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______________________________________________________________________ 
James Clerk Maxwell (13 June 1831– 5 November 1879) was a Scottish theoretical 
physicist and mathematician. His most important achievement was formulating classical 
electromagnetic theory. This united all previously unrelated observations, experiments 
and equations of electricity, magnetism and even optics into a consistent theory. His set 
of equations—Maxwell's equations—demonstrated that electricity, magnetism and even 
light are all manifestations of the same phenomenon, the electromagnetic field. 
Subsequently, all other classic laws or equations of these disciplines were simplified 
cases of Maxwell's equations. Maxwell's work in electromagnetism has been called the 
"second great unification in physics", after the first one carried out by Isaac Newton. 
 

 
http://en.wikipedia.org/wiki/James_Clerk_Maxwell 
_______________________________________________________________________ 
The Maxwell's equation in vacuum (SI units) 
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34.1 Wave equations in vacuum 
From these equations, we have 
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We consider the special case when E or B depend only on x. In this case the equation for 
the field becomes 
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where by f is understood any component of the vector E or B. 
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We introduce new variables 
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So that the equation for f becomes 
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The solution obviously has the form 
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The function f1 represents a plane wave moving in the positive direction along the x axis. 
The function f2 represents a plane wave moving in the negative direction along the x axis. 
 
34.2 Method using Fourier transform 
 

We use the Fourier transformation technique. 
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The solution of this equation is 
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where g() is an arbitrary function of . Finally we get 
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34.3 Plane wave representation 
 

We suppose that 
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((Note)) Dispersion relation 
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we have a dispersion relation 
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34.4 Energy and momentum in electromagnetic wave 
 
The energy density: 
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The Poynting vector: 
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Calculation of 2E  
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The time-average of the energy density is given by 
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Here we note 
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Then we have 
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Calculation of poynting vector S 
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S  is the energy flux (energy per unit area per unit time). We define the intensity I given 

by 
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We now consider the photon (the velocity is c) flows. During the time t , the total 
energy passing through the area A is  
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where the volume is tAc  and the energy density is u . Here we define the momentum 

density G by 
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34.5 Reflection and transmission 
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with the velocity v defined by 
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where n is the index of refraction; 
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Incident wave 
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Reflected wave 
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Transmitted wave 
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The dispersion relation: 
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This condition is required. Otherwise the boundary condition is different at different 
times. 
 
The boundary condition 
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Then we have 
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From these two equations 
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The intensity is given by 
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The reflection coefficient R is defined by 
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The transmission coefficient T is defined by 
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Therefore we have  
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((Note)) The boundary condition 
The normal component is continuous 
 









21

21

BB

DD

 or 








21

2211

BB

EE 
 

 
The tangential components is continuous 
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34.6  Reflection and transmission at oblique incidence 
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Fig. Components of plane wave. An incident plane wave in a medium of index n1 

results in a reflected wave in n1 and a refracted wave in the medium of index n2. 
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Dispersion relation 
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Boundary condition at z = 0 
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These boundary conditions must hold at all points on the plane (z = 0), and for all times. 
These exponential must be equal. 
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First law 

The incident, reflected, and transmitted wave vectors form a plane (plane of 
incidence), which also includes the normal to the surface. 
 
Second law 
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34.7 Reflection and transmission for the polarization vector in the plane of 

incidence 
 
Augustin-Jean Fresnel (10 May 1788 – 14 July 1827), was a French physicist who 
contributed significantly to the establishment of the theory of wave optics. Fresnel 
studied the behavior of light both theoretically and experimentally. 
 

 
 
http://en.wikipedia.org/wiki/File:Augustin_Fresnel.jpg 
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The polarization of the incident wave is parallel to the plane of incidence. The reflected 
and transmitted waves are also polarized in this plane. 
 
 

qI qR

qT

1

2

x

z

EI

ER

ET

 
 



)0,
~1

,0(
~

)0,
~1

,0(
~

)0,
~1

,0(
~

)sin
~

,0,cos
~

(
~

)sin
~

,0,cos
~

(
~

)sin
~

,0,cos
~

(
~

0
2

0

0
1

0

0
1

0

000

000

000

TT

RR

II

TTTTT

RRRRR

IIIII

E
v

E
v

E
v

EE

EE

EE













B

B

B

E

E

E







 

 
Then the boundary conditions can be rewritten as 
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The second and the third equations are the same. Then we have two independent 
equations. Here we define 
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Then we get the Fresnel’s equation 
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Reflection coefficient: 
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Transmission coefficient: 
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where // means that the polarization vector is in the plane of incidence. 
 
34.8 Reflection and transmission for the polarization vector perpendicular 

to the plane of incidence 
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The boundary condition 
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Then we get the Fresnel's equation 
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for polarization vector perpendicular to the plane of incidence. 
 
Reflection coefficient: 
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Transmission coefficient: 
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where   means that the polarization vector perpendicular to the plane of incidence. 
 
34.9 Brewster’s angle 
Sir David Brewster (11 December 1781 – 10 February 1868) was a Scottish physicist, 
mathematician, astronomer, inventor, and writer. 
 

 
 
http://en.wikipedia.org/wiki/David_Brewster 
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use n1 = 1 and n2 = 1.65. B = 58.7816º.  
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Fig. Brewster's angle. n1 = 1. n2 = 1.65. I = R = B = 58.7816. T = 90 - I. 
 
 
The condition for the Brewster’s angle: 
 
Using the Snell’s law, we have  
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Fig. n1 = 1 and n2 = 1.65. The Brewster's angle is B = 58.7816º.   TR 1 . 
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34.10 Skin effect in metal 

Skin effect is the tendency of an alternating electric current (AC) to distribute itself 
within a conductor so that the current density near the surface of the conductor is greater 
than that at its core. That is, the electric current tends to flow at the skin of the conductor, 
at an average depth called the skin depth.  
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From the above equations, we have 
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Continuity equation for free charge; 
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The solution of this equation is 
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We assume the plane-wave solution, 
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Fig. Electric field (along the x axis) and magnetic field (along the y axis). 
 
 
Boundary condition 
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34.11 Skin depth 
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The solution for k1 and  is given as 
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The skin depth d is defined by 
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Note that the skin depth d decreases with increasing . Here we have 
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Both E and B exponentially decay in the metal. 
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Fig. Skin depth. 
 
34.12 Solution of the boundary problem 
For z≤0, 
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Boundary condition at z = 0, 
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From Eqs.(1) and (2) we get 
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The reflection coefficient: 
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34.13 Pressure of radiation 
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We now consider the magnetic field 
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The y component of the magnetic field is discontinuous at z = 0. 
 

 
 
We apply the Ampere’s law 
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where Ienc is an induced surface current. 
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where Kb is the surface induced surface (line) current. 
 
The average magnetic field 
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The total force F is 
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The force is directed into the inside of the conductor. 
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