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Balthasar van der Pol (Utrecht, 27 January 1889 – Wassenaar, 6 October 1959) was a 
Dutch physicist. van der Pol studied physics in Utrecht, and in 1920 he was awarded his 
doctorate (PhD). He studied experimental physics with John Ambrose Fleming and Sir J. 
J. Thomson in England. He joined Philips Research Labs in 1921, where he worked until 
his retirement in 1949. 
 

 
 
(http://en.wikipedia.org/wiki/Balthasar_van_der_Pol) 
 
38.1 Types of van der Pol equation 

The van der Pol oscillator was originally discovere by Balthasar van der Pol. Van der 
Pol found stable oscillations, now known as limit cycles, in electrical circuits employing 
vacuum tubes. When these circuits are driven near the limit cycle they become entrained, 
i.e. the driving signal pulls the current along with it. Van der Pol and his colleague van 
der Mark reported in the September 1927 issue of Nature  that at certain drive frequencies 
an irregular noise was heard. This irregular noise was always heard near the natural 
entrainment frequencies. This was one of the first discovered instances of deterministic 
chaos. The van der Pol equation has a long history of being used in both the physical and 
biological sciences.  
 

The van der Pol equation arises in the study of circuits containing vacuum tubes and 
is given by  
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This differential equation is called as van der Pol equation (type-I), or Rayleigh's 
equation. We assume that ≥0. If  = 0, the equation reduces to the equation of simple 
harmonic motion.  

Here we introduce a new variable y such that 
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Taking a derivative of Eq.(1) with respect to t, we get 
 

0)2()1( 2  xxxxxxx   , 
 
or 
 

0
3

2
)

3
1( 2

2

 yyy
y

yy   . 

 
Then Eq.(1) can be written as 
 

0)1( 2  yyyy    (van der Pol equation, type-II) (2) 
 
This differential equation is also called as van der Pol equation. Here we call Eq.(1) as a 
van der Pol equation (type-I) and Eq.(2) as a van der Pol equation (type-II). We discuss 
mainly the nonlinear nature of Eq.(1). We also show the nonlinear nature of Eq.(2) later. 
 
38.2 Nonlinear characteristic of van der Pol equation type-I; Rayleigh's equation 

Now we consider the physical meaning of Eq.(1). 
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with 
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The term Kv should be regarded as friction or resistance, and this is the case when the 
coefficient is positive. However, if Kv is negative, then we have the case of "negative 
resistance."  
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Fig. Kv vs v with  changed as a parameter. Negative resistance occurs in the region of 

0<v<1. 
 
When 0x , then we have 
 

vKv  , 

 
which is negative resistance. The differential equation is given by 
 

0 xxx   . 
 
The solution is 
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with p and q given by 
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This means that x diverges as t → ∞. When x is very large,, then we have 

 
3vFv   

 
which is positive resistance. 
 
38.3 Limiting cycle 



We consider the phase plane of v vs x for small  (see the case for  = 0.1). 
Depending on the initial condition (in our case v0 is given as a parameter and x0 = 0). 
When v0 = 5, the rapid motion occurring at early time gradually decays and approaches a 
closed circle with radius r. The closed curve showing a periodic motion in the limit of t 
→∞, is called a limit cycle. When v0 = 0 (for example), the motion undergoes a gradual 
growth and approaches the limit cycle. In the case of small , the limit cycle is close to a 
circle. From the numerical calculations, we find that the radius of the circle is r in the 
phase space. What is the value of r? In the periodic motion, the average of the work done 
by the friction force over a period T (= 2 in the present case) should be equal to zero. 
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In the limit of  → 0, the limit cycle is approximated by a circle denoted by 
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leading to the value of a as 
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The radius of the limit cycle is 1.1547. 
 
38.4 Phase plane: (x, v) 

We consider the van der Pol equation given by 
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where 
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with xv  . Equation (1) may be rewritten as 
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The slope of the trajectory on the (x, v) plane (the phase plane) is defined at every point 
by Eq.(4) and may be determined graphically very easily. This method is called the 
Lienard construction. Here we define the null-isocline denoted by the curve K 
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38.5 Liénard construction 
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Fig. Lienard construction. .  = 0.5. The red line is a null-isocline K: 

)1()( 2vvvkx    (red line). P (x0, v0): x0 = 0.3. v0 = 0.2. C is the center of 
curvature of the trajectory S at P. 

 
 



The slope of the trajectory on the (x, v) phase (the phase plane) is defined at every 
point by  
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and may be determined graphically very easily. The curve K is defined by 
 

Curve K; )(vkx  . 
 
((Tangential line PS)) 

To find the tangent to the trajectory at any point P (x, y) 
(i) Draw a horizontal line to meet the curve K at the point Q. 
(ii) Drop a vertical line from the point Q to cut the x-axis at N. 
(iii) Construct the normal to PN at the point P and the tangent to the curve K at the 

point Q. Find their intersection G. The line QG is the tangential line of the curve 
K at the point Q. 

(iv) Then S, drawn normal to NP, is the tangent to the trajectory at the point P. The 
line GPS is perpendicular to the line NP.  

 
((Curvature C)) 
(i) Join GN and let it cut PQ at F. 
(vi) Then C lies on PN vertically below F. C is the center of the circle with the radius 

CP. The line PS is the tangential line at the point P for the circle. 
 
The proof follows immediately from the fact that 
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The argument may be extended to provide a construction, not just for the slope, but for 
the curvature, so that the trajectory may be synthesized as a succession of the circular 

arcs. In particular, on the null-isoclines x= -k(v) and v = 0, we have 0
dx

dv
, and 

dx

dv
, 

respectively. 
Base on this construction, the phase space of the van der Pol equation can be drawn. 
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Fig. Lienard diagram. K (red line). P (x0 , v0), where the values of x0 and v0 are 

changed as a parameter. 
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Fig. C is the intersection of PN and P'N' in the limit as P' is moved towards P (P → P'). 

FC and GC' are vertical lines.  
 
 
38.6 General rule for Lienard construction 

There are some rules for the Lienard construction diagram. The curve S is the line of 
the phase space, which we are looking for. 
 
(i) When the curve S cuts the x axis, it does so vertically, and the center of curvature 

C is the intersection of the curve K with the x axis. 
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(ii) When the curve S cuts the curve K, it does so horizontally, and the center of 

curvature C lies on the x axis vertically below. 
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(iii) The center of curvature also lies on the x axis when the corresponding point on 

the curve K has a vertical tangent. 
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38.7 Numerical calculations: time dependence 

We solve this differential equation with each value of  by using the Mathematica 
(NDSolve). We assume that 
 

x0 = 0, 
 
and v0 is changed as a parameter, v0 = -5, - 4, -3,   , 4, , and 5. We also show the FFT 
calculation.  
 
________________________________________________________________________ 
(1) van der Pol oscillation with  = 0.01. t = 0 - 100. 
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FFT spectrum (the intensity vs n).  = 0.01. T = 150. 0 = 2/150. = n0. There is a 
sharp peak at n = 25, which means  = 25 (2/150) = /3. The period T is evaluated as 6 
sec. 
 
______________________________________________________________________ 
(2) van der pol oscillation with  = 0.1. t = 0 - 100. 
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Fig. Limit cycles of the van der Pol oscillator. Two transient trajectories approaching 
the limit cycle from the inside and from the outside are also shown. 
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FFT spectrum.  = 0.1. T = 150. 0 = 2/150. = n0. The peaks appear at n = 25 and 
72. 
 
________________________________________________________________________ 
(3) van der pol oscillation with  = 0.5. t = 0 - 100. 
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FFT spectrum.  = 0.5. T = 150. 0 = 2/150. = n0. The peaks appear at n = 25, 72, 
118, and 165. 
 
______________________________________________________________________ 
(4) van der Pol oscillation with  = 1. t = 0 - 100. 
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FFT spectrum.  = 1.0. T = 150. 0 = 2/150. = n0. The peaks appear at n = 23.5, 68, 
113, 157, 204, 248, 293, and so on. 
 
_______________________________________________________________________ 
(5) van der pol oscillation with  = 5. t = 0 - 100. 
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FFT spectrum.  = 5.0. T = 150. 0 = 2/150. = n0  
 
_____________________________________________________________________ 
(5) van der pol oscillation with  = 10. t = 0 - 100. 
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FFT spectrum.  = 10.0. T = 150. 0 = 2/150. = n0  
 
 
(7) van der Pol oscillation with  = 30. t = 0 - 100. 
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The period is almost equal to T = 50 sec for  = =30. The ratio T/ = 50/30 = 1.667, 
which is very close to the prediction (= 1.6137) in the limit of  →∞. 



 
38.8 FFT spectrum 
 
The period T for each  can be determined from the FFT spectrum. Period T increases 
with increasing . 
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FFT spectrum.  = 1 (red).  = 3 (green).  = 10 (blue). T = 150. 0 = 2/150. = n0. 
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Fig. Period T vs , which is obtained from the FFT spectrum. Since the data points are 

obtained from our calculation of the FFT spectrum,  there is some uncertainty in 
the positions of the data points. For  = 15, T = 21.4 sec (T = 1.43 ). In the limit 
of large , it is predicted that T = 1.6137. 
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Fig. The trajectory (in the limit of large ) in the phase plane (x, v) falls well on the 

curve K on the lines P1P2 and P3 and P4. 
 

We can evaluate the period T of the limit cycle with  →∞. The limit cycle will 
simply consist of portions of the characteristic curve (P1P2 and P3P4) plus vertical lines 
(P2P3 and P4P1). To this end, we need to calculate a line integral over the limit cycle. The 
period T is given by 
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Since the straight vertical line portions make no contribution to T (dx = 0). we have, with 
the curve K; 
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along the curved paths on the contour. Then we have 
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where the point P3 is located at )1547.1,3849.0
9

32
( 33  v  and the point P4 is 

located at )57735.0
3

1
,3849.0

9

32
( 44  v . 

 
((Mathematica)) 



Clear"Global`";

K1  v 1  v2;

eq1  SolveDK1, v  0, v
v  
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0.3849

3  4

0.3849

eq2  K1  3;

eq3  FindRooteq2, v, 0, 2  N

v  1.1547

v3  v . eq3

1.1547
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v
v  Simplify
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38.9 Nonlinear characteristic of the van der Pol equation (type-II) 



Here we consider the solution of the van der Pol equation (type-II) 
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We solve this differential equation with each value of  by using the Mathematica 
(NDSolve), 
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We assume that 
 

x0 = 0, 
 
and v0 is changed as a parameter, v0 = -5, - 4, -3,   , 4, , and 5. We also show the FFT 
calculation.  
 
________________________________________________________________________ 
(1) van der pol oscillation with  = 0.01. t = 0 - 100. 
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FFT spectrum (the intensity vs n).  = 0.01. T = 150. 0 = 2/150. = n0. There is a 
sharp peak at n = 25, which means  = 25 (2/150) = /3. The period T is evaluated as 6 
sec. 
 
______________________________________________________________________ 
(2) van der pol oscillation with  = 0.1. t = 0 - 100. 
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FFT spectrum.  = 0.1. T = 150. 0 = 2/150. = n0. The peaks appear at n = 25 and 
72. 
 
________________________________________________________________________ 
(3) van der pol oscillation with  = 0.5. t = 0 - 100. 
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FFT spectrum.  = 0.5. T = 150. 0 = 2/150. = n0. The peaks appear at n = 25, 72, 
118, and 165. 
 
______________________________________________________________________ 
(4) van der pol oscillation with  = 1. t = 0 - 100. 
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FFT spectrum.  = 1.0. T = 150. 0 = 2/150. = n0. The peaks appear at n = 23.5, 68, 
113, 157, 204, 248, 293, and so on. 
 
_______________________________________________________________________ 
(5) van der pol oscillation with  = 5. t = 0 - 100. 
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FFT spectrum.  = 5.0. T = 150. 0 = 2/150. = n0  
 
_____________________________________________________________________ 
(5) van der pol oscillation with  = 10. t = 0 - 100. 
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FFT spectrum.  = 10.0. T = 150. 0 = 2/150. = n0  
 
_______________________________________________________________________ 
(7) van der pol oscillation with  = 20. t = 0 - 100. 
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(8) van der pol oscillation with  = 30. t = 0 - 100. 
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38.10 Limit cycle 

We consider the phase plane of v vs x for small  (see the case for  = 0.1). 
Depending on the initial condition (in our case v0 is given as a parameter and x0 = 0). 
When v0 = 5, the rapid motion occurring at early time gradually decays and approaches a 



closed circle with radius 2. The closed curve showing a periodic motion in the limit of t 
→∞, is called a limit cycle. When v0 = 0, the motion undergoes a gradual growth and 
approaches the limit cycle. In the case of small , the limit cycle is close to a circle. In a 
periodic motion, the friction is given by 
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The work W during a period T (= 2 in the present case) is equal to zero for the periodic 
motion; 
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Suppose that the limit cycle is approximated by a circle; 
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with a period 2. Then W can be evaluated as 
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Then a = 2. This is an amplitude of periodic motion. 
 
38.11 Comment 

The limit cycle for the van der Pol equation (type-I) exhibits a circle of radius 

( )3/32  in the limit of large , while the limit cycle for the van der Pol equation (type-
II) exhibits a circle of radius 2. The reason for this is as follows. We note that 
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Suppose that we assume the limit cycle for the type-I, is described by 
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In other words, the radius of the limit cycle is 2 for the type-II. 
______________________________________________________________________ 
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