
Chapter 3 
Damped simple harmonics 

 
 
3.1 Solution of the differential equation 

We now consider the simple harmonics with damping 
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with the initial conditions 
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The solution of this differential equation depends is classed into three types, 
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The displacement x(t) and the velocity v(t) are given by 
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where 
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In the limit of 0  (the critical damping), we have 
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4.2 Mathematica 
 
ü second-order differential equation for a simple harmonics with damping
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3.3 Time dependence of x(t); the case of underdamping 



We assume that x0 = 1, v0 = 1, and 0 = 1.  = 0 is the condition for the critical 
damping. Since 0 = 1, the underdamping occurs for <1. We make a plot of x(t) as a 
function of t, where  is changed as a parameter (the case of underdamping for <1).  
((Mathematica)) 



x2t_  x11t . 1  02  2  Simplify;

v2t_  v11t . 1  02  2  Simplify;

rule1  0  1, x0  1, v0  1;

x3t_, _  x2t . rule1  Simplify;

v3t_, _  Dx3t, , t . rule1  Simplify;

PlotEvaluateTablex3t, , , 0.001, 1, 0.05, t, 0, 8 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 20,

AxesLabel  "time", "amplitude", PlotRange  0, 8 , 1.5, 1.5,

Background  LightGray

5 10 15 20 25
time

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
amplitude

PlotEvaluateTablex3t, , , 0.001, 1, 0.05, t, 0, 3 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 20,

AxesLabel  "time", "amplitude", PlotRange  0, 3 , 1.5, 1.5,

Background  LightGray
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x(t) vs t ( = 0.001 - 1.0, underdamping) 
 
3.3 Time dependence of x(t); the case of overdamping 

We assume that x0 = 1, v0 = 1, and 0 = 1. We make a plot of x(t) as s function of t, 
where  is changed as a parameter (>1 for the case of overdamping). 
 
((Mathematica)) 
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PlotStyle  TableHue0.051 i, Thick, i, 0, 20,

AxesLabel  "time", "amplitude", PlotRange  0, 3 , 0, 1.5,

Background  LightGray
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x(t) vs t ( = 1.1 - 3.0, overdamping) 

 
3.4 Time dependence of v(t); the case of underdamping 

We assume that x0 = 1, v0 = 1, and 0 = 1. We make a plot of v(t) as a function of t 
where  is changed as a parameter (<1 for the case of underdamping).  
((Mathematica)) 



PlotEvaluateTablev3t, , , 0.001, 1, 0.1, t, 0, 4 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 10,

AxesLabel  "time", "velocity", Prolog  AbsoluteThickness2,

Background  LightGray
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v(t) vs t ( = 0.001 - 1.0, underdamping) 

 
3.5 Phase space of {x(t), v(t)} for the case of underdamping 

We make a plot of the phase space {x(t), v(t)} for <1. In this case the locus is a 
spiral and reduces to the fixed point (or point attractor) (the origin) in the limit of t∞. 
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The phase space.  = 0.5 (underdamping) 

 
3.6 Phase space of {x(t), v(t)} for the case of overdamping ( = 1.1). 

There is no spiral. The locus directly converges to the origin (attractor).  
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The phase space.  = 1.1 (overdamping) 
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The phase space.  = 2.0 (overdamping) 

 
 



For <1 (underdamping), the locus staring from a point far away from the origin in the 
phase space tends to approach to a straight line given by 
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The reason is as follows.  
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when this ratio is equal to v0/x0 = a. Then we have 
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3.7 Time dependence of the mechanical energy 

The mechanical energy is defined as 
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We assume that x0 = 1, v0 = 1, and 0 = 1. We make a plot of E(t) as s function of t, 

where  is changed as a parameter ( = 0.01 - 1.2)).  
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3.8 Forced oscillation (steady state solution) 
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We assume that x(t) can be given by 
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Re denotes a real part. A is in general a complex number. i (= 1 ) is a pure imaginary 
 
((Note)) 
Euler’s equation 
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R.P. Feynman: This is the most remarkable formula. This is our jewel (22-10 volume-1, 
Feynman’s lecture on physics.)  
 
 
Then we have 
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Then x is obtained as 
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Now we calculate the value of Y as a function of x when a parameter  is changed. 
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((Mathematica)) 
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3.9. Energy consideration in the forced oscillation 

We start from 
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Multiplying )(tx on both sides, we have 
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This equation can be rewritten as 
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Here we introduce the instantaneous energy (t) which is defined by 
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We take an average of the above equation over a one period T, 
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We now calculate the second and third terms using our steady-state solution 
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where ' and " are the real part and imaginary part of A. 
 
The calculation of the second term: 
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The calculation of the third term: 
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Then it is found that the second term is equal to the third term. These terms are 
proportional to " (imaginary part of A). The energy absorbed by the system from the 
external force is dissipated through the resistive damping. Then we have 
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The sum of the kinetic energy and the potential energy is a periodic function of t with a 
period of T. 
 


