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Here We discuss the solution of the partial differential equation using the Laplace
transformation

33.1 Under damped oscillator

We suppose that a damped harmonic oscillator is subjected to an external force f(t) with
finite duration and is at rest before the onset of the force. The displacement satisfies a differential
equation of the form,

L x(t) = X"(t) + 2 (t) + w, X (t) = f (1),

where m is a mass, vy is the damping factor, and wy is the natural angular frequency. The initial
condition is given by

X(0) = Xo, X'(0) = vo.

We apply the Laplace transform to the above differential equation,

$2X (s) —sx(0) — x'(0) + 2y[sX (s) — x(0)] + a)oz X(s)=F(s)

or
(5% +295+ @, )X (S) = X, +V, + 2%, + F (S)
or
X(s):xoz(s+27)+v2°+ : F(s) :
ST+25+w," S +2)5+wm,
where

X(s) = LIx(®)], F(s)=LLT (V)]

Using the formula (by Mathematica),



B} 1 e " sin(w,t
G(t):—l_l[z 2]:_ ( d)
S°+ 25+ w, oy

L 51271 e [eos(a,t) + L@
S°+ 215+ w, Wy

we have

ysin(aw,t) e sin(a,

X(t) = X, " [cos(@,t) + 1+, Y —jG(t ~2)f(2)dr

Wy Wy
Note that G(t) is the Green's function for the under-damped oscillator
LG(t,7)=-05(t—7)

and ay is defined as

33.2  Diffusion with constant boundary condition
We suppose that w(x,t) satisfies a diffusion equation

oy (%) _ 0w (x1)
ot Ox?

with the boundary condition given by

w(x=0,t>0)=w,0(t)
w(x>0,t<0)=0 '

where y, is constant. We apply the Laplace transform to the differential equation and the
boundary condition

sY(x,8)-w(x,t=0)=D

O*¥(x,s) )

OX



where W(x,s) is the Laplace transform of y(x,t),
¥(x,8) = LIy (x,0]

and
‘P(X:O,s):%. @)

From Eq.(1), we have

2
—a \P(Z(’ s) —i‘P(x, s)=0
OX D

since y(x,t =0) =0 for x>0. We solve the differential equation for W(x,s).

Y(x,9) =%exp(—\/%x)

Using the Mathematica, we have

w(x,t) = L[ (x,5)] =y, Erfe[ =]

2./Dt

where Erfc is the complementary error function.

((Mathematica))

InverseLapIaceTransform[2 Exp[—a «/;] » S, t] //

Simplify[#, a> 0] &
a
]

Erfc|
2t
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Fig.  Diffusion with constant boundary value.

33.3 Example: Green's function for the homogeneous diffusion operator
We consider the solution of the Green's function satisfying

aG(x,t)
ot

D

GASCL NPTy
OX

Assuming that G =0 for t<z, we apply the Laplace transform to the above differential equation,

sG(x,s)—DazL)z('s)=e*”5(X—§)’
OX

or

TC=ES) i (x—g,5)=—5(x- ),

19)4
where
S e’
k_\/g’ G(X—g,S)— D Gl(X—g,S),

G, (x,s) is the Green's function (modified Helmholtz), which satisfies



Gy(x—£,5) = iexp(—k|x—§|) ,

or

G(X—é,S)Z

\/7exp( \/7|x §|)_ exp( ST — \/7|x é).

The inverse Laplace transform leads to the Green's function,

exp( SZ'—\/7|X &

2\/_ L’l[Texp( st—as)]

I T ot i
 JamD(t-1) ol AD(t- )] (t=7)

G(x-¢,t—17)= L‘l[

where
_[x=4
D
L‘l[%exp( av/s)]= \/—eXp(——z)
gl _ 1 ~ a’
L [\Eexp( st—avs)] mexp[ 4(t—r)]'

((Note)) See Chapter 17 1D Green's functions.

33.4 One dimensional heat conduction-1: Laplace transform
We consider the differential equation for the 1D heat equation with a given boundary
condition.



o 0
—-D—)T(x1)=0,
(P52 T

with the initial condition given by
T(xt=0)=T,(x),

which is an initial temperature distribution at t = 0. We apply the Laplace transform to this
differential equation.

2

sT(X,8)=T(x,t :0)—D8—2T(x,s) =0.
OX

or
82
D—T(x,8)=sT(x,8) =-T,(X),
OX
or
a—ZT(x $)—k°T(x,s) ——iT (X)
x> ' o p o
where
¢ F
D L
and

T(x,8) =L[T(x,1)]. (Laplace transform)

Using the Green's function (modified Helmholtz), we obtain the solution as
° 1
T(68) = [G(x=£5) S To(§)ds,

where the Green's function G(x—¢&,s) satisfies



82 2 G(x-6,9) KT (x£,9) =-3(x~),

and the solution is obtained as
1
G(x—£,5) =Eexp(—k|x—§|).

Finally we have
Tl 1
T(x8) = [ -expl-k{x— &1 To(£)ds

% q 5 1
=[2\/?exp[\/g|xﬁ|]5-ro(f)df
D

1 71 S
- [Eexp[—\/gh—ﬂ]'ro(f)df

The inverse Laplace transform:

0

T(xt) = j (&)d¢
where
JD
v - exp(-aJ5)] = J_ exp(——)
33.5 One dimensional heat conduction II: Fourier transform

We consider the differential equation for the 1D heat equation with a given boundary
condition.



o 0
—-D—)T(x1)=0,
(P52 T

with the condition given by
T(x=0,t)=T,(t),

and T(x, t = 0) = 0 for x>0. We apply the Fourier transform to this differential equation (over X,).

T (x,1)dX,

T(k,t):% [e

T(x,t) = T (k,t)dk .

1 ]Oe
N2 %,
We note that

© 2: ©
J‘e—ikx a T()z(:t) dX — [e—ikx aT (Xat)] |;o +ikJ'e—ikx aT(X,t) dX
OX X 5 OX

0

=[e™ M] Iy +ik{[e T (x,t) Iy +ikTe’”‘XT(x,t)dx}
OX 0

and

0 2 0
J'e—ikx 0 T()z(at) dx = [e—ikx ar (th)] |(3OO +ik J'e—ikx or (th) dx
OX OX i OX

—00

11°, +ik{[e™T (x,t)|°, +ik j‘e'ikxT (x,t)dx}

_ [e—ikx oT (x,t)
- X

Then we have



Jort OO g o ST OOy e OOy e (x 01, +e ™ T(011)

—00

o0

—K? [e7T (x,t)dx

e T e 9T (%, )X —ik[T (X = 01.8) T (x = O, t)]_[aT(x;O+,t) B 6T(x;(0—,t)]

Since

T(x=0+1t)-T(x=0-t)=-T,(t),

and
8T(x:0+,t)_6T(x:O—,t)_0
ox oX ’
we have
1 7 i aZT(X't) 127 i ikTo(t)
e dx =— ke 1 e™ T (x,t)dx+
NorS R~ Nl L
ikT, () '
= KT (K, 1) + 0
(k,1) Tor
and
i OT (X,1) 0
gk dx =—T(k,t
\/271"[0 ot ot (k.t)

Using this we get the differential equation for T(k, t),

iDKT, (t)

NP

(%‘f‘ Dk*)T (k,t) =-

The solution of the Green's function satisfying

(§+ Dk*)G(k,t —7) =—5(t — 7).



is given by
G(k,t—7) = —exp(-Dk’t)O(t —7)

((Note)) See Chapter 14. for the derivation of G(k,t—7).
Then we get

iDk 7
\/_

__ 1Dk j exp[—Dk?(t — )T, (7)d 7

T(k,t) = J.G(kt )T, (2)dr

Finally we have

1 (-iD)
2z 2z 3

_lt XTo(7) x?
_ZJ.dT[47ZD(t—T)3]3/2 T Yy

T(6t) === T, (r)dr]gkdk exp[ikx — DK2(t - 7)]

((Mathematica))

Integrate [k Exp[i k x - D1 k* t], {k, -, }] //
Simplify[#, {x>0,D1>0, t>0}] &

X2
1 e_4D1t AT X

2 (D1 t)3/?

33.6 Three dimensional heat conduction: Green's function
We consider the Green's function given by

(g ~DV?*)G(r,t) =-5(r)s(t)

We apply the Fourier transform to this equation,



G(r.t) = 7 )3,2jd3kexp(ik-r)e(k,t),

5([’)—(2
and
(——DV )G(r,t) = a 1),2jd3k( —DV?)exp(ik -1)G(K,1)
—( 1)/2jd3k[ G(k,t) + Dk*G(k,t)]exp(ik -r)
_ 1
-~ (2n)°
or
0 2 1
aG(k,t)+Dk G(k,t) 277 o(t)
The solution for G(k,t) is given by
G(k,t)= —%exp(—Dk%)@(t)

(27)
Using the inverse Fourier transform, we have

1

G(r,t)=-

1
2z’

Zt)

We calculate the integral |



| = j d®k exp(ik - r) exp(-Dk?t)

=27 j dkk2 exp(—Dk?t) j d@sin g™’
0 0

0 eikl’ _efikl’
=27 j dkk? exp(—Dk 2t)(————)
0 ikr
2T j dkk exp(ikr — Dk ’t)
r -
27 ixr r?
- 377 eXP(= )
ir 2(Dt) 4Dt
= ﬁiexp(— r )
(Dt)*? 4Dt
((Note))
k-r=krcosé, dk = k*dk sin & ¢
i
]
Then we get
G(r ) =-0) = exp(——)
’ (47Dt)%? 4Dt
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