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Time dependent perturbation 
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Dirac picture 
Fermi's golden rule 
________________________________________________________________________ 
Enrico Fermi (29 September 1901 – 28 November 1954) was an Italian physicist 
particularly known for his work on the development of the first nuclear reactor, Chicago 
Pile-1, and for his contributions to the development of quantum theory, nuclear and 
particle physics, and statistical mechanics. He was awarded the 1938 Nobel Prize in 
Physics for his work on induced radioactivity. 

 
http://en.wikipedia.org/wiki/Enrico_Fermi 
 
______________________________________________________________________ 
42.1. Dirac picture (Interaction picture) 
The Hamiltonian is given by 
 

ˆ H  ˆ H 0  ˆ V s (t) , 
 
where ˆ H 0 is independent of t. The wavefunctions in the Schrödinger picture and in the 
Dirac picture are related by 
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The Schrodinger equation is given by 
 

)()(ˆ)()(
000

ˆˆ

0

ˆ

t
t

ieteHte
t

it
t

i s

tH
i

s

tH
i

s

tH
i

I 











   

 
Since 
 

)()](ˆˆ[)( 0 ttVHt
t

i sss  



  

 
we get 
 

)()](ˆˆ[)(ˆ)( 0

ˆˆ

0

00

ttVHeteHt
t

i ss

tH
i

s

tH
i

I  



  

 
or 
 

)()(ˆ)()(ˆ)(
00

ˆˆ

ttVtetVet
t

i III

tH
i

tH
i

I  

 

  

 
or 
 

)()(ˆ)( ttVt
t

i III  



 . 

 
where 
 

tH
i

s

tH
i

I etVetV
00

ˆˆ

)(ˆ)(ˆ 


  (Heisenberg-like) 

 
which is a Schrödinger equation with the total ˆ H  replaced by ˆ V I .  

Here we assume that  
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satisfies the equation 
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Then we have the following relation for the Unitary operator, 
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with the initial condition 
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We can obtain an approximate solution to this equation [Dyson series]. 
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42.2. Transition probability-I 

Once ˆ U I (t, t0 ) is obtained, we have 
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Then we get 
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Let us now look at the matrix element of ˆ U I (t, t0 ) 
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((Note)) 
Suppose that 
 

[ ˆ H 0,
ˆ A ]  0 and [ ˆ H 0,

ˆ B ]  0  
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42.3 Transition probability II. 

We now consider the case shown below. 
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At t = 0, 
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from the definition, we have 
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At a later time we have 
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Now we go back to the perturbation expansion (V  V ) 
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the matrix element in the Schrödinger picture is related to that in the Dirac picture 
through 
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Similarly, we get 
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The transition probability for fi   
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Note that this probability is clearly only valid provided 
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42.4. Transition probability in the Schrödinger picture 

In the Schrödinger picture, we have 
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42.5. Exact solution 

In the Dirac picture, 
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42.6. Time dependent perturbation: Schrödinger picture 

We consider ˆ H 0  to be discrete and non-degenerate. 
 

nEnH n0
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ˆ H 0  is not explicitly time-dependent. So that eigenstates are stationary. At t = 0, a 

perturbation is applied to the system 
 

ˆ H (t)  ˆ H 0   ˆ V (t)   (0≤<1) 
 
Schrödinger equation 
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with the initial condition: 
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When  ˆ V 1 (t) is zero 
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If, now,  ˆ V (t)  is not zero, dn(t) of Eq.(1) is expected to be very close to Eq.(2). 
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Substituting Eq.(3) into Eq.(1), we obtain 
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42.7. Perturbation equation 
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For the coefficient of 0  
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At t < t0, the system is assumed to be in the state i . At t =t0, inn ttc ,0 )(   (continuous 

at t = t0). This relation is valid for all .  
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For r = 2 
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42.8 Transition probability 
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42.9 Harmonic (sinusoidal) perturbation 



A. Formulation 
We consider a perturbation which oscillates sinusoidally with time. This is usually 

termed a harmonic perturbation. Now we assume that )(ˆ tV  has one of the simple forms 
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B. Resonant nature of the transition probability 

We consider the following case (two discrete case) 
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(i) When Ef > Ei,  fi > 0. Under such conditions, A- dominates (absorption). 
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(ii) When Ef > Ei,  fi < 0. A+ dominant (emission). 
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C. Discussion of the resonant approximation 
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If fi 2 , in the neighborhood of    fi , the modulus of A+ is negligible compare 
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D. Limit of first-order calculation 
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This becomes infinite when t  , which is absurd, since a probability can never be 
greater than 1. In practice, for the first-order approximation to be valid at resonance, the 
probability (1) must be much smaller than 1. 
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42.10 Constant perturbation 
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We consider first a perturbation 
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A group of final states around the state with Ei. Ei is not the state in the continuous 
region. Ei  En  (or Ei  En ) 
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Thus the total probability is proportional to t for large value of t.  



 
42.11 Fermi’s golden rule 

We can define a transition probability per unit time 
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where [n] stands for a group of final states with energy similar to i.  
 

It must be understood that expression is integrated with  )( nn EdE   

 
 

((Generalized Ferm’s golden rule)) 
For the harmonic perturbation 
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((Note)) Density of states for free electrons 
 
42.12 Free electron gas in three dimensions 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
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The wavefunctions are of the form of a traveling plane wave. 
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kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 

 
The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
 

2
2

222
2

2
)(

2
)( kk

m
kkk

m zyx


 . (5) 

Here 
 

)()()( rkrrp k kkk i
 


 . (6) 

 
So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

42.13 The Pauli’s exclusion principle 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
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In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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Density of states 

There is one state per volume of k-space (2/L)3. We consider the number of one-
electron levels in the energy range from  to +d; D()d  
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42.14 Higher order term: cf
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We assume again that  
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The second term gives rise to a rapid oscillation when t  The first term is dominant 
when En ≈ Ei. 
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42.15 Time dependent perturbation: some examples 

Using the following formula, we solve several problems. 
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((Selected problems)) 
 
1. A linear harmonic oscillator is acted upon a uniform electric field which is 

considered to be a perturbation and which depends as follows on the time: 
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where A is a constant. (Since the action of a uniform field is equivalent to a shift 
of the point of suspension, this problem can be solved not only by perturbation 
theory, but also exactly). Assuming that when the field is switched on (that is, at t 
= -∞) the oscillator is in its ground state, evaluate to a first approximation the 
probability that it is excited at the end of the action of the field (that is, at t = +∞). 

 
2. Solve the preceding problem for a field which varies as follows, 
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and which corresponds to a given total classical imparted impulse P. 

 
 
3. Solve the preceding problem for a field proportional to 
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corresponding to a given total classical imparted impulse P. 
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The total pulse P0 is defined by 
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P0 is classically transferred to the system by the electric field. A = P0/e. 
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The probability for a transition from the state n  to the state k  is equal to 
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So the matrix element is not zero only if k = 1. 
 

2

1102

2)1( '0ˆ1)'exp(
1

)()10( 



t

f dtHtitcP 


 

or 
 

2

10
0

2

2

2)1( ')'()'exp(
2

1
)()10( 




t

f dttti
m

e
tcP 





 

 
or 
 

2

2
10

0
2

2
0

2)1( '])/'('exp[
2

)()10( 



t

f dttti
m

P
tcP 

 
 

 
or 
 

2

10
2

10

0

2
0

2)1( )
2

[1]
2

)(
exp[

8
)()10(







it
erf

m

P
tcP f 


 

 
When t→∞,  
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For a given P0, the probability for excitation decreases steeply with increasing effective 
duration of the perturbation . If 110  , this probability is very small and we are 

dealing with a so-called adiabatic perturbation. 
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The criterion of applicability of perturbation theory is that the probability for excitation 
should be much smaller than 1. 
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((Residue theorem)) 
We use the upper-half plane of the complex plane. There is a simple pole at z = i. 
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