Chapter 37

Variational Method in quantum mechanics

Masatsugu Sei Suzuki
Department of Physics, State University of New York at Binghamton (Date: December 04, 2011)

37.1 Theory

We attempt to guess the ground state energy E_{0} by considering a "trial ket", $\left|\psi_{0}\right\rangle$, which tries to imitate the true ground-state ket $\left|\varphi_{0}\right\rangle$. We define

$$
\begin{equation*}
\bar{H}=\frac{\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle} \tag{1}
\end{equation*}
$$

((Thoerem))

$$
\bar{H}=\frac{\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle} \geq E_{0}
$$

We can obtain an upper bound to E_{0} by considering various kinds of $\left|\psi_{0}\right\rangle$.
((Proof))

$$
\left|\psi_{0}\right\rangle=\sum_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n} \mid \psi_{0}\right\rangle
$$

where $\left|\varphi_{n}\right\rangle$ is an exact energy eigenstate of \hat{H}

$$
\begin{aligned}
& \hat{H}\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle \\
& \bar{H}=\frac{\left\langle\psi_{0}\right| \hat{H} \sum_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n} \mid \psi_{0}\right\rangle}{\sum_{n}\left|\left\langle\varphi_{n} \mid \psi_{0}\right\rangle\right|^{2}}=\frac{\sum_{n} E_{n}\left|\left\langle\varphi_{n} \mid \psi_{0}\right\rangle\right|^{2}}{\sum_{n}\left|\left\langle\varphi_{n} \mid \psi_{0}\right\rangle\right|^{2}} \\
&=E_{0}+\frac{\left.\sum_{n}\left(E_{n}-E_{0}\right)\left\langle\varphi_{n} \mid \psi_{0}\right\rangle\right|^{2}}{\sum_{n}\left|\left\langle\varphi_{n} \mid \psi_{0}\right\rangle\right|^{2}} \geq E_{0}
\end{aligned}
$$

The equality sign in Eq.(1) holds only if $\left|\psi_{0}\right\rangle$ coincides exactly with $\left|\varphi_{0}\right\rangle$.

Another method to state the theorem is to assert that \bar{H} is stationary with respect to the variation

$$
\left|\psi_{0}\right\rangle=\left|\psi_{0}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)\right\rangle
$$

with $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{\mathrm{n}}$ are parameters.

$$
\frac{\partial \bar{H}}{\partial \lambda_{1}}=0, \frac{\partial \bar{H}}{\partial \lambda_{2}}=0, \frac{\partial \bar{H}}{\partial \lambda_{3}}=0, \ldots, \frac{\partial \bar{H}}{\partial \lambda_{n}}=0 .
$$

37.2 Example-1

Wave function for the ground state of the hydrogen

$$
\psi_{0}(r)=e^{-r / a}
$$

where a is a parameter.

$$
H=\frac{1}{2 m} \mathbf{p}^{2}-\frac{e^{2}}{r}=\frac{1}{2 m}\left(p_{r}^{2}+\frac{\mathbf{L}^{2}}{r^{2}}\right)-\frac{e^{2}}{r}
$$

with

$$
p_{r}=\frac{\hbar}{i} \frac{1}{r} \frac{\partial}{\partial r} r
$$

Since $\mathbf{L}^{2} \psi_{0}=0$, we have

$$
\begin{aligned}
H \psi_{0} & =\left[\frac{1}{2 m}\left(p_{r}^{2}+\frac{\mathbf{L}^{2}}{r^{2}}\right)-\frac{e^{2}}{r}\right] \psi_{0}=\left[\frac{1}{2 m} p_{r}^{2}-\frac{e^{2}}{r}\right] \psi_{0}=\frac{-\hbar^{2}}{2 m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}\left(r \psi_{0}\right)-\frac{e^{2}}{r} \psi_{0} \\
& =\frac{-\hbar^{2}}{2 m}\left[\psi_{0}{ }^{\prime}+\frac{2}{r} \psi_{0}^{\prime}\right]-\frac{e^{2}}{r} \psi_{0}=\frac{-\hbar^{2}}{2 m}\left(\frac{1}{a^{2}}-\frac{2}{a r}\right) \psi_{0}-\frac{e^{2}}{r} \psi_{0} \\
\bar{H} & =\frac{\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle & =\int \psi_{0}^{*}(\mathbf{r}) H \psi_{0}(\mathbf{r}) d \mathbf{r}=\int_{0}^{\infty}\left(\frac{-\hbar^{2}}{2 m a^{2}}+\frac{\hbar^{2}}{m a r}-\frac{e^{2}}{r}\right) e^{-2 r / a}\left(4 \pi r^{2} d r\right) \\
& \left.=4 \pi \int_{0}^{\infty}\left(\frac{-\hbar^{2}}{2 m a^{2}} r^{2}+\frac{\hbar^{2}}{m a} r-e^{2} r\right) e^{-2 r / a} d r\right)=4 \pi \frac{a\left(-2 a e^{2} m+\hbar^{2}\right)}{8 m} \\
\left\langle\psi_{0} \mid \psi_{0}\right\rangle & =\int\left|\psi_{0}(\mathbf{r})\right|^{2} d \mathbf{r}=\int_{0}^{\infty} e^{-2 r / a} 4 \pi r^{2} d r=4 \pi \frac{a^{3}}{4}
\end{aligned}
$$

Note that

$$
\int_{0}^{\infty} e^{-\alpha r} r^{n} d r=\frac{n!}{\alpha^{n+1}}
$$

Then we have

$$
\begin{aligned}
& \bar{H}=\frac{\hbar^{2}}{2 m a^{2}}-\frac{e^{2}}{a} \\
& \frac{\partial \bar{H}}{\partial a}=\frac{\hbar^{2}}{2 m}\left(-\frac{2 a}{a^{4}}\right)+\frac{e^{2}}{a^{2}}=0
\end{aligned}
$$

or

$$
a_{0}=\frac{\hbar^{2}}{m e^{2}}
$$

(Bohr radius)

Therefore

$$
\begin{aligned}
& \tilde{\psi}_{0}(r)=e^{-r / a_{0}} \\
& \bar{H}=-\frac{e^{2}}{2 a_{0}},
\end{aligned}
$$

which is correct ground state energy.

37.3 Example-2: Simple harmonics

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2}
$$

We assume that

$$
\psi_{0}(x)=e^{-c x^{2}}
$$

where $\alpha>0$ (even function).

$$
\begin{aligned}
& \bar{H}=\frac{\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle} \\
& \left.\begin{array}{rl}
\left\langle\psi_{0} \mid \psi_{0}\right\rangle= & \int\left|\psi_{0}(x)\right|^{2} d x=\int_{-\infty}^{\infty} e^{-2 \alpha x^{2}} d x=\sqrt{\frac{\pi}{2 \alpha}} \\
\begin{array}{rl}
\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle & =\int_{0} \psi_{0}^{*}(x) H \psi_{0}(x) d x \\
& =\int_{-\infty}^{\infty} e^{-\alpha x^{2}}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2}\right) e^{-\alpha x^{2}} d x \\
& =\int_{-\infty}^{\infty} e^{-2 \alpha x^{2}} \frac{1}{2 m}\left[m^{2} x^{2} \omega^{2}+2 \alpha \hbar^{2}\left(1-2 \alpha x^{2}\right)\right] d x=\sqrt{\frac{\pi}{2}} \frac{\left(m^{2} \omega^{2}+4 \alpha^{2} \hbar^{2}\right)}{8 m \alpha^{3 / 2}}
\end{array}
\end{array} . \begin{array}{rl}
\end{array}\right]
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \bar{H}=\frac{m^{2} \omega^{2}+4 \alpha^{2} \hbar^{2}}{8 m \alpha} \\
& \frac{\partial \bar{H}}{\partial \alpha}=\frac{\hbar^{2}}{2 m}-\frac{m \omega^{2}}{8 \alpha^{2}}=0
\end{aligned}
$$

or

$$
\begin{aligned}
& \alpha=\alpha_{0}=\frac{m \omega}{2 \hbar} \\
& \tilde{\psi}_{0}(x)=e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
& \bar{H}\left(\alpha_{0}\right)=\frac{1}{2} \hbar \omega_{0}
\end{aligned}
$$

37.4 Example-III Sakurai

The ground state of one-dimensional harmonics
Trial function

$$
\begin{aligned}
& \langle x \mid \tilde{0}\rangle=e^{-\beta|x|} \\
& H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2} \\
& \langle\tilde{0} \mid \tilde{0}\rangle=2 \int_{0}^{\infty} e^{-2 \beta x} d x=\frac{1}{\beta} \\
& \bar{H}=\frac{\langle\tilde{0}| \hat{H}|\tilde{0}\rangle}{\langle\tilde{0} \mid \tilde{0}\rangle} \\
& I=\langle\tilde{0}| \hat{H}|\tilde{0}\rangle=\int_{-\infty}^{\infty} e^{-\beta|x|}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2}\right) e^{-\beta|x|} d x
\end{aligned}
$$

or

$$
\begin{aligned}
I & =\int_{-\infty}^{-\varepsilon} e^{\beta x}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{\beta x} d x \\
& +\int_{\varepsilon}^{\infty} e^{-\beta x}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{-\beta x} d x+\int_{-\varepsilon}^{\varepsilon} e^{-\beta|x|}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{-\beta|x|} d x
\end{aligned}
$$

In the first term of I, we put $x^{\prime}=-x$

$$
\int_{\infty}^{\varepsilon}\left(-\frac{\hbar^{2}}{2 m} \beta^{2}+\frac{1}{2} m \omega_{0}{ }^{2} x^{\prime 2}\right) e^{-2 \beta x^{\prime}}(-1) d x^{\prime}=\int_{\varepsilon}^{\infty}\left(-\frac{\hbar^{2}}{2 m} \beta^{2}+\frac{1}{2} m \omega_{0}^{2} x^{2}\right) e^{-2 \beta x} d x
$$

Then

$$
I=2 \int_{\varepsilon}^{\infty}\left(-\frac{\hbar^{2}}{2 m} \beta^{2}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{-2 \beta x} d x+\int_{-\varepsilon}^{\varepsilon} e^{-\beta|x|}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{-\beta|x|} d x
$$

in the limit of $\varepsilon \rightarrow 0$.

Noting that

$$
\int_{0}^{\infty} x^{2} e^{-a x}=\frac{2}{a^{3}}
$$

I is calculated as

$$
I=-\frac{\hbar^{2}}{2 m} \beta+\frac{m \omega_{0}{ }^{2}}{4 \beta^{3}}+\int_{-\varepsilon}^{\varepsilon} e^{-\beta|x|}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}{ }^{2} x^{2}\right) e^{-\beta|x|} d x
$$

We now consider the second term

$$
f(x)=e^{-\beta|x|}
$$

This function $f(x)$ is continuous at $x=0$, but $\mathrm{d} f / \mathrm{d} x$ is discontinuous at $x=0$.
$\mathrm{d} f / \mathrm{d} x=-\beta \exp (-\beta x)$ for $x>0$ and $\beta \exp (\beta x)$ for $x<0$.

$$
I_{2}=\int_{-\varepsilon}^{\varepsilon} e^{-\beta|x|}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2}\right) e^{-\beta|x|} d x=-\frac{\hbar^{2}}{2 m} \int_{-\varepsilon}^{\varepsilon} f(x) \frac{d^{2} f(x)}{d x^{2}} d x
$$

Note that $(\mathrm{d} f / \mathrm{d} x)^{2}$ is continuous at $x=0$.

$$
\int_{-\varepsilon}^{\varepsilon} f(x) \frac{d^{2} f(x)}{d x^{2}} d x=\left[f(x) \frac{d f(x)}{d x}\right]_{-e}^{\varepsilon}-\int_{-\varepsilon}^{\varepsilon}\left[\frac{d f(x)}{d x}\right]^{2} d x=f(0)\left[\left.\frac{d f(x)}{d x}\right|_{x=\varepsilon}-\left.\frac{d f(x)}{d x}\right|_{x=-\varepsilon}\right]=-2 \beta
$$

Then we have

$$
I_{2}=\frac{\hbar^{2} \beta}{m}
$$

or

$$
\begin{aligned}
& I=-\frac{\hbar^{2}}{2 m} \beta+\frac{m \omega_{0}{ }^{2}}{4 \beta^{3}}+\frac{\hbar^{2} \beta}{m}=\frac{\hbar^{2}}{2 m} \beta+\frac{m \omega_{0}{ }^{2}}{4 \beta^{3}} \\
& \bar{H}=\frac{I}{(1 / \beta)}=\beta\left(\frac{\hbar^{2}}{2 m} \beta+\frac{m \omega_{0}^{2}}{4 \beta^{3}}\right)=\frac{\hbar^{2}}{2 m} \beta^{2}+\frac{m \omega_{0}^{2}}{4 \beta^{2}} \geq 2 \sqrt{\frac{\hbar^{2}}{2 m} \beta^{2} \frac{m \omega_{0}{ }^{2}}{4 \beta^{2}}}=\frac{1}{\sqrt{2}} \hbar \omega_{0}
\end{aligned}
$$

The equality is valid when

$$
\beta^{4}=\frac{m^{2} \omega_{0}^{2}}{2 \hbar^{2}}
$$

