try vertical tableau like 
 

1

1

1

1

2

2
: forbidden state 

 
But these are illegal, because the numbers must increase as we go down. 
 
j = 1/2 
 

  

1 1

2
, 

1 2

2
 

 m=1/2 m=-1/2 
 
31.13 Note 

We define a mixed symmetry tableau. The mixed state is orthogonal to the symmetric 
state and anti-symmetric state. 
 

 =  or   
 
 

 =  
 
 

 =  
 
(a) 
We consider a mixed state, 
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231311 )(   (1) 

 
satisfies symmetry under 13, but it is neither symmetric nor anti-symmetric with 
respect to 2 3 (or 1 2). 
 

 
 

123322 )(   (2) 

 
satisfies symmetry under 23, but it is neither symmetric nor anti-symmetric with 
respect to 1 2 (or 1 3). 
 
Subtraction: Eq.(1) - Eq.(2): 
 

 
 

 21   (3) 

 
This satisfies anti-symmetry under 12, but no longer have the original symmetry under 
12. 
 
This corresponds to 
 

][
2

1

2

1
,

2

1
  

 
which is obtained from the Clebsch-Gordan coefficient. 
 
(b) 
 

 
 

231313 )(   (4) 

 
This satisfies anti-symmetric under 13. 
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132324 )(   (5) 

 
This satisfies anti-symmetric under 23. Addition: Eq.(4) + Eq.(5): 
 

 243   (6) 

 

]2[
6

1

2

1
,

2

1
  

 
which is obtained from the Clebsch-Gordan coefficient. 
 
(c) 
 

 
 

132325 )(  . (7) 

 
This satisfies symmetric under 23 
 

 
 

231316 )(  . (8) 

 
This satisfies symmetric under 13. 
 
Eq.(7) - Eq.(8) 
 

 
 

 65  . (9) 

 
This satisfies anti-symmetric under 12. 
 

][
2

1

2

1
,

2

1
 mj  

 
(d) 
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132327 )(  . (10) 

 
This satisfies anti-symmetric under 23 
 

 
 

231318 )(  . (11) 

 
This satisfies anti-symmetric under 13. 
 
Subtraction: Eq.(10) - Eq.(11) 
 

 
 

 87  . (12) 

 
This satisfies antisymmetic under 12. 
 
Addition: Eq.(10) + Eq.(11) 
 

 
 

 287   

 
or 

]2[
6

1

2

1
,

2

1
 mj  

 
31.14 4 electrons with spin 1/2 
 

D1/2 x D1/2 x D1/2 x D1/2 = (D3/2 + D1/2 +D1/2) x D1/2 
 
 = (D2 + D1) + (D1 + D0) +(D1 + D0) 
 
(i) j = 2 
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 2,2 mj  

 

][
2

1
1,2   

 

][
6

1
0,2   

 

][
2

1
1,2   

 
2,2  

 
(ii) j = 1 
 

]
2

3
][

32

1
1,1  mj  

 

][
6

1
][

6

1
0,1   

 

]
2

3
][

32

1
1,1   

 
(iii) j = 1 
 

]2[
6

1
1,1  mj  

 

]22[
32

1
0,1   

 

]2[
6

1
1,1   

 

]2

2[
32

1
0,0



 mj
 

 
(iv) j = 1 
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][
2

1
1,1  mj  

 

][
2

1
0,1   

 

][
2

1
1,1   

 
(v) j = 0 
 

][
2

1
0,0  mj  

 
31.15 Young's tableaux  
 
j = 2 symmetric state 
 

1 1 1 1
, 

1 1 1 2
, 

1 1 2 2
, 

1 2 2 2
 

 m=2 m=1 m=0 m=-1 
 

2 2 2 2
 

 m=-2 
 
j = 1 mixed state 
 

1 1

2

1

, 

1 1

2

2

, 

1 2

2

2

 
 m=1 m=0 m=-1 
 
j = 0 
 

1 1

2 22

1

 
 m = 0 
 
31.16 Simplified model for spin 1/2 

Now we introduce a simple way to build a Young diagram. 
 
(a) Two spin 1/2 particles 
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2 x 2 = 4 

  =    
triplet singlet 

 
2 x 2 = 3 + 1 


D1/2 x D1/2 = D1 +D0 

 
(b) Three spin 1/2 particles 
 

   
2 x 2 x 2 = 8 

 

  =    
triplet doublet quartet doublet 

 
3x2=4+2 

 
D1 x D1/2 = D3/2 +D1/2 

 

   = 
 

D0 x D1/2 = D1/2 
 
((Note)) 
 

 is forbidden. 
 
(c) Four particles with 1/2 
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2 x 2 x 2 x 2 = 16 
 

  =    
 

D3/2 x D1/2 =D2 + D1 
 

  =    
 

D1/2 xD1/2 =D1 + D0 
 
 
(d) 5 spin 1/2 particles 
 

     
2 x 2 x 2 x 2 x 2 = 32 

 

  =   
 

D2 xD1/2 =D5/2 + D3/2 
 

  =   
 

D1 xD1/2 = D3/2+ D1/2 
 

  =  
 

D0 xD1/2 =D1/2 
 
31.17 Particles with l = 1; m = 1, 0, -1 (p electrons) 
 
The labels 1, 2, and 3 may stand for the magnetic quantum number of p-orbitals (l= 1 
particle). 
 



Identical particles 25 12/23/2010 

: 
1

,  
2

,  3  
 m=1 m=0 m=-1 
 
31.18 Two  particles with spin 1: 3x3 = 9 states 
 
For j = 1 
 

 =  , 3 x 3 = 6 +3 
 
 D1, D1  D2, D0 D1 
 
The horizontal tableau has six states: the tableau is to be broken down into j =- 2 
(multiplicity 5) and j = 0 (multiplicity1); both of which are symmetric. 
 
The vertical tableau corresponds to an antisymmetric j = 1 state. 
 
Concretely, 
 
Symmetric 
 

: 
11

, 
21

,
31

, 
22

,
32

, 
33

,  
 6 states (j = 2 and  0) 
 m=2 m=1 m=0 m=0 m=-1 m=-2 
 
Antisymmetric 
 

 : 

1

2
, 

1

3
, 

2

3
,  3 states (j=1) 

 m=1 m=0 m=-1 
 
31.19 The three particles with l = 1 
 
3 x 3 x 3 = 27 states  
 

 =   : 6 x 3=7+3 +5+3 
 
 D2, D0 x D1 D3, D1 D2, D1 
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 =     : 3 x 3=8 +1 
 
 D1 x D1 D2, D1 D0 
 
Note: 
 

 contains both j = 3 (7 states) and j = 1 (3 states). 
 

As for with eight possibilities altogether, the argument is more involved, but we 
note that this 8 cannot be broken into 7 + 1 because 7 is totally symmetric, while 1 is 
totally antisymmetric when we know that 8 is of mixed symmetry. So the only possibility 
is 8 = 5 + 3 - in other words j = 2 and j = 1. 
 
Finally, therefore 
 

  =    
 

D1 x D1 x D1 = D3 + 2D2 + 3D1 + D0 
 
or 
 

  =      
 
 3 3 3 7+3 5+3 5+3 1 
 
In terms of angular momentum states, we have 
 

j = 3 (7 states)  once  (totally symmetric) 
j = 2 (5 states)) twice  (both mixed symmetry) 
j = 1 (3 states) three times (one totally symmetric, two mixed symmetry) 
j = 0 (1 state) once (totally antisymmetric). 
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1 1 1 , 
1 1 2

, 
1 1 3

 
 m = 3 m = 2 m = 1 
 

1 2 2 , 
1 32  

1 33  
 m = 1 m =0 m = -1 
 

2 2 2 , 32 2 , 
32 3

 
 m = 0 m = -1 m = -2 
 

333
 

 m = -3 
 

1

2

3
 

 m = 0 
 

1 1

2
 

1 1

3
 

1 2

2
 

1

3

2

 
 m =2  m = 1  m = 1  m = 0 
 

1 3

2
 

1

3
3

 

22

3
 

3
32

  
 m = 0  m = -1  m = -1  m = -2 
 
31.20 Four particles with l= 1 (Landau) (p)4 
 

  =  

 D3, D1 D1 D4, D3, D2 D2, D1, D0 
 

  =   

 D1, D2 D1 D1, D2, D3,  D0, D2 D1 
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   =  
 
 D0 D1 D1 
 
((Note)) 
 

  is forbidden. 
 

1 1 1 1
 

1 1 1 2
 

1 1 1 3
 

 m = 4   m = 3   m = 2 
 

1 1 2 2
 

1 1 2 3
 

1 1 3 3
 

 m = 2   m = 1   m = 0 
 

1 2 2 2
 

1 2 2 3
 

1 2 33
 

 m = 1   m = 0   m = -1 
 

1 3 33
 

2 2 22
 

2 2 32
 

 m = -2   m = 0   m = -1 
 

 
2 2 33

 
2 3 33

 
3 3 33

 
 m = -2   m = -3   m = -4 
 
 
31.21 Two spin states 
Hyperfine splitting in hydrogen 

The hydrogen atom consists of an electron sitting in the neighborhood of the proton. 
There are four states for the ground state of the hydrogen atom. 
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S2

21

S1  
 

 : electron up, proton up 

 
electron

proton

 
 

 : electron up, proton down 

 

 
 

 : electron down, proton up 

 

 
 

 : electron down, proton up 

 

 
 
For any state, the state can be described by the linear combination of these four states. 
 
 
We use the following formula to set up the eigenkets of two spins with spin S = 1/2. 
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0

1

0

1

10

01
ˆ z  

 





























1

0

1

0

10

01
ˆ z  

 




























1

0

0

1

01

10
ˆ x  

 




























0

1

1

0

01

10
ˆ x  

 

























 
 i

ii

i
y

0

0

1

0

0
̂  

 

























 
 i

i

i

i
y 01

0

0

0
̂  

 
We now consider the two spin operators: ˆ 1 and ˆ 2 . There are four states: 
 

 ,  ,  ,   

 
The spin operator ˆ 1 and ˆ 2 work on the first spin state and the second spin state, 
respectively. 
 

 iy1̂  

 
 iy1̂  

 
 iy1̂  

 
 iy1̂  

 
and 
 

x2̂  

 
x2̂  

 



Identical particles 31 12/23/2010 

x2̂  

 
x2̂  

 
In the most general case we could have more complex things. 
 

 xzxzx 12121 ˆ)ˆ(ˆˆˆ   

 
 xzxzx 12121 ˆˆ(ˆˆˆ   

 
 xzxzx 12121 ˆ)ˆ(ˆˆˆ   

 
 xzxzx 12121 ˆ)ˆ(ˆˆˆ   

 
34.22 Dirac spin exchange operator 
 

zzyyxxA 21212121 ˆˆˆˆˆˆˆˆˆ   σσ  

 
 xx 21 ˆˆ  ,   yy 21 ˆˆ   

 
 zz 21 ˆˆ  ,   xx 21 ˆˆ   

 
 yy 21 ˆˆ  ,   zz 21 ˆˆ   

 
 xx 21 ˆˆ  ,   yy 21 ˆˆ   

 
 zz 21 ˆˆ  ,  xx 21 ˆˆ   

 
 yy 21 ˆˆ  ,  zz 21 ˆˆ   

 
 

 2Â  

 

 2Â  

 

 2Â  

 

 2Â  
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Now we introduce a new operator 12P̂ , which has the following properties 
 

12P̂  is the exchange operator.  

When 12P̂  operates on the state 
21

  , we have 

 

2112211212
ˆˆ   PP  

 

12P̂  

 

12P̂  

 

12P̂  

 

12P̂  

 

12P̂ is related to ˆ A  as 
 

ˆ A  2 ˆ P 12  ˆ 1  
 
or 
 

)ˆˆ1(
2

1
)ˆ1(

2

1ˆ
2112 σσ  AP  

 
This operator is called the Dirac’s spin exchange operator 
 
 
31.23 Total spin angular momentum 
 

1Ŝ  and 2Ŝ  are commute. 
 

)ˆˆ(
2

ˆ
21 σσS 


 

 


ˆ S z 



2
( ˆ 1z  ˆ 2z )  
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)ˆˆ3(
2

)ˆˆ2ˆˆ(
4

)ˆˆ()ˆˆ(
4

ˆ

21

2

21
2

2
2

1

2

2121

2
2

σσ

σσσσσσσσS









 

 
Note that 
 

)ˆˆ1(
2

1ˆ
2112 σσ P  

 
or 
 

)ˆ1()ˆˆ12(
2

)ˆˆ3(
2

ˆ
12

2
21

2

21

2
2 P 


σσσσS  

 
We also see that 
 

0̂]ˆ,ˆ[ 2 zSS  
 

We can have simultaneous eigenkets of 2Ŝ  and zŜ . Here we use the basis of  
 

 ,,,  

 

 2
12

22 2)ˆ1(ˆ  PS  

 

 


)ˆˆ(
2

ˆ
21 zzzS   

 
which corresponds to the state j  1,m 1  
 

 2
12

22 2)ˆ1(ˆ  PS  

 

 


)ˆˆ(
2

ˆ
21 zzzS   

 
which corresponds to the state j  1,m  1  
 

)()ˆ1(ˆ 2
12

22   PS  

 

0)ˆˆ(
2

ˆ
21  zzzS 
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)()ˆ1(ˆ 2
12

22   PS  

 

0)ˆˆ(
2

ˆ
21  zzzS 

 

 

We now consider the matrix elements of 2Ŝ  under the subspace of   and  . 

 











11

11ˆ 22 S  

 

0ˆ

2ˆ

2

22





A

SS

S

S



 

 

 
where 
 

)(
2

1

)(
2

1





A

S





 

 
Note that 
 

0ˆ

0ˆ





Az

Sz

S

S




 

 

Thus S  is the eigenket of 2Ŝ  with 22  and of zŜ  with  . A  is the eigenket of 2Ŝ  

with 0 and of zŜ  with 0. 
 
Eigenket Energy eigenvalue 
 
((Triplet)) 
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)(
2

1
S  

 
  

 
((Singlet)) 
 

)(
2

1
A  

 
__________________________________________________________________ 
31.24 Exchage interaction 
 
 

Electron Proton

 
 
Fig. The interaction between the magnetic moment of electron (ee) and the magnetic 

moment of proton (pp), where e<0 and p >0. 
 
We now consider the spin Hamiltonian between the electron and proton, 
 

210 ˆˆ σσ  JEH


 

 
(for convenience we assume E0 = 0). 
 

 JĤ  

 
  is the eigenstate of ˆ H  with the eigenvalue J. 

 
ˆ H    J    
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  is the eigenstate of ˆ H  with the eigenvalue J. 

 

)2(ˆ  JH  

 

)2(ˆ  JH  

 


























12

21

2

2ˆ J
JJ

JJ
H  

 
((Mathematica)) 
 

Clear"Global`";

H  J  1 2
2 1

;

eq1  EigensystemH  Simplify

3 J, J, 1, 1, 1, 1

E = -3 J (antisymmetric state)

A  Normalizeeq12, 1
 1

2
, 

1

2


E =  J (symmetric states)

S  Normalizeeq12, 2
 1

2
,

1

2


 
 
For E = -3J (anti-symmetric state) 
 






















2

1
2

1

A . 
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For E = J (symmetric state) 
 





















2

1
2

1

S . 

 
In summary we have eigenkets and energy eigenvalues of the system. 
 
Eigenket Energy eigenvalue 
 
((Triplet)) 
 

  E0 + J 

 

)(
2

1
S  E0 +J 

 
  E0 +J 

 
((Singlet)) 
 

)(
2

1
A  E0 -3J 

 

E0-3J

E0+J

E0

4J

 
 
Fig. Energy diagram. 
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______________________________________________________________________ 
31.25 Zeeman splitting 
 

BB  2121 ˆˆˆˆˆ  peJH  

 

Magnetic moment of electron: σS e
e 


1

2


 (e<0).  

Magnetic moment of proton: σS p
p 


2

2


 (p>0) 

 
((Note)) 
 

e = -9284.76377 x 10-27 J/T,  p = 14.10606662 x 10-27 J/T (NIST) 
 
When the magnetic field B is applied along the z axis,  
 

ˆ H  ˆ H 0  ˆ H 1  
 
with 
 

210 ˆˆˆ σσ  JH  

 
ˆ H 1  (1

ˆ 1z  2
ˆ 2 z )B 

 
We calculate 
 

ˆ H 1    (1
ˆ 1z  2

ˆ 2 z )B    (1   2 )B    
 

ˆ H 1    (1
ˆ 1z  2

ˆ 2z )B    (1  2 )B    
 

ˆ H 1    (1
ˆ 1z  2

ˆ 2 z )B    (1  2 )B    
 

 BBH zz )()ˆˆ(ˆ
2122111   

 

 JH 0
ˆ  

 

 JH 0
ˆ  

 

)2(ˆ
0  JH  
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)2(ˆ
0  JH  

 
Thus 
 

 ])([ˆ
21 BJH  

 
  is the eigenket of ˆ H  with the enrgy eigenvalue [J  (1  2 )B] 

 

 ])([ˆ
21 BJH  

 
   is the eigenket of ˆ H  with the enrgy eigenvalue [J  (1  2 )B] 

 
ˆ H    J(2      ) (1   2 )B    

 
ˆ H    J(2      ) (1   2 )B    

 
 

ˆ H 
J  (1  2 )B 2J

2J J  (1   2 )B









 

 
((Mathematica)) 
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Zeemann energy

Clear"Global`";

M   J  1  2 B 2 J
2 J J  1  2 B

;

eq1  EigensystemM  Simplify

J  4 J2  B2 1  22 , J  4 J2  B2 1  22 ,

 4 J2  B2 1  22  B 1  2
2 J

, 1,  4 J2  B2 1  22  B 1  2
2 J

, 1

E4  eq11, 1;

E3  eq11, 2;

E2  J  B 1  2;

E1  J  B 1  2;

rule1  2  1000 1, J  1, B  104 B1, 1  107;

E11  E1 . rule1  Simplify; E22  E2 . rule1  Simplify;

E33  E3 . rule1  Simplify;

E44  E4 . rule1  Simplify;

f1  PlotEvaluateE11, E22, E33, E44, B1, 0, 5,

PlotStyle  TableThick, Hue0.08 i, i, 0, 5, Background  LightGray,

AxesLabel  "B T", "E";

f2  GraphicsTextStyle"E4", Black, 12, 3, 5,

TextStyle"E2", Black, 12, 3, 2, TextStyle"E3", Black, 12, 3, 2.3,

TextStyle"E1", Black, 12, 3, 4, TextStyle"J  1", Black, 15, 1, 5;

Showf1, f2

E4

E2

E3

E1

J = 1

1 2 3 4 5
B T

-6

-4

-2

2

4

6

E

 
 
Figure caption 

Zeeman splitting of the ground state of hydrogen. 
0B :the levels are denoted as E1, E3, E2, and E4 from the top to the bottom. 

B = 0: there are two levels. One level is E4, and another level is degenerate (E1, E3, 
E2). 
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31.26 Zeeman splitting of the ground state of hydrogen. 
We consider the hydrogen atom consisting of an electron with spin S1   / 2 sitting in 

the neighborhood of the proton with spin S2   / 2 . There are four states for the ground 
state of hydrogen atom. Any components of S1 commutes with any component of S2. 
[S.B. Crampton, D. Kleppner, and N.F. Ramsey, Phys. Rev. Lett. 11, 338 (1963)]. 
 

µ1 =µe (<0), µ2 =µp (>0). 
|µe| ≈ 1000 µp 

 
µe + µp= -µ 
-µe + µp = µ’ 

 
(µ and µ’ are positive). 
 

E1 = J + µB 
 

E2 = J - µB 
 

)
4

'
121(

2

22

3 J

B
JE


  

 

)
4

'
121(

2

22

4 J

B
JE


  

 
For B = 0, there is one transition line observed (= 1.420405751 GHz) 
For B ≠ 0, six lines are observed. 
 

E1 - E3,  E1 - E2, E1 - E4 
E3 - E2, E3 - E4, E2 - E4 

 
_________________________________________________________________ 
31.27 Problems 
((Shaum 14-10)) 
 
Two spin 1/2 particles are described by an unperturbed Hamiltonian 
 

)ˆˆ(ˆ
210 zzAH   . 

 
We add the perturbation  
 

)ˆˆˆˆ(ˆ
21211 yyxxH    
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with  
<<A (A>0). 
 

(a) Find eigenvalues and eigenfunctions of ˆ H 0 . 

(b) Calculate (exactly) the energy levels and eigenfunctions of ˆ H 0  ˆ H 1. 

(c) Calculate the first-order corrections to the energy levels of ˆ H 0 . 
 

)ˆˆ1̂(
2

1ˆ
2112 σσ P  

 

1̂ˆ2ˆˆ 1221  Pσσ  
 
or 
 

ˆ H 1   ( ˆ 1x
ˆ 2x  ˆ 1y

ˆ 2y )  (2 ˆ P 12  ˆ 1  ˆ 1z
ˆ 2z ) 

 

 AH 2ˆ
0  

 

0ˆ
0 H  

 
ˆ H 0    0 

 

 AH 2ˆ
0  

 
Eigenkets Energy eigenvalues 

 
  -2A 

 
  0 

 
  0 

 
  2A 

 
(b) 
 

0)ˆˆ1̂ˆ2(ˆ
21121  zzPH   

 

  2)ˆˆ1̂ˆ2(ˆ
21121 zzPH  
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  2)ˆˆ1̂ˆ2(ˆ
21121 zzPH  

 

 )ˆˆ1̂ˆ2(ˆ
21121 zzPH   

 
 
Thus we have 
 

 AHHH 2)ˆˆ(ˆ
10  

 

 2Ĥ  

 

 2Ĥ  

 

 AHHH 2)ˆˆ(ˆ
10  

 
We consider the subsystem (   and  ) 

 

ˆ H 
0 2
2 0









 

__________________________________________________________________ 
((Mathematica)) 
 

Clear"Global`";

H   0 2 
2  0

;

EigensystemH  Simplify

2 , 2 , 1, 1, 1, 1 
 
____________________________________________________________________ 
For E = 2, (symmetric state) 
 

)(
2

1
S  

 
For E = -2, (anti-symmetric state) 
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)(
2

1
A  

 
(c)  We use the perturbation theory 
For the energy level E = 2A (non-degenerate case) 
 

AHAE A 2ˆ2 12   

 
For the energy level E = -2A (non-degenerate case) 
 

AHAE A 2ˆ2 12   

 

-2A

2A-->

0

4A

2eyS>

-2eyA>

++>
 

 
___________________________________________________________________ 
31.28 Spin wave 
 

 
n

nn

J
H 1ˆˆ

2
ˆ σσ  

 
With this Hamiltonian we have a complete description of the ferromagnet. 
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b

x5

0 1 2 3 4 5-1-2

 
 

1ˆ2ˆˆ 1,1   nnnn Pσσ  

 
where 1ˆˆ  nn σσ  interchanges the spins of the n-th and (n+1)-th electrons. 

 
For the ground state all spins are up (  , so if you exchange a particular pair of 

spins, one can get back the original state. The ground state is a stationary state: -J/2 for 
each pair of spins. That is, the energy of the system in the ground state is -J/2 per spin. 

It is convenient to measure the energies with respect to the ground state. Our new 
Hamiltonian is  
 

ˆ H  J ( ˆ P n ,n1 1)
n
  

 

-2 -1 0 1 2 3 4 5 6 7 8
x5

 
 
With this Hamiltonian, the energy of the ground state is zero. Here we define the state 

nx.  where all the spins except for the one on the spin at xn.  

 

)2(

)1ˆ()1ˆ(

)1ˆ(ˆ

456

55,456,5

51,5

xxxJ

xPJxPJ

xPJxH
n

nn





  

 

 
where 
 

4545
ˆ xxP  , 6556

ˆ xxP  , 5578
ˆ xxP  , and  5534

ˆ xxP  . 

 
Similarly, 
 

11 2(ˆ
  nnnn xxxJxH  
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nnnn xxxJxH   121 2(ˆ  

 
Here we consider 
 


n

nn xC  

 
Eigenvalue problem 
 

 EH ˆ  

 
or 
 

 
n

nn
n

nn xCExHC ˆ  

 
or 
 

 
n

nn
n

nn xCExHC ˆ  

 
or 
 

  
n

nn
n

nnnnnn xCExCxCxCJ 11 2)((  

 
or 
 

  
n

nn
n

nnnn xCExCCCJ )2)(( 11  

 
or 
 

nnnn ECCCCJ   )2)(( 11  

 
Let us take as a trial function 
 

nikx
n eC   

 
nnnn ikxbxikikxbxik EeeeeJ   )2)(( )()(  

 
)]cos(1[2 kbJE    (energy dispersion) 
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The difference energy solutions corresponds to “waves” of down spin-called “spin 
waves. For kb<<1, E is approximated by 
 

22
22

2
2 bAk

bk
AE  . 

 
_________________________________________________________________ 
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