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One of the most puzzling phenomena around 1900 was the spectral distribution of 
blackbody radiation. A blackbody is an ideal system that absorbs all the radiation incident 
on it. Max Planck proposed his theory that could explain the experimental data at all 
wavelengths. He assumed that the energy emitted and absorbed by the blackbody is not 
continuous  but is instead emitted or absorbed in quanta. The size of an energy quantum 
is proportional to the frequency of the radiation. 
 
________________________________________________________________________ 
Max Planck (April 23, 1858 – October 4, 1947) was a German physicist. He is 
considered to be the founder of the quantum theory, and thus one of the most important 
physicists of the twentieth century. Planck was awarded the Nobel Prize in Physics in 
1918. 
 

 
 

http://en.wikipedia.org/wiki/Max_Planck 
 
________________________________________________________________________ 

Wilhelm Carl Werner Otto Fritz Franz Wien (13 January 1864 – 30 August 1928) 
was a German physicist who, in 1893, used theories about heat and electromagnetism to 
deduce Wien's displacement law, which calculates the emission of a blackbody at any 



temperature from the emission at any one reference temperature. He also formulated an 
expression for the black-body radiation which is correct in the photon-gas limit. His 
arguments were based on the notion of adiabatic invariance, and were instrumental for 
the formulation of quantum mechanics. Wien received the 1911 Nobel Prize for his work 
on heat radiation. 

 
http://en.wikipedia.org/wiki/Wilhelm_Wien 
________________________________________________________________________ 
John William Strutt, 3rd Baron Rayleigh, OM (12 November 1842 – 30 June 1919) 
was an English physicist who, with William Ramsay, discovered the element argon, an 
achievement for which he earned the Nobel Prize for Physics in 1904. He also discovered 
the phenomenon now called Rayleigh scattering, explaining why the sky is blue, and 
predicted the existence of the surface waves now known as Rayleigh waves. In 1910 
Lord Rayleigh discovered that an electrical discharge in nitrogen gas produced "active 
nitrogen", an allotrope considered to be monatomic. The "whirling cloud of brilliant 
yellow light" produced by his apparatus reacted with quicksilver to produce explosive 
mercury nitride. 
 



 
http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh 
________________________________________________________________________ 
 
35.1 Blackbody problem 
We start with the Maxwell’s equation 
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with ck . Similarly, we have 
 

tc 



B

B 2
2 1

 

 

0
~~

0
2

0
2  BB k  

 
We now consider an electromagnetic wave in the closed cube with side L. 
 

 
 
Fig. Boundary condition for the electric field (red) (tangential component continuous)) 

and the magnetic field (green) (normal component continuous). 
 
From the boundary conditions we have 
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(nx, ny, nz = 1, 2, 3, …) 

 
Note that 
 

Ex = 0   for y = 0 and y = L planes and z = 0 and z = L planes. 
Ey = 0  for z = 0 and z = L planes and x = 0 and x = L planes. 
Ez = 0  for x = 0 and x = L planes and y = 0 and y = L planes. 

 
From the condition 
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From the condition 
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where 
 

Bx = 0   for x = 0 and x = L planes  
By = 0  for y = 0 and y = L planes. 
Bz = 0  for z = 0 and z = L planes. 

 
We note that 
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This means that the vector (E1, E2, E3) is perpendicular to the wave vector k = (k1, k2, k3). 
For each k, there are two independent directions for (E1, E2, E3); polarization. 
 
 

 
 
35.2. Density of states for the modes 

Since 0332211  kEkEkE , only one of k1,k2, k3 can be zero at a time. Since if two 

or three are zero, E1 = E2 = E3 = 0. There is no electromagnetic field in the cavity. Each 
set of integers (nx, ny, nz) defines a mode of the radiation field and corresponds to two 
degrees of freedom of the field when two polarization directions are taken into account. 
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The density of states (k to k +dk) 
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where V = L3. Since ck , 
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of modes having their frequencies between  and +d. 
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where c is the velocity of light and  
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We have the following formula; 
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For single mode k , the energy is given by 
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We use the Planck distribution. The total energy is given by 
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or the energy density by 
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(Planck’s law for the radiation energy density). It is clear that 
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is dependent on a variable x given by 
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(scaling relation). The experimentally observed spectral distribution of the black body 
radiation is very well fitted by the formula discovered by Planck. 
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(2) Region of Rayleigh-Jeans ( 1
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Fig. Scaling plot of f(x) vs x for the Planck's law for the energy density of 
electromagnetic radiation at angular frequency  and temperature T. Planck (red). 
Wien (blue, particle-like). Rayleigh-Jean (green, wave-like). 

 

0.2 0.5 1.0 2.0 5.0 10.0 20.0
x=

Ñw

kB T
0.0

0.5

1.0

1.5

u w
kB3 T3

c3 p2 Ñ2

RJ

W

P

 
 
Fig. Scaling plot of Planck's law. Wien's law, and Rayleigh-Jean's law. 
 
 
35.5 Deivation of u(, T) 
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Then we have 
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where 
 

  = 1.054571596 x 10-27 erg s, kB = 1.380650324 x 10-16 erg/K 
c = 2.99792458 x 1010 cm/s. 
J = 107 erg 

 
 
35.3 Wien’s displacement law 

u() has a maximum at 
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T is the temperature in the units of K.  is the wave-length in the unit of nm 
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10 000 289.777 
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Fig. Wien's displacement law. The peak wavelength vs temperature T(K). 
 
35.4 Rate of the energy flux density 

It is assumed that the thermal equilibrium of the electromagnetic waves is not 
disturbed even when a small hole is bored through the wall of the box. The area of the 
hole is dS. The energy which passes in unit time through a solid angle d, making an 
angle  with the normal to dS is 
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where c is the velocity of light. The right hand side is divided by 4, because the energy 
density u comprises all waves propagating along different directions. The emitted energy 
unit time, per unit area is 
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Fig. Radiation intensity is used to describe the variation of radiation energy with 

direction. 
 
 
 
In other words, the geometrical factor is equal to 1/4. Then we have a measure for the 
intensity of radiation (the rate of energy flux density); 
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where 
 

S (λ ,T)dλ = power radiated per unit area in ( , + d) 
 
Unit 
 



][10
1

)10(

101.
]

1
[

33
1

32

7

32

2

55
2

m

W

m

W

sm

J

scm

erg

s

cm

cm

serg
c  






  

 
The energy flux density ),( TS   is defined as the rate of energy emission per unit area. 
 
((Note)) The unit of the poynting vector <S> is [W/m2]. S  is the energy flux 

(energy per unit area per unit time). 
 
 
(1) Rayleigh-Jeans law (in the long-wavelength limit) 
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(2) Wien's law (in short-wavelength limit) 
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We make a plot of ),( TS  as a function of the wavelength, where ),( TS  is in the 

units of W/m3 and the wavelength is in the units of nm. 
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Fig. cu()/4 (W/m3) vs  (nm). T = 2 x 103 K. Red [Planck]. Green [Wien]. Blue 

[Rayleigh-Jean]. Wien's displacement law: The peak appears at  = 1448.89 nm 
for T = 2 x 103 K. This figure shows the misfit of Wien's law at long wavelength 
and the failure of the Rayleigh-Jean's law at short wavelangth. 
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Fig. (a) and (b) cu()/4 (W/m3) vs  (nm) for the Plank's law. T = 1000 K (red), 1500 

K, 2000 K, 2500 K, 3000 K (blue), 3500 K, 4000 K (purple), 4500 K, and 5000 K. 
The peak shifts to the higher wavelength side as T decreases according to the 
Wien's displacement law. 

 



 
 
Fig. Power spectrum of sun. cu()/4 (W/m3) vs  (nm). T = 5778 K. The peak 

wavelength is 501.52 nm according to the Wien's displacement law. 
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Fig. Power spectrum of cosmic blackbody radiation at T = 2.726 K. The peak 

wavelength is 1.063 mm (Wien's displacement law. 
________________________________________________________________________ 
35.5 Stefan-Boltzmann radiation law for a black body (1879). 
 
Joseph Stefan (24 March 1835 – 7 January 1893) was a physicist, mathematician and 
poet of Slovene mother tongue and Austrian citizenship. 



 
 
http://en.wikipedia.org/wiki/Joseph_Stefan 
 
_______________________________________________________________________ 
Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906) was an Austrian 
physicist famous for his founding contributions in the fields of statistical mechanics and 
statistical thermodynamics. He was one of the most important advocates for atomic 
theory at a time when that scientific model was still highly controversial. 

 
 
http://en.wikipedia.org/wiki/Ludwig_Boltzmann 
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The total energy per unit volume is given by 
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((Mathematica)) 
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A spherical enclosure is in equilibrium at the temperature T with a radiation field that it 
contains. The power emitted through a hole of unit area in the wall of enclosure is 
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where  is the Stefan-Boltzmann constant 
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and the geometrical factor is equal to 1/4. The application of the Stefan-Boltzmann law is 
discussed in lecture notes of Phys.131 (Chapter 18) (see URL at 
 
http://bingweb.binghamton.edu/~suzuki/GeneralPhysLN.html 
 
 
35.6 Duality of wave and particle 
 
Region of Rayleigh-Jeans: wave-like nature 
Region of Wien:   particle-like nature 
 
 
The mean energy contained in a volume V in the frequency range between  and +, 
is given by 
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The mean-square of the fluctuation in energy is obtained as 
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(i) Rayleigh-Jean (wave-like) 
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,  nn 2  

 
22)( nn  , or nn  )(  (wave-like, Rayleigh-Jeans) 

 
2222 )()]([ nDVE    

 
Then we have 
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(ii) Wien (particle-like) 
 

For 1 




TkB

,  nn 2  

 
nn  2)(  (particle-like, corpuscle, Wien) 

 

)())(()()]([ 222  EnDVnDVE    

 
or 
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(iii) Planck 
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35.7 Einstein A and B coefficient 
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Planck’s law for the radiative energy density (Black body) 
 
Suppose that a gas of N identical atoms is placed in the interior of the cavity: 
 

  E2  E1 . 
 
Two atomic levels are not degenerate. 
 
 N1, N2: level population 
 



 
 
 

W()  WT ( )  WE ( ) 
 

W(): cycle-average energy density of radiation at   
WT( ): thermal part 
WE ( ): contribution from some external source of electromagnetic radiation 

 

 
 
 

dN1

dt
 A21N2  N1B12W( )  N2 B21W()

dN2

dt
 A21N2  N1B12W()  N2 B21W()










 

 
Case of thermal equilibrium 
 

dN1

dt


dN2

dt
 0  

 
or 
 

N2 A21  N1B12W()  N2B21W( )  0  
 
For thermal equilibrium with no external radiation introduced into the cavity 
 



W()  WT ( ) 
 

WT( ) 
A21

N1

N2

B12  B21











 

 
The level populations N1 and N2 are related in thermal equilibrium by Boltzman’s law 
 



N1

N2


eE1

eE2
 exp() , ( = 1/kBT) 

 
Then 
 


WT () 

A21

B12e
  B21

 

 
which is compared with the Planck’s law 
 


WT () 

 3

 2c3











e 1
 

 

 



B12  B21

A21

B12


3

 2c3






 

 

WT () 
A21

B12

n , where 

n 

1

e 1
 

 
or 
 



A21

B21WT ()
 e 1 

 
((Example))   kBT  
 

For T = 300 K, T = 6  1012 Hz = 6 THz 
For  « kBT, A21 « B21WT ()  ( « T) 

For  » kBT, A21 » B21WT ()  ( » T) 
 
For optical experiments that use electromagnetic radiation in the near-infrared, we have 
visible, ultraviolet region of the spectrum ( » 5 THz). 
 



We have 
 
(i) A21 » B21WT () 
 

A21: spontaneous emission rate 
B21: rate of thermally stimulated emission 

 
(ii) W() WT ( )WE ( ) WE ()  
 
Therefore the radioactive process of interest involve the absorption and stimulated 
emission associated with the external source. 
 

 
 
((Note)) 

Calculation of 1
1

)(
/

12

21  Tk

T

Be
nWB

A 


  at T = 300 K as a typical example. This factor 

is larger than 1 when  = 4.333 THz. 
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APPENDIX 
Planck's law 
 



In thermal equilibrium at temperature T, the probability Pn that the mode oscillator is 
thermally excited to the n-th excited state is given by the usual Boltzmann factor 
 

 




n B

n

B

n

n

Tk
E
Tk

E

P
)exp(

)exp(

. 

 
The zero-point energy cancels when the quantized energy expression is substituted and, 
with the shorthand notation 
 

)exp(
Tk

U
B


  

 
the thermal probability becomes 
 

UU

U
P

n

n
n 








1

1

0

 

 
where 0<U<1. We define that 
 







0n

n
mm Pnn . 

 
Then we have 
 

1)exp(

1

10 
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The fluctuation in the number is characterized by the root-mean square deviation n of 
the distribution. 
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Since 
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U
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
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we get the relation 
 

nnn  22)( . 
 
((Mathematica)) 
 



Fluctuation in photon number (Planck distribution)

Pn_  1  U Un;

Km_ : 
n0



nm Pn  Simplify, 0  U  1 &;

K1  Simplify


U

1  U

K2  Simplify

U 1  U
1  U2

K3  Simplify


U 1  4 U  U2

1  U3

K2  K12  Simplify

U

1  U2

K1  K12  Simplify

U

1  U2
 


