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Dirac picture
Fermi's golden rule

Enrico Fermi (29 September 1901 — 28 November 1954) was an Italian physicist
particularly known for his work on the development of the first nuclear reactor, Chicago
Pile-1, and for his contributions to the development of quantum theory, nuclear and
particle physics, and statistical mechanics. He was awarded the 1938 Nobel Prize in
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42.1. Dirac picture (Interaction picture)
The Hamiltonian is given by

A~

H=ﬁ0+ﬁs(t):

where I:IO is independent of ¢. The wavefunctions in the Schrdodinger picture and in the
Dirac picture are related by
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The Schrodinger equation is given by
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P (ty=e""V (e " " (Heisenberg-like)

which is a Schrodinger equation with the total H replaced by I},
Here we assume that

|W1(t)> = UJ(Zato)|‘//1(to)>,



satisfies the equation
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Then we have the following relation for the Unitary operator,
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We can obtain an approximate solution to this equation [Dyson series].
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42.2. Trqnsition probability-1
Once U, (t,t,) is obtained, we have

|V/1(t)> = Uf(tato)|‘//1(to)>
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Let us now look at the matrix element of U ()
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42.3 Transition probability II.
We now consider the case shown below.
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At a later time we have
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Now we go back to the perturbation expansion (V' — AV)
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the matrix element in the Schrédinger picture is related to that in the Dirac picture
through
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Similarly, we get
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The transition probability for |1> - | f >
P(i > f)=|e, 0 =|e," )+ 3¢, () + ‘2 .

When ¢ f(o) (t)=0, P(i— f) can be approximated as
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Note that this probability is clearly only valid provided
Pi— f)<<I.

42.4. Transition probability in the Schrodinger picture
In the Schrodinger picture, we have
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42.5. Exact solution
In the Dirac picture,
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o, = . (Bohr frequency)
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42.6. Time dependent perturbation: Schrodinger picture
We consider H, to be discrete and non-degenerate.

n).

H, is not explicitly time-dependent. So that eigenstates are stationary. At ¢ = 0, a
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n

perturbation is applied to the system
H({t)=H,+ V() (0<A<I)

Schrodinger equation
L, 0 A A
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with the initial condition:
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We assume

v, 0)=3.d,0)n)
with

d, 0 =(nlw, @) =¢ " (aly, () =¢ e, 1)
We introduce

V, () =(n|V (0)|k)
Recall that

(n|H,|k)=E,5,,

ih§| v (0)=[H, + AV (O] w, ()

=[H,+ V)Y d,(t)|n)
=>'d,(OE,|n)+ Y Ad, (t)V (t)|k)
or
4,1 = 4,0+ X 2, (0, 1) (1)
When /UA/l(t) is zero
d (ty=c,(t)e” """, (ca: const). (2)

If, now, /U}(t) is not zero, dy(f) of Eq.(1) is expected to be very close to Eq.(2).
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Substituting Eq.(3) into Eq.(1), we obtain
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42.7. Perturbation equation
¢, () =c,(O+2c" () + X)) ()4
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For the coefficient of A°
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For the coefficient of A’
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Solution
Switch—on
[1> state
V=0 state V=0 state
» {
t=0 t=ty

At t <t, the system is assumed to be in the state |z> At t=ty, c,(t=t,)=0,,; (continuous
at t = t). This relation is valid for all A.
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42.8 Transition probability
Bty =|d, @] =[e, 0]
where
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From now on, we shall assume that the sate |7} and | f ) are different.
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42.9 Harmonic (sinusoidal) perturbation



A. Formulation
We consider a perturbation which oscillates sinusoidally with time. This is usually

termed a harmonic perturbation. Now we assume that I}(t) has one of the simple forms

I}(t) Ve + Ve ™

where V' is time-independent observable; 7y = 0
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As t—>o0, cf(l)‘ is appreciable only if
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B. Resonant nature of the transition probability
We consider the following case (two discrete case)
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(1) When E¢> Ej, = wy > 0. Under such conditions, A. dominates (absorption).
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The function F(¢f,@—®,) is only non-negligible when

For finite ¢,
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(i1)) When E¢> Ei, = @5 <0. A, dominant (emission).
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C. Discussion of the resonant approximation




If Aw<< Z‘a)ﬁ ,

., the modulus of 4+ is negligible compare

4
to that of 4 Since Aw = —;[ , we have

t> — (resonance condition).
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D. Limit of first-order calculation
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This becomes infinite when ¢#— oo, which is absurd, since a probability can never be
greater than 1. In practice, for the first-order approximation to be valid at resonance, the
probability (1) must be much smaller than 1.

Ll e <<, or t<<m.
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42.10 Constant perturbation
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We consider first a perturbation

V(t)—V@(t)— 0 for ¢<0
B |V for >0
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A group of final states around the state with Ej. E; is not the state in the continuous
region. £, # E, (or E,=E))
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density of states

When ¢ is sufficiently large
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Thus the total probability is proportional to ¢ for large value of ¢.



42.11 Fermi’s golden rule
We can define a transition probability per unit time

27 2
W =—AV,[ 6(E,-E,)

Vni

where [n] stands for a group of final states with energy similar to i.

It must be understood that expression is integrated with IdEn p(E))

U

((Generalized Ferm’s golden rule))
For the harmonic perturbation

W, = 27”12 (/7|0 6(E, ~E, ~hw)  (Fermi's Golden Rule)
and

Wi, = %”ﬂ( FIf 8, — E, + ho)
Note that

+] . 2 .
A 1af =\l
((Note)) Density of states for free electrons

42.12 Free electron gas in three dimensions
We consider the Schrodinger equation of an electron confined to a cube of edge L.

P
Hy,=_—y, ==———Vy, =¥ . 3)
m m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

l//k(x+L7yaZ) :Wk(xayaz) H
l//k(xay+LaZ) :y/k(xayaz) s
l//k(xayJZ+L) :y/k(xﬂyaz) .



The wavefunctions are of the form of a traveling plane wave.

v (n=e"", 4

with
kx = (2n/L) ny, (nx =0, £1, £2, £3,.....),
ky=(2n/L) ny, (ny =0, +1,+£2,£3,....),
k,=Q2n/L) n,, (n,=0,£1,£2,£3,.....).

The components of the wavevector K are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

n’ n’
e(Ky=—(k’+k’>+k’)=—0K". (5)
2m ’ 2m
Here
7
Py, (N ==V, (r)=7ky,(r). (6)

1

So that the plane wave function y, (r) is an eigenfunction of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in K-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

42.13 The Pauli’s exclusion principle

The one-electron levels are specified by the wavevectors k and by the projection of
the electron’s spin along an arbitrary axis, which can take either of the two values +7/2.
Therefore associated with each allowed wave vector k are two levels:

k,T>, k,¢>.

In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level £ = 0, which has the lowest possible one-electron energy £= 0. We have

Noop B Amp s Vs
@z} 3" 327

Density of states
There is one state per volume of k-space (27/L)°. We consider the number of one-
electron levels in the energy range from ¢to et+de; D(¢)de



D(g)de =2—— Ly dk (13)

(27}

where D(g) is called a density of states. Since k=(2m/h*)"*Je, we have
dk =(2m/h*)"*de /(24/¢) . Then we get the density of states
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42.14 Higher order term: c¢(2)
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The second term gives rise to a rapid oscillation when t—oo The first term is dominant
when £, = E|.

1 V V z{ut
(2) m)t

c Z, —_ nm'’_mi 1 nm__mi
== > ( )= Z(E E)(E E)

ni m mi

Here note that
¢, ()= ( x1em6,

With ¢(1) and ¢(?) together, we have

z nm ml

(En)Ean‘.

i—|

virtual transition

42.15 Time dependent perturbation: some examples
Using the following formula, we solve several problems.

—e—ﬁw'Wch)

(——) y j dr' j dr'e™"v, ()e"V, (")
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PGi— f)= lz‘cf(l)(t)‘ ¢ fIP )iV
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((Selected problems))

1. A linear harmonic oscillator is acted upon a uniform electric field which is
considered to be a perturbation and which depends as follows on the time:



1 2
()= Ad——re "',
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where A4 is a constant. (Since the action of a uniform field is equivalent to a shift
of the point of suspension, this problem can be solved not only by perturbation
theory, but also exactly). Assuming that when the field is switched on (that is, at ¢
= -o0) the oscillator is in its ground state, evaluate to a first approximation the
probability that it is excited at the end of the action of the field (that is, at ¢ = +00).

2. Solve the preceding problem for a field which varies as follows,

()=

47 ’

and which corresponds to a given total classical imparted impulse P.

3. Solve the preceding problem for a field proportional to
g(t)= Ae™'* for 0.

corresponding to a given total classical imparted impulse P.

(1)
The total pulse Py is defined by

eA

e

P, = .[ es(t)dt = I exp[—(%)z]dt = ed = const

Py is classically transferred to the system by the electric field. 4 = Py/e.

1 ., 1 . ~ .
H =—p +=mw,x’, H, =—e&x (e<0).
2m 2

H|n)=E,|n)
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1
E'" = (n+)he,



(\/;|n—l>+«/n+1|n+l>)

. . A
H1|n> = —e&x|n> =(—e¢) Y
0

The probability for a transition from the state |n> to the state |k> is equal to

2

P(n— k)= ﬂz‘cf(l)(t)‘ exp(la),mt ) k|| n)dr'

0
where
RO (0)
ho, =E =~ -FE

n

F0r|n>=|0>,

(k|H,)0) = —ee(k|0) = (- eg)/ ( )= (- eg)/ . S,

So the matrix element is not zero only if k= 1.
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2
(1) ? 1 ’ t ; ' ' "
PO—>1)= ‘cf (t)‘ =i J.exp(za)lot )e(t')dt
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2 P 2 t 2
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! 8mhw, P 2 r 2

When t—oo0,
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> P (w,,7)°
PO =lc, ") =—2—exp[-~—1
0D =, ) T P )

For a given Py, the probability for excitation decreases steeply with increasing effective
duration of the perturbation z. If @,z >>1, this probability is very small and we are

dealing with a so-called adiabatic perturbation.
(b)

1 : R
lime(¢) = lim[A——e™"'" = 45(1) =2 5(t
lime(r) =l d———e 7 J= 40 =-200)

Then we have
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j exp(im ")S(t")dt| =
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]
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—00

The criterion of applicability of perturbation theory is that the probability for excitation
should be much smaller than 1.
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((Residue theorem))

We use the upper-half plane of the complex plane. There is a simple pole at z =it

© . t' _
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1" +7 2it T

—00

Then we have
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