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40.1 Vector operators
The operators corresponding to various physical quantities will be characterized by
their behavior under rotation as scalars, vectors, and tensors.
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We assume that the state vector changes from the old state [y/) to the new state |y").
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A vector operator V for the system is defined as an operator whose expectation is a
vector that rotates together with the physical system.
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Using the Levi-Civita symbol, we have
IV, 1= eV,
We can use this expression as the defining property of a vector operator.
Levi-Civita symbol: &«
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all other & =0.

40.2 Example
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40.3 Cartesian tensor operators

The standard definition of a Cartesian tensor is that each of its suffix transforms under
the rotation as do the components of an ordinary 3D vector,
The Cartesian tensor operator is defined by

<V/I|-|:ij|l//l> =2 Ry (v Talw)
Kk,
under the rotation specified by the 3x3 orthogonal matrix R .
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The simplest example of a Cartesian tensor of rank 2 is a dyadic formed out of two
vectors U and V.
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where Ui and \7, are the components of ordinary 3D vector operators. There are nine

components: 1+3+5 = 9. The trouble with a Cartesian tensor like 'I:ij :L]i\7j is that it is
reducible. It can be decomposed into the three parts.
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The first term on the right-hand side, U-V isascalar product invariant under the rotation.
The second is an anti-symmetric tensor which can be written as
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There are 3 independent components.
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The third term is a 3x3 symmetric traceless tensor with 5 independent components (=6-1,
where 1 comes from the traceless condition.
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with T, +T,,, + T;; =0. In conculsion, the tensor 'I:ij =UAi\7j can be decomposed into
spherical tensors of rank 0, 1, and 2.

40.4  Spherical tensor: definition

Notice the numbers of elements of these irreducible subgroups: 1, 3, and 5. These are
exactly the numbers of elements of angular momentum representations for j =0, 1, and 2.
The first term is trivial: the scalar by definition is not affected by rotation, and neither is
an j = 0 state.

To deal with the second and third terms, we introduce tensor operators having three
and five components, such that under rotation these sets of components transform among
themselves just as do the sets of eigenkets of angular momentum in the j =1 and j = 2
representation, respectively.

Suppose we take a spherical harmonics Y,"(6,¢) =Y,"(n), where the orientation of

the unit vector n is characterized by #and ¢. We now replace n by some vector V. Then
we have a spherical tensor of rank k (in place of 1) with magnetic quantum number (in
place of m).

TH =Ym9(V).
The quantity
Pn(xy,2)=1Y,"(6,9)
is a homogeneous polynomial of order |.

40.5 Spherical tensor of rank 1



The quantity B, (x,y,z) = J%rrqu (8,9) is a first order homogeneous polynomial in

X, Y, and z.
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40.6  Spherical tensor of rank 2
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The above example is the simplest nontrivial example to illustrate the reduction of a
Cartesian tensor into irreducible spherical tensors.

40.7  Spherical tensor under rotation
We consider how

Tq(k) =Y, Tk=q V)

transforms under rotation. Using the relations
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If there is an operator that acts like Ylm(\7) , it is then reasonable to expect
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We define a spherical tensor operator of rank k as a set of 2k+1, fq‘k’, q=k k-1,..., -k
such that under rotation they transform like a set of angular momentum eigenkets,
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with g = k, k-1,..., -k. The switching of R — R* in Eq.(1) leads to another expression
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Considering the infinitesimal form of the expression (1), we have
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These two commutation relations can also be taken as a definition of a spherical tensor of

rank k.

We now consider
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This equation is rewritten as
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((Note))
The spherical tensor operator of rank 1 is related to the vector operator by the relation,

The vector operator V satisfies the commutation relation.
Vi, J;]1=lingV, .
Using this relation, we can show that
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40.8 Product of tensors

((Theorem))
Let X and Z{*) be irreducible spherical tensors of rank k; and k,, respectively. Then
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is a spherical (irreducible) tensor of rank k, where
(ky ky1 0,0, [k ki k, )
is the Clebsch-Gordan (CG) coefficient.

((Proof))
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40.9 Tensor of rank 2
In the case of

D, xD, =D, + D, + D,

we consider the case k =2 for k;=1 (q: =1, 0, -1),and k=1 (g2 =1, 0, -1):
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We use the values of CG.
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When L]i :\7i =X, (in a special case), we have



((Note)) we use the commutation relations;
[X,y]=0, [¥,Z]=0, and

40.10 Tensor of rank 1
We consider the case k =1 for ki=1 (g1 =1, 0, -1),and ko, =1 (92 =1, 0, -1):
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40.11 Tensor of rank 0
We consider the case k =0 for k;=1 (91 = 1,0, -1),and k, =1 (g2 = 1, 0, -1):
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