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James Clerk Maxwell (13 June 1831- 5 November 1879) was a Scottish theoretical
physicist and mathematician. His most important achievement was formulating classical
electromagnetic theory. This united all previously unrelated observations, experiments
and equations of electricity, magnetism and even optics into a consistent theory. His set
of equations—Maxwell's equations—demonstrated that electricity, magnetism and even
light are all manifestations of the same phenomenon, the electromagnetic field.
Subsequently, all other classic laws or equations of these disciplines were simplified
cases of Maxwell's equations. Maxwell's work in electromagnetism has been called the
"second great unification in physics", after the first one carried out by Isaac Newton.

http://en.wikipedia.org/wiki/James Clerk Maxwell

The Maxwell's equation in vacuum (SI units)
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34.1 Wave equations in vacuum
From these equations, we have
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Similarly, we have
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VX(VXE) = V(V-E) - VE =~ 2 (VxB) =~y o E.

or
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(wave equation)

We consider the special case when E or B depend only on X. In this case the equation for
the field becomes

0’ 0°
—f=c*=—Tf,
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where by f is understood any component of the vector E or B.
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We introduce new variables

So that the equation for f becomes
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The solution obviously has the form
f =1+ L,
where f; and f, are arbitrary function.

or
f=ft-2)+ D).
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The function f; represents a plane wave moving in the positive direction along the X axis.
The function f, represents a plane wave moving in the negative direction along the X axis.

34.2 Method using Fourier transform

We use the Fourier transformation technique.
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Then we have
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— F(x,0)+k’F(x,0) =0,
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where

k=2,
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The solution of this equation is
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F(x,0) = g(w)jg - g(w)%,

where g(w) is an arbitrary function of @. Finally we get

io(t+X)
C

f(X,t)=iIg(w)e do.

Therefore, f(X,t) is a function of t + 5.
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34.3 Plane wave representation

We suppose that

E=Re[E,e'*" " ]=Re[E,e"]=

B =Re[B,e'*" " ]=Re[B,e"]=

From

V-E=0, and V-B=0

From
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we have

i(kxE,)=iwB,,
or

(kxE,)=ckB,,
or

(kxE,)=cB,,
or
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B, =—(kxE,)

c
((Note)) Dispersion relation
From
0’ 1 0°
VE= IUOEOFE :C_zﬁ >

we have a dispersion relation
w=Cck = C|k| .
34.4 Energy and momentum in electromagnetic wave

The energy density:

u :%(50E2+LBQ)
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The Poynting vector:

s-L(ExB)
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Calculation of E*
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where T = 2z and lJ.eﬂmdt = 0. Similarly, we have
w T

RO I
<B>_Tj|3dt_

0

%EWEJZ—EJ

The time-average of the energy density is given by
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Here we note

Then we have
<U> = %(‘%‘Eor +ﬁ‘ﬁor) = %‘%‘Eor

Calculation of poynting vector S

S= i(E xB) = %(Eoe” +E,'e)x (B, +B,e)
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Note that

EO X §0 =—E, x(kx EO*) = R%‘Eor



Then we have

(S)=—L (&, xB, +E, xB,)

0

or

photons
ho

area 1

<S> is the energy flux (energy per unit area per unit time). We define the intensity | given

| =(S)=c(u)= S E

1 = 1 |~
B =5

We now consider the photon (the velocity is C) flows. During the time At, the total
energy passing through the area A is

E = cAtA(u) = AALS

where the volume is CAtA and the energy density is <u> . Here we define the momentum

density G by

GZC—25



345 Reflection and transmission

V-E=0, V-B=0, VxE=—@,V><B=,u5E.
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with the velocity v defined by

where n is the index of refraction;
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For most materials, u = y,

transmitted wave
H
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cident wave
reflected wave

Incident wave
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Reflected wave
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The dispersion relation:
®=Vk =V,kK,.

This condition is required. Otherwise the boundary condition is different at different
times.

The boundary condition
E, +E,q = E, (tangential)
L(gm - I§OR ): 1 I§0T (tangential)
H Hy

or
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where
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Then we have

- EOR + EOT = E0|

EOR +:BEOT = E0|

From these two equations
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The intensity is given by
1 ~ 2
| = EV&“EO‘ .

The reflection coefficient R is defined by
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Therefore we have

T+R:(ﬂJ +ﬁ(LJ =1.
1+p 1+p

((Note)) The boundary condition
The normal component is continuous

1 L 1 L
D =D, &k~ =¢E,

or

The tangential components is continuous

El// _ Ez// E1// _ Ez//
or
Hl// = Hz// L Bl// = L Bz//
H H,

34.6 Reflection and transmission at oblique incidence



Incideng wave Reflectgd wave

Transmitted wave

Fig. Components of plane wave. An incident plane wave in a medium of index n;
results in a reflected wave in n; and a refracted wave in the medium of index n,.
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Dispersion relation
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Boundary condition at z=0
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These boundary conditions must hold at all points on the plane (z = 0), and for all times.
These exponential must be equal.

e =g'% =g atz=0.
or

k,-r=kg-r=k;-r
forall x and y.

Then we have
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Suppose that (K, )y =0, then we have (kR)y = (k, )y =0

(kl )x =k, sin§,
(kR)X =k sin 6,
(kT )X =k, siné;
First law
The incident, reflected, and transmitted wave vectors form a plane (plane of
incidence), which also includes the normal to the surface.

Second law

0. =6, (Law of reflection)

since

k,sin €, = k; sin 6,

k, = kg
Third law
c
il O _% _M_M_N (Snell’s law of refraction)
siné, k, v, C n
nZ

since

K, siné, =k; siné;



34.7 Reflection and transmission for the polarization vector in the plane of
incidence

Augustin-Jean Fresnel (10 May 1788 — 14 July 1827), was a French physicist who
contributed significantly to the establishment of the theory of wave optics. Fresnel
studied the behavior of light both theoretically and experimentally.

http://en.wikipedia.org/wiki/File: Augustin_Fresnel.jpg
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The polarization of the incident wave is parallel to the plane of incidence. The reflected
and transmitted waves are also polarized in this plane.
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EOI = (EO, cosé, .0, Eo, siné),)
EOR = (EOR cosHR,O,—EOR sindy)
EOT = (EOT cosé, .0, EOT siné; )
~ 1 ~
B, = (O,v—1 E. ,0)

1

EOR = (0,_\/_ EOR’O)

1

~ 1 ~
BOT = (O’V_ EOT :0)
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Then the boundary conditions can be rewritten as

E, cos, + E,, cosf, = E,; cosb
gl(ﬁm sinf, — EOR sin) = ¢, EOT sin &;

1 ~ ~ 1 ~
_(Em - EOR) = EOT

A% VY,

or

Eo +Epr = Egr =k
cos b,
~ = & sinb ~
E0| “Lor T EOT
&g sing,
C
&SN = &V
=—=—Ey=——FE;
& n, & C
v,
1
PRV VA v
_&" E, = /1212 E. = HiVi E,
&V, Vv Vs
2V
MV,

The second and the third equations are the same. Then we have two independent
equations. Here we define



2
1- (n‘] sin” 6,
cos &, n,
o= =

cosd, cosd,

ﬁ — lulvl
MV,

Then we get the Fresnel’s equation

(1) EOT 1s always in phase with EO, .

(i)  E, is in phase with E,, for a<f, while E,, is out of phase with E,, for a<f.

Unit area

Power per unit area striking the interface is

I, = 1—51v1‘€0, ‘2 cos 4,
1 ~ 2

Iz = EEIVI‘EOR‘ cos O,
1

~ 2
I = ?gzvz‘EOT‘ cos O

Reflection coefficient:



Transmission coefficient:

T, - I; ‘ ‘ cost, ( 2 ]2: 4ap

1, ‘ ‘ cosf, ' \a+pB) (a+p)]

where // means that the polarization vector is in the plane of incidence.

34.8 Reflection and transmission for the polarization vector perpendicular
to the plane of incidence
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where
E0| =V (Rl X Em)
EOR =V (RR X I§OR)
Eyr =V, (ky xBy;)
or
Em = _VI(RI X I§0|)
EOR = _VI(RR x EOR)
E0T = _Vz(RT x §or)
B,, = (-B,, cos6,,0,-B,, sin,)
EOR = (I§0R cos 19R,0,—I§0R sindy)
EOT = (—I§OT cosé; ,O,—I§OT siné; )
Em = (0’V1§0| ,0)
EOR = (O’VIBOR’O)
Eor =(0,v,B4r,0)
or

The boundary condition



Vl(§OI + §OR) = V2§0T

I§0, sin @, + I§0R sinfy = I§0T sin &;

L(—I§0, cosd, + I§0R costy) = L(— I§OT cos&T)
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1
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U, cosby
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E0| + EOR = EOT
A A V, cos@. ~
o1 — Eor = &0 ! Eor = afE,
MV, cos by
where
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cosb,
V,
B = Yy
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Then we get the Fresnel's equation

. 1 .
E. = E
oT (1+0{,5J 01
éOR :(l_aﬂjém
1+apf

for polarization vector perpendicular to the plane of incidence.

Reflection coefficient:

~ 2 5
R _l_R:‘EOR‘ :(l—aﬂJ
o, ‘gmr 1+ap



Transmission coefficient:

~ |2
T _lk_&v ‘EOR‘ cos o, g 2 Y __4ap
Tl gy ‘EOI‘Z cos 6, l+af) (1+apf)’

where | means that the polarization vector perpendicular to the plane of incidence.
34.9 Brewster’s angle

Sir David Brewster (11 December 1781 — 10 February 1868) was a Scottish physicist,
mathematician, astronomer, inventor, and writer.

http://en.wikipedia.org/wiki/David_Brewster
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Fig. Incident ray (unpolarized). Refracted ray (slightly polarized). Reflected ray
(polarized). & is equal to the Brewster's angle 6s: tan(6;) :&. 6, +6 :%. We
nl

use Ny =1 and n; = 1.65. 65 = 58.7816°.

We now consider the case when x4, = u,

cosé;

o=—->-
cos 6,

B= aV, Vv, n, sing,
WV, vV, n siné

n _[a-8 * (sin(26,)-sin(26,)
" a+p) \sin(26,)+sin(26,)



n _(1=aB) _sin’(6,-6)
Y l+ap)  sin’(6, +6)

Note that R, =0 for sin(26; ) =sin(26,).

This means that

20, =26, or 20, = -26,,
or
V4
6 +06, = By (Brewster angle).
VA
A
£l
0 r
1
R » X
2 /2
b1
T

Fig. Brewster's angle. n;=1.n,=1.65. 6= 6k = 63 = 58.7816°. 6r=90° - 4.

The condition for the Brewster’s angle:

Using the Snell’s law, we have



nsind, =n, sin(g —6,)=n, cosb,

we have a Brewster’s angle

n,
n

tand, =




Fig. n; =1 and n, = 1.65. The Brewster's angle is &g = 58.7816°. R =1-T, .
R// :l—T//.

34.10 Skin effect in metal

Skin effect is the tendency of an alternating electric current (AC) to distribute itself
within a conductor so that the current density near the surface of the conductor is greater
than that at its core. That is, the electric current tends to flow at the skin of the conductor,
at an average depth called the skin depth.

V-D=p;
V-B=0
VxE= _%B

ot
VxH= % D+J;
J; =0k current density
o conductivity
Yo free charge
B=uH
D=¢E

From the above equations, we have
0
VxB =/¢(85E+0E)

Continuity equation for free charge;

0
V'Jf:_apf

or

The solution of this equation is

pi(®) = p; (0) exp(—%t)



For perfect conductors we have o = . Thus pr should be zero. Thus the starting
Maxwell equations are

V-E=0

V-B=0

VXE:—ﬁ
ot

VxB=,ug§E+,uoE

Vx(VxE)zV(V-E)—VzE=—§(VXB)

or
V’E= ga—2E+ O'QE
oo =T 1%
Similarly
VX(VXB)=V(V'B)—VZB=VX(,US§E+/JGE)
or

& 2
VB =15 B+ uclB
Hooe = T H

We assume the plane-wave solution,

E =Re[E,(2)e e "]
B =Re[B,(z)e"]

2

0 0
V’E = us—E+ uoc—E
Heqr =T HO o
or

a2 = o
FEO(Z)‘F Kon(Z) =0

where



uew’ +iouc = K?

From the relation VxE = —% , we have

Vx[E,(2)e,e""]= yag E,(2)e "
Z

= —%[Eo(z)e-i“’t] —iwB,(z)e7'"

or
~ 1 0 ~
B,(z)=e,——E (2),
0() yia)ﬁz O()

or

- 1 0~
H,(z)=¢, e 02 E,(2),

metal

Y

wacuum

Fig.  Electric field (along the x axis) and magnetic field (along the y axis).

Boundary condition

E)(Z),a—8Z EO(Z) are continuous at the boundary.



34.11 Skin depth

K=k +ix=Kze"

2 v 2.2i4 2 2 o

K=K, e =luow+ uso” = pew” (1+—)
EW

where

2
o
K, = el + pop )

tan(g) = -

O

(k, +ix)’ =iucw+ usw’
or

k’—Kx* +2ik x = iuco+ usw’
Real part: k®—«* = pusa’
Imaginary part: 2kx = pow
or

quo_za)z
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2
k' 'k =



The solution for k; and « is given as

2
/glu O 12
k1=a) 7(14— l+ﬁ)
K=o E-1+ 1+"—2]”2
2 &'w’

We now assume that
o
—»l
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Then we have

2
e Bt 14Ty B R0
2 &w 2 sw 2

2
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ki =w,|—[1+.,]1+ ~ ==
! \ 2[ gza)z] )

tan(¢)=k£z1 or ¢:%
1

The skin depth d is defined by

11 [
K \/,uow pow'
2

Note that the skin depth d decreases with increasing @. Here we have

E — Re[EOei(RZ—wt)] — Re[EOei((liriK)Z—(ut)] — e*KZ Re[EOei(klz—(ut)]

B= Re[goei(ﬁz-wt)] _ Re[goei((kl+i1()z—wt)] —p Re[éoei(klz—wt)]

Both E and B exponentially decay in the metal.



Fig.  Skin depth.

For z<0,

E(2)=E, e“ +E,e™,

dE(z)
dz

Boundary condition at z = 0,
E,=E,+E,

1
(J7X0)

= ik(Eueikz - Elze_ikz)

i 1 .~
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From Egs.(1) and (2) we get

B _ _ 2k,

B, Ky +kuy,
i _ k;”z - MK
B, Kuy+k,

Then we have

E,(2)=E,e* =

K
=
1+—
k
&, 1 o’ eu o’ ’
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where

k=aw\eu

K=k +ix

2
K=o 22221+ [1+-F )"
2 & o
—w 2" 14 <N
K=w T(_ + [1+——)
& @

34.13 Pressure of radiation

k = W+ &1y

o
For —>>1
e,

0w

2
K= —gz’uz(—1+ 1+ 02-2)1/2za) bath O
2 & 2 &m
2
klza) %[14. 1+ fz]l/zz ,UZ—GCO
2 & @ V' 2

Then we have

K = ﬁ§90+n

and

K. 129 (I+1)
K 2, 4,0

i= ~2k _ N2 0
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We now consider the magnetic field
EI(Z) — Elleikz + Elze—ikz _ E“(eikz _e—ikz)

[ 1 0 ¢ 1 . ikz —ikz k ikz —ikz
Bl(z)=ey$§El(z)=eyEEH|k(ek —e k):eygEH(e" )

Whenz=0, E (2)=0 and §1(z):ey£2E”
@

The y component of the magnetic field is discontinuous at z =0

$

en|

We apply the Ampere’s law
§B -dl =/uolen07

where lqnc 18 an induced surface current.
BOUta = /UOIenc *

with



and

B

out __
_—out _ Kb’
Hy

where Ky is the surface induced surface (line) current.

The average magnetic field

=1 1
B=-(B,, +0)==B,,.
S (By +0)=2B,,

out

The total force F is

R I~} Bout1 Bout2
F=bl,. xB=ab(K,xB)=ab §B°“t:2 ab.

Hy Hy

The force is directed into the inside of the conductor.
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