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32.1 Thermal conductivity 

Fourier's law 
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describes the energy flux density in terms of the thermal conductivity K and the temperature 
gradient. This forms assumes that there is a net transport of energy, but not of particles. The 
equation of continuity for the energy density is 
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where C is the heat capacity per unit volume.  We combine these two equations to obtain the heat 
conduction 
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where  D = K/C is called the thermal diffusivity. This equation describes the time-dependent 
diffusion for the temperature. 
 
32.2 Green's function  

We want to solve the heat equation in one dimension, 
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where ),( txQ  is a heat source. First we start to find the Green's function which is defined by 
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Using the Fourier transform, we have 
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The Fourier transform of the above equation: 
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Then the inverse Fourier transform is obtained as 
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We now calculate the integral 
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(i) t>0 

For t>0, we use the contour C1 in lower half plane (the complex plane). The contour integral 

along the path 1 (radius R = ∞) is zero according to the Jordan's lemma. Note that the contour 

C1 is the clock-wise, and that there is a simple pole at 
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inside the contour C1. Then we have 
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for t>0. Since 
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(ii) t<0 

For t<0, we use the contour C2 in the upper half plane (the complex plane). The contour integral 

along the path 2 (radius R = ∞) is zero according to the Jordan's lemma. Note that the contour 

C2 is the clock-wise, and that there is no pole. 
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Then we have 
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The Green's function is obtained as 
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((Mathematica)) 
 

 
 
___________________________________________________________________ 
32.3 General solution 
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where Q(x, t) is a heat source. Green's function satisfies 
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The solution of the differential equation for the heat conduction is 
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((Example)) Dirac comb 

We assume that 
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We further assume that f(t) is described by a Dirac comb given by 
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Fig. Dirac comb with the heat pulses at x = 0 applied periodically (T0 is a period time). 
 
 
Then we have 
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Fig. Simulation. Plot of T(x, t) vs t with x as a parameter (x = 1 - 10). D = 1. T0 = 5. 
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32.3 Initial condition 

We consider the solution of the differential equation given by 
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with the initial condition given by 
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which is an initial temperature distribution at t = 0. We assume that the solution is given by 
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Since there is no heat source, this solution satisfies 
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where 
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The Green's function satisfies 
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The form of G(x, t) is given by 
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The solutions of u(x, t) and T(x, t) are obtained as 
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((Example)) Dirac delta function 
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Then we have 
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Fig. t dependence of T(x, t) with each x. D = 1.  
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Fig. T(x,t) has a maximum (= 
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parameter. D = 1. This figure is the same as the above figure. 
 
 
The derivative of T(x, t) with respect to t is obtained as 
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which implies that T(x, t) has a maximum (= 
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The pulse spreads out with increasing time. The mean square value of x is given by 
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The root mean square value is 
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32.4 Brownian motion 

The width of the distribution increases as t , which is a general characteristic of diffusion 
and random walk problem in one dimension. The connection with Brownian motion or the 
random walk problem follows if we let t0 be the duration of each step of a random walk. 
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where N is the number of steps. It follows that 
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So that the rms displacement is proportional to the square of the number of steps. This is the 
result of the Brownian motion, the random motion of suspensions of small particles in liquids 
(Kittel and Kroemer). 
 
32.5 Experiment 

In the sophomore laboratory (Physics 227, Binghamton University) we have an experiment 
of "Thermal Wave." The purpose of this experiment is to measure the thermal diffusivity (D) of a 
brass rod. 
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Fig.1 Diagram of apparatus (from the report by Corrine Blum (Fall, 2009, Sophomore 

Laboratory). 
 

Figure 1 shows a diagram of the apparatus used. There are three temperature sensors located 
on the brass rod. The separation distance between adjacent sensors is x (= 10 cm). A heat 
source at the one of the edge, is applied for the time T on and the same time T off, in a square 
wave for one hour, where T1 = 5 and 10 minutes (two trials). The temperature data from each 
sensor are recorded as a function of time using the computer. Figures 2 and 3 show the 
temperature data measured by the three sensors, as a function of time t, where T = 5 minutes for 
the trial 1 (Fig.2) and the trial (Fig.3). As shown in Figs.2 and 3, the heat propagates from the 
sensor 1 to the sensor 2 and from the sensor 2 to the sensor 3 in the same finite time t. The 
diffusion diffusivity D can be estimates as 
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The thermal diffusivity is found to be 3.63 x 10-5 m2/s for the trial 1 and 3.33 x 10-5 m2/s for the 
trial 2. Note that the theoretical value of D for the brass rod is 3.376 x 10-5 m2/s. 
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Fig.2 Temperatures measured by three sensors as a function of time (trial 1). T = 5 minutes. 
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Fig.3 Temperatures measured by three sensors as a function of time (trial 2). T = 10 minutes. 
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