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David Joseph Bohm (20 December 1917 — 27 October 1992) was an American-born
British quantum physicist who made contributions in the fields of theoretical physics,
philosophy and neuropsychology, and to the Manhattan Project.

http://en.wikipedia.org/wiki/David Bohm

Yakir Aharonov (born 1932 in Haifa, Israel) is an Israeli physicist specializing in
Quantum Physics. He is a Professor of Theoretical Physics and the James J. Farley
Professor of Natural Philosophy at Chapman University in California. He is also a
distinguished professor in Perimeter Institute. He also serves as a professor emeritus at
Tel Aviv University in Israel. He is president of the Iyar, The Israeli Institute for
Advanced Research. His research interests are nonlocal and topological effects in
quantum mechanics, quantum field theories and interpretations of quantum mechanics.
In 1959, he and David Bohm proposed the Aharonov-Bohm Effect for which he co-
received the 1998 Wolf Prize.
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43.1. Gauge transformations in electromagnetism
We start with the Maxwell's equations,

V-E=4np
VxE=—la—B
c ot
V:-B=0
vxB=27j, 1B
c c ot

where

B: magnetic field
E: electric field

p: charge density
J: current density

The Lorentz force is defined as
1
F=q[E+—(vxB)].
C

The Lorentz force is expressed in terms of fields E and B, which is invariant under the
gauge transformation (gauge independent). The magnetic field B and electric field E can
be expressed by

B=VxA,
g LA oy
c ot

where A is a vector potential and ¢ is a scalar potential. When E and B are given, ¢ and
A are not uniquely determined. If we have a set of possible values for the vector
potential A and the scalar potential ¢, we obtain other potentials A’ and ¢ which
describes the same electromagnetic field by the gauge transformation,

A'=A+Vy,



1oy
#= cot’

where y is an arbitrary function of r. We note that B and E are gauge-invariant;
B'=VxA'=Vx(A+Vy)=VxA=B

po 1O gu 10A+VY) g 107, 10A o4
c ot c ot c ot c ot

43.2 Canonical momentum and mechanical momentum
We now consider the Lagrangian which is defined by

L=Lmv_qg-1v-a),
2 C

where m and q are the mass and charge of the particle. The Canonical momentum is
defined as

oL q
p=—=mv+—A.
ov c

The mechanical momentum 7is given by
T=mv=p-— ﬂA .
c
Then the Hamiltonian is obtained as
Hep-v-L=(mv+3A)v_L=tmv’+qg=—(p-9A) +qg.
C 2 2m C

The Hamiltonian formalism uses A and ¢, and not E and B, directly. The result is that
the description of the particle depends on the gauge chosen.

43.3 Analogy from Classical mechanics
The Newton’s second law indicates that the position and the velocity take on, at
every point, values independent of the gauge. Consequently,
r'=r and v'=v,
or



Since = mv:p—ﬂA,we have
C
q q
—ZA'=p-—A,
P C P c
or

q

p':p+%(A'—A):p+EV;(.

In the Hamilton formalism, the value at each instant of the dynamical variables
describing a given motion depends on the gauge chosen.

43.4 Gauge invariance in quantum mechanics
In quantum mechanics, we describe the states in the old gauge and the new gauge as

|1//> and |1//'>. The analogue of the relation in the classical mechanics is thus given by

the relations between average values.
(w'|flw") = (w[Flw) (gauge independent)
(y'|aly") = (v |alw) (gauge independent)
or equivalently
(vip-T Al =(vlp-Alv)

(we will discuss the proof later).
We now seek a unitary operator U which enables one to go from |;//> to |l//'> .

') =U

V)
From the condition (y'|y") = (w|y), we have
U'd=0U"=i
From the condition, (y'[f|y") = (w [Flw)
UtU =F¢

or



[ﬁu]:ozmﬁﬁ
op

A

U is independent of p. We also get

C
or
Up-3a-9vyi=p-3a
C Cc
or
T+217 _ T+ 1 q 1+ 1 '\_q
UpU=_U"AU+ UV +p-_A

q 9
C C
—dA+dvy+p-9a
c c c
“Avy+p

C

Note that [£,U]=0, and A is a function of .

((Note))
Here we show that

(' [Ady) = (wlalw)
is equivalent to
(b2 Aly)=(wlp-1Alw).

q

where ﬁ::f)—ﬂA and A'=A+—Vy.
C C

((Proof))



(w2 Aly)=(wlp+ Vay) -~y 1 aUly)

wip+ VAv) - <WI3A'|V/>

p- —(A'—V;()Il//>

{

{
(wlp+vz—daly)
(wip

(wp

)

where [U,A'] =0 , since A' is a function of r.

43.5 Expression of the unitary operator
We assert that U

A iqg . - iq .
U =exp[— y(1)], U™ =exp[—— x(1)].
Pl x(1)] Pl ()]
Then we get
U puU =U"[p,U]+p
N B
=-U"in—U +p
a7
T4 T Iq ~
=-UUih—Vy+p
hc
—pravy
C
which coincides with the expression described above.

((Note)) We use the notation such that

0 |q a;((r) iq,»
U= —U(VVy).
or hc of  hC V)

So we get the gauge transformation for the wave function;

v)=expl 2 ()lw).



or
(rly) = exvlsd @y

The phase factor of the wave function depends on the choice of the form of y in the
gauge transformation. potential

43.6 Hamiltonian under the gauge transformation
We consider the Schrodinger equation given by

. 0 A
Iha|l//>— H|1//>.

and
1 8 " __ ' '
in— ) =Hy),
or
in—Uly)=H'Uly),
or
U ~ 0
Ih[a l//>+U E|l//>]— H'U 1//>.
Smeg iﬂa—ZU,weget
ot hc ot
_ 9% 1) 4 Gin 2w = AU
Catuw>+umat|w> H'Uly),
or
_9%G61,) + UR ) = B0
CatUl//>+UHl//> H'U|y),
or



Thus we have

Note that

or

or

or
iaie _a G
UpU~™ =(p CV;()-

From the these relations, we get

Up- A0 =6~ 1A-1vn)=(-_A).

C

and



Then we have

A= 32 GrLp -y + gl
c ot 2m C

or

i a 1 2 ' 1 2 ' 1
=2 (p-TA) qg=——(p - A) +qg'
cot 2m C 2m C

Therefore the Schrodinger equation can be written in the same way in any gauge chosen.

43.7 Invariance of physical predictions under a gauge transformation
The current density is invariant under the gauge transformation.

1 R
J=—Rel(y[p-TAlp)]

m C
(vip—taly)=(w |0 (-2 ANly)

qVZ_qu:l’i_ﬂA

U'p-JAY =p+avy-3
C C C C

1 R 1 n
I=—Re[(y'p -1 Aly)]=—Rel(yp - T Alp)]=J
m C m C

Note: after the gauge transformation, A — A' in the current density operator. This is
identified from the form of Hamiltonian.

A I . , ,
= (- 1AY +ag"
m c

We note that the density is gauge invariant,

2

o=l = p=lelv)

43.8 Aharonov-Bohm effect
In the best known version, electrons are aimed so as to pass through two regions that
are free of electromagnetic field, but which are separated from each other by a long



cylindrical solenoid (which contains magnetic field line), arriving at a detector screen
behind. At no stage do the electrons encounter any non-zero field B.

Aharonov—Bohm effect
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Fig.  Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split
into two paths that go to either a collection of lines of magnetic flux (achieved by
means of a long solenoid). The beams are brought together at a screen, and the
resulting quantum interference pattern depends upon the magnetic flux strength-
despite the fact that the electrons only encounter a zero magnetic field. Path
denoted by red (counterclockwise). Path denoted by blue (clockwise)

We assume that q = -e (e>0). In the space when B = 0, we have
B=VxA=0,

or



A=Vy,

or

2(r) = [dr-A@r),

[}

where Iy is an arbitrary initial point in the field region. We now consider the gauge
transformation such that

A'=A+V(-x)=0.
The new wavefunction y'(r) can be written as
v (1) = expCLyy(r).
hc
The Schrodinger equation for y'(r) is
72

.. 0
—-—Viy'=ih—y',
2m v é’tw

where ' is the field-free wave function and the new Hamiltonian is that of free particle;

Then we have

ie ie |
y =y'exp(——%) =y 'exp[-— [dr- A(r)],
hc he;
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Fig.  Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams
go into the two narrow slits (one beam denoted by blue arrow, and the other
beam denoted by red arrow). The diffraction pattern is observed on the screen.
The reflector plays a role of mirror for the optical experiment.

Let v, be the wave function when only slit 1 is open.

Vo) =y expl— [, dr- AWM, (1)

Path1

The line integral runs from the source through slit 1 to r (screen). Similarly, for the wave
function when only slit 2 is open, we have

Vs (0) = 2(r) exp[—— ~Joap O A )

Path2

The line integral runs from the source through slit 2 to r (screen). Superimposing Eqs.(1)
and (2), we obtain

dr-AM)+ v (O expl-—" [, dr-A)]

Path2

we(r) =y, ,(r) exp[—%.f

Pathl



The relative phase of the two terms is

[ dr-Am-[ dr-A@r)=§dr-A(r)=[da-(VxA)
= jda-B =0,

by using the Stokes' theorem. ®; is the magnetic flux. Then we have

Vo) =expl—" [ dr- AWy, exp(— @)+ ()],
cP nc

ath2

where the relative phase now is expressed in terms of the flux of the magnetic field
through the closed path.

When

— P, =— jda-Bzzﬂn (n=0,1,2,3,..).

Closed
path

The pattern will be the same as without the magnetic field present.
When

Lo =L jda-B:2;;(n+l),
he he Closed 2
path

or

27he 1 1
D, =2 (N+-)=20,(N+-),
8= o ( 2) o 2)

the position of the minimum and the maximum in the pattern will be interchanged. @ is
the magnetic flux quanta and is given by

O, = % =2.067833667 x 107 Gauss cm” = 2.067833667 x 10™° T m*>
((Note))
Vio (r)~ e ) Vio (r)= Ch

The condition for constructive interference in the presence of a magnetic field is



€
kr, —%CDB —kr, =2l
where | is intergers.
1 e
h=r=—(—0g +27).
k hc
The positions of the interference maxima are shifted due to the variation in @,

although the electron does not penetrate into the region of finite magnetic field.

. e
1 When —®, =27n
(1) e e

-, :%27r(n+£).

The pattern is the same as without B.

.. e 1
1 When —®_ =27(n+-—),
(i1) e e ( 2)

nL-r, :%Zn(n+€+%).

The pattern is different from that without B.

43.9 Young's double slit experiment for the Aharonov-Bohm effect

Screen




Fig.  Young's double slit experiment with the electron beam source. The magnetic
field is applied just behind the slits. There is no magnetic field around the paths

Cyand C,.
e eBA
=D, =—— .
b e ' hc

|I’2 —r|1 =dsind.

The phase difference;
2 2 . 2
¢O =7|I’2 — r1| :7d smt9 ~ Tde

Since y=Dtan8 =~ D&, we have

27 d
¢0—75y-

The intensity |

| :|l//B(l‘)|2 =[1+e@ ][]+ ®te)] = 4sin2(@)_

The intensity is described by

2zd, _¢eBA
|:4sin2(—¢°;¢8):4sm2(—4 D 5 he ).

When the effect of the width of the slit a is taken into account, the intensity is modified
as

27 d y eBA
— S T 1 2
I :451n2(¢0 ¢B):4sln2( /1 D hC )Sln2 ,
2 2 ;

where
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Fig.  Young's double slits diffraction with Aharonov-Bohm effect. The diffraction
pattern changes with the magnetic field. red (B = 0). Blue (B=intermediate
value). Green (B = stronger field).

43.10. The observation of Aharonov-Bohm effect by Akira Tonomura
Summary of the article (by A. Tonomura)
[http://physicaplus.org.il/zope/home/en/1224031001/Tonomura_en]

(1) A toroidal ferromagnet (permalloy) instead of a straight solenoid, which has
inevitable leakage fluxes from both ends of the solenoid. An ideal geometry with
no flux leakage can be achieved by the finite system of a toroidal magnetic field.

(1))  The toroidal ferromagnet is covered with a superconducting niobium layer to
completely confine the magnetic field.

(ii1))  An electron wave is incident to a tiny toroidal sample fabricated using
lithography techniques.

(iv)  The relative phase shift between two waves passing through the hole and around
the toroid is measured as an interferogram. A relative phase shift of m is
produced, indicating the existence of the AB effect even when the magnetic
fields are confined within the superconductor and shielded from the electron
wave. An electron wave must be physically influenced by the vector potentials.
Therefore, it can be concluded that electron waves passing through the field-free
regions inside and outside the toroidal magnet are phase-shifted by m, although
the waves never touch the magnetic fields.
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