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Jacques Charles Francgois Sturm (September 29, 1803 — December 15, 1855) was a
French mathematician of German heritage.

. >

http://en.wikipedia.org/wiki/Jacques Charles Fran%C3%A70is_Sturm

Joseph Liouville (24 March 1809 — 8 September 1882) was a French mathematician.

http://en.wikipedia.org/wiki/Joseph_Liouville

6.1 Self-adjoint differential equation



Ly = po(x) y'+ pl(x) y'+ pz(x)y .

(1) Po(X), P1(X), and px(X) are real functions of X.
(i)  po(X), Po’(X), Po”(X), p1(X), P1’(X), and p,(X) are continuous

((Dirac notation))

(v|C|u) jv Ludx = jv p,U"+ p,u'+p,uldx .

b b
Iv* pu"dx =[v pu'l’ —I(v* p,)'u'dx

b .
= [V pou' T =[(v" Py ul} + [ (pov)"udx

b b
J.V* pu'dx = [V* plu]g - J.(V* p,)'udx.
Then
. b
(v]CJu) = [T(pav")"~(PV")+ PV Tudx +[v" p,U'~(v" py)'u +V'pul;.

Here note that

[V pu'—(V' py)u+V puld =[v pu—(v'p, +Vv p, u+v pul’
= [(U'V* _UV*') po + ( pl - po')UV*]g

Then we have
i b
<V|L|LI> = I[( PoV )”_( p,v )v+ P,V ]UdX+[(U'V —uv ') Po +(p1 o po')UV ]g-
The terms at the boundary (x = a and X = b) also vanish. So we get
(v|C|u) I[( pV)"=(pV )+ p,v Judx = juLv dx,

or



b b
(v|CJu) = _[[( PV)"—=(p,V)'+ p,v]u dx :.[u*fvdx ,

where the adjoint operator L is defined as
Ly =(py)" (P y)+P.Y -

Thus we have

(here we define the Hermitian conjugate operator).

Note that
. b
(u|Llv) = ju*Lde ,

from the definition. Suppose that Lv = Lv . Then we have
<u |I:+|V> = <u |I:|V> : (Hermitian).
When Ly =Ly,
Ly =(PY)" (P Y)'+P,Y = PoY"+ P Y+P,Y .
or
PoY" 2P, Y+ P" Y =(P'Y+ PY') = P Y'+PY',
or
2(py=P)Y+(P"—p, )y =0.

When the condition p,'= p, is satisfied,

Ly =Ly =%[|%(X)y'] + P, (X)Y.

(1

)



The operator L is said to be Hermitian with respect to the functions U and v, satisfying the
boundary conditions.

((Mathematica))
@ Example-1

L1: a linear operator
L1B: an adjoint operator

What is the condition for the self-adjoint?
Clear["Global «"];
L1 := pO[X] D[#, {X, 2}] + pP1[X] D[#, X] + p2[X] # &
L1B :=D[pO[X] #, {X, 2}] -D[pl[x] #, X] +p2[X] # &
eql = L1[¢[x]] // Simplify

P2[X] ¥ [x] +pL[X] Y [X] +pO[X] ¥ [X]

eq2 = L1B[y[x]] // Simplify

P2[X] ¥ [x] - pL[X] Y [X] +2p0"[X] Y [X] +
YIx] (-pl'[x] +p0” [x]) +pO[X] ¢ [X]

eql2 = Collect[(eql-eq2), {¢¥"[X], ¥[X]}]
(2p1l(x] -2p0° [x]) ¢ [X] +¥[X] (Pl [x] - p0” [X])

(b)  Example-2



Arfken10-1-8

For a second-order differential operator L that is self-adjoint, show that
y2 L(yD-y1 L(y2)=[p(y1'y2-yly2")]

Clear["Global  %"]

LS :=D[p[X] D[#, X], X] +Q[X] # &

eql = y2[x] LS[y1[x]] -y1[x] LS[y2[x]1] // Simplify

Y2[X] (p"[x] y1'[X] +p[X] y1” [X]) -y1[x] (p'[X] y2'[x] +p[X] y2" [X])

eqll = Collect[eql, {p[X], P "[X]}]

’

P [X] (Yy2[x] y1'[X] -y1[X] y2'[X]) +p[X] (Y2[X] y1”[x] -y1l[x] y2"[X])

eq2 = D[p[X] (y2[x] y1'[x] - y1[x] y2'[x]), X]
P IX] (Y2[x] y1'[x] -yl[x] y2'[x]) +p[X] (Y2[x] y1”[x] -y1l[x] y2” [X])

eqll - eq2
0

(c) Example-3



Arfken 10-1 -7
Given that Lu = 0 and gLu is self adjoint, show that for the adjoint operator L , L(gu) = 0.

We define the adjoint operator as follows.
L1 := pO[X] D[#, {X, 2}] + p1[X] D[#, X] + p2[X] # &
L1B :=D[pO[X] #, {X, 2}] -D[pLl[xX] #, X] +P2[X] # &
eql = L1[u[Xx]]

P2[x] u[x] +pl[x] u’[x] +pO[x] u”[xX]

eqll = Solve[eql == 0, u""[X]]

R -P2[X] u[x] - p1l[x] u [X] 1
PO [X]

({u 1)

eq2 = g[x] L1[u[x]] // Expand
g[X] p2[X] u[X] +g[X] p1[x] u'[x] +g[x] pO[X] u” [X]

The condition that glu is self - adjoint:
eg31 = Coefficient[g[x] L1[u[x]], u""[X]]
g[x] pO[x]
eq32 = Coefficient[g[X] L1[u[X]], u™[Xx]]
g[x] pl[x]
eq33 = D[eg31, x] -eq32
-g[x] pLl{x] +pO[x] g [X] +g[x] pO’[X]

eq34 = D[eq33, Xx]
-pl(x] g [x] +20 [x] pO'[X] -g[x] p1'[x] +pO[x] g” [x] +g[x] pO”[X]



We now show that LIB[gu] =0

eq4 = L1B[g[x] u[x]] // Simplify

’

-plix] u[x] g'[x] +2u[x] g'[X] pO'[X] +2p0[x] g'[X] U [X] +
PO[X] u[X] g”[X] +g[X] (P2[X] u[X] - pl[X] U [X] +
2p0° [x] U [X] +u[x] (-pl [x] +p0”"[x]) +pO[x] u”[X])

eq4l = Collect[eg4 /. eql1[[1]], {u' [Xx], u[x]}] // Simplify

’

2 (pO[X] @' [X] +Q[X] (-pl[x] +p0’ [X])) U’ [X] +
U[x] (-pl[x] @'[x] +20 [x] pO’'[X] +pO[X] g’ [X] +g[X] (-pl [X] +p0”[X]))

eq42 = Coefficient[eq4l, u”[X]]
2 (pO[X] @ [X] +g[X] (-pl[x] +p0’ [X]))

eg43 = Coefficient[eg4l, u[x]]
-p1l(x] g'[x] +29g [x] pO’ [X] +pO[X] g” [X] +g[X] (-pl'[X] +p0”[X])

From eq33 and eq34, we find that

eq51 = eq42-2eq33 // Simplify
0

eq52 = eq43-eqg34 // Simplify
0

6.2  Formation of self adjoint differential equation
Any linear 2nd differential equation can be put in this form by multiplying by an
appropriate function f(x).
Suppose that
Ly = p,y"+p,y'+p,Y (general case). (1)

Multiplying this Eq.(1) by f

d
f(Ly) = fp,y"+fp,y'+fp,y = g [fp,y'1+ fp,Y,

X
or

d
&( fpo) = fpla

or



d(fp) _ by g,
P, P,

or

0
f(x) = ——exp([ PV gty
=500 0™

For a self-adjoint L we have

d
Ly = [POOY I+a00y

6.3  Eigenvalue problem I
We now examine the differential equation

Ly + AwW(x)y =0.

A is called the eigenvalue and y(X) is called the eigenfunction for a particular 4. w(X) is
the weight function.

Boundary condition:

(1)
Ay(a)+By'(a)=0
Cy(b)+Dy'(b)=0"

where A. B, C, and D are given constants.

(i1))  Periodic boundary condition
y(X)=y(x+b-a).

6.4  Example

(A)  Legendre differential equation

(1=x)y"=2xy'+n(n+1)y =0,

Py (X)=1-%, P (X) = =2X=p,'(X),

Thus this is self-adjoint



Ly+Awy =0,
with

Ly =%[(1—x2)y'],

w=1
A=n(n+1)

(B)  Laguerre’s differential equation
Xy"+(1-x)y'+ay =0,

with

Po(X) =X, P (X)=1-X,

Since p,'(x) =1# p,(X), this is not a self-adjoint. We multiply this Eq. by a function f,

1 AU)
f = 127 dt
p00 P 0™

1 cl-t
=— ——dt
X@XP(] v

= lexp(lnx —X) = le_XX =g
X X

Then we have

xe y"+(1-x)e*y'+ae "y =0,
or

Ly+Awy =0,
with

Ly =0y

A=a
w=e

—X



(C)  Hermite differential equation
y"'-2xy'+2ay =0,
pO(X)=l, pl(X)=—2X

Since p,'(X)=0=# p,(X)=-2, this is not a self-adjoint. We multiply this Eq. by a
function f,

f= exp( j pl( ) dt) = exp[i(—Zt)dt] e
P, (X

Then we have

e y"-2xe X y'+2ae Xy =0,
or

Ly+Awy =0,
with

ly=S@"y)

A=2a

w=e*

(D)  Bessel differential equation
XYy +(x* —=n*)y =0,
P(X) =X, p(X) =X,

Since p,'(X)=2x# p,(X) =X, this is not a self-adjoint. We multiply this Eq. by a
function f,

1 (PO g 1 _1
f= 0.0 exp( po(t) =2 [.[ dt]= exp(lnx)

Then we have



nz
Xy"+y'+(X — ?)y =0,

or
Ly + Awy =0,

with

2

d n
Ly = 090 =="-y
X X
A=1
W =X

6.5. Eigenvalue problem Il
L is a self-adjoint differential operator. U and Vv are the solutions of

Ly + Awy =0
which satisfies the boundary condition
[v'(pu)]; =0 and [u"(pv)]; =0

We now examine
. b b
(v[L]u) = Iv*Ludx = J'v*[( pu')'+qu]dx
a ab .
=[v'(puH] —'[v*' pu'dx+jv*qudx
b : b : b b
= —jv*' pu'dx+J-v*qudx =-[v'(pu"l’ +J-( pv*')'udx+.[v*qudx
b : Z b : . . . :
= J'( pv*')'udx+_|.v*qudx = J.uLv*udx =(u|tjv) =(v|L"|u)
Then we have L = L.

The Hermite operators have three properties that are of extreme importance in physics.

A. The eigenvalues are real.
B. The eigenfunctions are orthogonal.
C. The eigenfunctions form a complete set.



A. Real eigenvalue

Let
Luj +leUj =0,
Lu, + Awu, =0

Then taking the complex conjugate
Lu; "+ 4, wu," =0

Here L is a real operator (p and ( are real functions of X) and w(X) is a real function. But
we permit 4; and A; to be complex.

(u; Ly, —u,Lu; ) = (1, - )Hwuu;

b b b

J.uj Luidx—J'uiLuj dx = (4 —/?,,)J-wuiuj dx..
Since L is Hermitian, the left-hand side vanishes,

Tuj*Luidx—juiLuj*dx = (uy|Clu )~ (u |I:‘uj>* = (uy[CJu) = (u; |&]u) =0,

b
(ﬁ’}—ﬂ,)jwuiuj*dx=0.
Ifi=j,

b
o —/7,,)IW|ui|2dx =0.

b
Since Iw|ui|2 dx =1 (normalization), we have

a
A3 =0.

B. Orthogonal eigenfunctions



If we take i# ] and 4 # 4, , the integral of the product of the two different

eigenfunctions vanish.
b
J.WUin dx=0.
a

We say that the eigenfunctions uj(X) and Uj(X) are orthogonal with respect to the
weighting function W(X) over the interval [a,b]. We should mention that one does in the
case of 4 =4, (i #]) — when one has a degeneracy — so the functions Uj(X) and Uj(X) are

linearly independent but not orthogonal.

C. Completeness
For any function w(X), w(X) can be expressed by

p(X)=Y a,u,(x).
The expansion coefficient is determined by the orthogonality of the u,’s.
b
a, = [ U, COW()Y (X)X,
where
b
[un Coweu, (0dx =5,
a

6.6  Simple differential operator: a particle in a box
We consider a simple case where

2
L—d

= W and W(X) =1.

This operator is Hermitian since p(X) = 1 and q(x) = 0. The eigenfunctions and
eigenvalues of this operator satisfy the equation,

Lu,+4.u,=0

or

2

Ol—zun + AU, =
dx



where A, =—k . The solution of this differential equation is
u,(x) = A, cos(k,x) + B, sin(k,x)

If we specify the boundary conditions that U (x=0)=u,(Xx=4a) =0, then we have
A, =0. and k ="n n=1,2,3,..).
a
Then we have the normalized eigenfunction
0, (%) = = sin ),
a a
with the eigenvalue

(2]

This problem is the same as for the one dimensional Schrodinger equation of a particle in
a well potential,

V()

Y
>

Fig.1 The infinite square-well potential energy.



h? d?
_%Wy/n(x) =Ew,(X)

or

2

d

S Va0 kY, 00 =0
X

where the energy eigenvalue is

2
E, =h—kn2.
2m

Under the boundary condition that (X =0) =y, (x=a) =0, then we have
k. =%n (n=1,2,3,..).
a
and the normalized wave function

vy (0 = | sin”)
a a

with

2 2
E, :h_(”_”j .
2m\ a

n2+ll/n2
25 n=5

i En/E| =n?
20

1I1I="7

15

10:—/\/\/\

T L L L L L L L L L X/a
0.2 0.4 0.6 0.8 1.0



2 _2
h'rm

Fig.2 The energy level E, is given by E,=En’. E, = ol Plot of (n* +l//n2) as a
ma

function of x/a.

6.7 One dimensional harmonic oscillator: Quantum Mechanics
The commutation relation;

[%, p]=in.

The Hamiltonian of the simple harmonics

The eigenvalue problem of the simple harmonics in quantum mechanics is given by
H[m) = z[m),

with

&, = (n + ljha)o,
2

wheren=20, 1, 2, 3,....
Here we introduce the creation operator and annihilation operators given by

s Bl P 1| [ma,, ip
d="=|R+—— |=—|, X+ ,
\/5( ma)oj \/5[ h \/mha)o

o Bl 1P 1 [ [ma,, ip
a'=—"=| X- =— X - ,
\/5( ma)oj 2[ h \/mha)o

with

b= m;')o , (the unit of Bis cm™).

The operators X and p are expressed in terms of & and a",



Note that

[%,p]=
(Vapf i

then we have

AL At A A Ils A
[a+a+,a— +]:—T[a,a+],
[

A

laa]=1.

Since

or

aa=—L (ﬁ —lha)oj,
ha, 2

we obtaine the Hamiltonian as
A A1
H=hw)| N+—|.
2
where
N =4"4.
The operator N is Hermitian since
N*=(aa) =a"a=N

The eigenvectors of H are those of N, and vice versa since [I:I , N] =0.

6.8  Annihilation operator & and creation operator a*



N,a']=[a'aa"|=araa" —aaa=a'faa’]=a
Thus we have the relations

[N,4]=-4,
and

[N,a ]=4"
From the relation [N,4] n> =-4 n> ,

(Na—aN)

or

N

n)=n-1a

n),
which implies that éi| n> is the eigenket of N with the eigenvalue (n-1),
é| n> ~ |n - 1> .

Similarly, from the relation [l\] ,a'] n> = é+| n> , we have

ny,

(Nd - 4&N)n)= -4

or

~

@'[n)) = (n+na‘|n),

which implies that é*|n> is the eigenket of N with the eigenvalue (n+1),
a'ln)~|n+1).
Now we need to show that n should be either zero or positive integers: n=0, 1, 2, 3,....

We note that



a‘a n>: n<n|n>2 0

(n

(njaa*

n)=(nfa*a+1n)=n+1)(n|n)>0

The norm of a ket vector is non-negative and the vanishing of the norm is a necessary and
sufficient condition for the vanishing of the ket vector. In other words, n>0. If n = 0,

é|n> =0.1fn=-0, é| n> is a nonzero ket vector of norm n<n|n>. If >0, one successively

forms the set of eigenkets,

n), ép|n>,, belonging to the eigenvalues, n-1, n-2, n-3,....., n-p,

This set is certainly limited since the eigenvalues of N have a lower limit of zero. In
other words, the eigenket ép|n> ~ |n — p> , or N-p = 0. Thus n should be a positive integer.

Similarly, one successively forms the set of eigenkets,

n>, é+3|n>, é+p|n>, belonging to the eigenvalues, n+1, n+2, n+3,....., n+p,

Thus the eigenvalues are either zero or positive integers: N =0, 1, 2, 3, 4,
(A)  The properties of 4" and a

(i) 40)=0

since <0|é+é| 0> =0.

(i) an)=vn+1n+1),

n)+a'[n)=(n+1)a’[n).

é+| n> is an eigenket of N with the eigenvalue (n + 1).
Then
a'ln)=cn+1).

Since



(njaa*|n) = |c|2<n +1n+1)= |c2

b

or

<n|z§1+z§+1|n>:n+1:|c2

2

or
| =~/n+1.
(i) ~ &n)=+/njn-1),

é| n> is an eigenket of N with the eigenvalue (n - 1). Then we have

an)=cln-1).
Since

(nja‘a n>=|c|2<n—1|n—1>:| "=n,
or

lc[=+/n.

(B)  Basis vectors in terms of |0)

We use the relation

y=4'0)
2)= &)= (a o)
3)=—ra2)=—=(a o)




=&l = (a0

6.9  Matrices
The expression for )?|n> and f)|n>

Rn)= |- (a+a)n)= /2nfw0(M|n+1>+Jﬁ|n_1>)

2Mma,

A

p|n) = J@i(ﬁ* —é}n>= 1/%i(\/m|n+l>—\/ﬁ|n—l>)

Therefore the matrix elements of &, 4", X, and P operators in the {[n>} representation

are as follows.
(naln)=ns,.,..
<n'|é‘+|n> =N+ 15n',n+l >

An)= [ (Vn+16, .. +vns,.).

2Mma,
<n' ﬁn> \, mi;;a)o (‘ n+ n n+1 \/_5n n- 1)
/72 0 .- 0
0 3/2
H=hao ,

0 (2n+1)/2
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Mean values and root-mean-square deviations of X and P in the state |n>

2
ny=(n+— ,
2)mao,

The product AxA4p is evaluated as
1 1 ) , e .
AXAp =| n+ 5 h> Eh (Heisenberg’s principle of uncertainty)
Note that

%= r:’wo (a" +a)ar +a)=

pz — mi;;a)o (é_+ _ axé+ A): mha)o (A+A+



and

(@ i =o.

n=0,

(n

a'a+aa’

(n

Mean potential energy

n>:<n|2é+é+1|n>=2n+1.

G2

<V>=%ma)2<nx

n)= %ma)z(Ax)2 = %g

n-

Mean kinetic energy

(K)=5=(n

Thus we have

6.10 Representation of the state |[n> under the basis of [x> and |&>
We assume that

$= X

where &is a dimensionless quantity. Then we have
(£l£) =86 - &) = S1B(x-x)] = %cxx —x)= %{x|x’>,

using the property of the Dirac delta function (which will be discussed later). This
implies that

=514

Using this notation, the wave functions in the presentation of {|x>} and {|&>} can be
expressed by



0, (0) = (X|n) = [B(&|n) = { Be, (&)

We also note that

N R

a_\/z(é-i_ag)a
and

o L, O

a _ﬁ(§ aeg)-

6.11  Solution for the wave function ¢, (<)
We start with

or

with
_ [May,
ﬂ_ h )
Bl ;. P _
<x|ﬁ(x+| meO} =0,
I A —
x(x|0) + > (x|p|0)=0
We assume that
2,09 = ([0).

Then we have

oo
[))X%(X)er—a)()ﬂ&%()() =0,



or
ﬁxcoo(x)%@%wo(x) - 0.

Since i 9 0 —,Bi, we get
OX 0OX 0& o¢

—)®, ()
(c+ 5)(/) (6)=

or

%%(5) =$0,($),

where
0, (&) =(£10).

The wave function ¢,(&) can be obtained as
o) =Ae .
The condition of normalization given by
1= [ln(@F dz =|Af [edz=[Af 7
leadsto A, =7 "*. Here we assume that A, is real. then we have

%(§) _ 72_,1/46,52 /2 ‘

The wave function ¢, (X)is given by

0,00 = (xjn) = (a0} =l

R N
_\/ﬁﬁﬂ[ mwoaxj ?y(X)

(Note)) In general, one can use the formula,




(x

V) = f(x 22
n)=f(x, i aX)<x|n>

Since
n n X
P (8) = \/E(p()
we have
_ L1 s O
con(f)—m\/z—n(f ag) ?,(S),
or

(&) = (m2 (6 - 5)” e,

Using the operator identity

5__: et 12 0 O e
0¢ ¢
(f—i)z :_egz/zie_sﬂ/2(_e§z/2ie_§2/2)
o¢ o¢ ¢
2, 02 &
—(—])2es 2 9
(-1 o8
mgeneral ..........................................................................................
_5 /2

o"
_ 9y _ & O
(4 f) =(-D"e o

Then we obtain

(Dn(‘f):(\/ZZ“n!)—l/z(_l)negz/zaa_;ne_gz.

Using the Hermite polynomial defined by



an

e
&

Ha (&) = (-1)"e

we have

0,(&) = (Wx2"n) e PH (&)

((Note))
_ 9 \n -2 _ o \esi2 0" _g?
(¢ a{:) e (-1)e Fr
_(_ n 52 &n 752 _ §2/2 _ a n ’6&2/2
H.(S)=(D"e —ﬁéne e (s —af) e

The Hermite polynomial satisifies the differential equation

(d—2—2§i+2n)H (&)=0
d&? d& " '
6.12 A few auxiliary mathematical relations
(a)
n a2
H :ha)o(a a+—1j
2
2 N A
é+é:’8—(k— P IH 0 J
2 Mo, ma,
- PP I 1
(x| [) = oy x (a a+51j|n>:ha)0(n+5)<x|n>
or

e ) e~ LR

Ma, OX Ma, OX

Here we use & = X,

£) =ﬁ|x>, and g, (&) = (&]n)



o 0 ~
(5 —%)(5 +%](ﬂn(§) =(2n+1De,(S)

where

0,(£) = (72" e 2 H (&)

or
g- L e Ll h (&)= 2n+De PH (&)
PE PE " e
(b)
a'ln)=+vn+1n+1),
. B[, P
2 _\E(X ma’oj’
(x|a*[m) =vn+1{x|n+1),
or
hoo
%(x—mwog)<x|n>=«/_n+l<x|n+l>,
or
(& _%mn) =\2(n+1){&[n+1).  (Arfken p.826)
(©)

Similarly we have

S+ %Xﬂ n) = \/%<§| n-1), (Arfken p.826)

from the relation, é| n> =+/n | n-— 1> .

6.13 Mathematica



Using the Mathematica ,we make the following calculations,

1. Derivation of the Hermite differential equation

= L1 0
—ﬁ(§+a§),

and
\/—(5——)
araf¢|n) =n(&n)
2. Hermite polynomials
H &2/ -£2/2
(§)=e" (&- 5 )'e
with
o" _&n
- )" = R
(¢ 6g) =(-1" o
3. Wavefunctions

0.(&) = Wr2"n) e P H (&) = Wr2"n) P (¢ -

((Mathematica))

og

)n —cf /2



Creation and annihilation operators : differential form

Clear["Global %"];

1
CR = — (& # -D[#, €]) &;
2

1
AN := — (& # +D[#, £]) &;
V2

YIEl +2NY[E] + U [E] = E2 Y [€]

srule = {y » (EXD[-#;] H[#] &]};

eqll =eql /. srule // Simplify
_g2
e 2 (2nH[E] -2&H [E] +H"[€]) =

DSolve[eqll, H[E&], €]

[{H[€] > C[1] HermiteH[n, &£] + C[2] HypergeometriclF1|-

NI S



2
eln_, £1 =nt4 (2" ny) 2 Exp[—%] HermiteH[n, £] // Simplify;

90[£ ] == nt/4 Exp[—%z];

¥ln_, £ := Nest[CR, ¢O[£], n] // FullSimplify

n!

Table[{n, ¥[n, §1, ¢[n, &1, ¥[n, €] - ¢[n, €1}, {n, O, 6}] //
Simplify // TableForm

Y i1/4 i1/4 0
£2 £2
1 ﬁel—/f§ ﬁeli/jﬁ 0
Tt Tt
2 £2
e 2 [-1+2 §2 e 2 [-1:+2 §2
2 NP V2 1% 0
&2 &
e 2 £(3:2¢? e 2 £(-3:2¢2
3 NEREE NERL 0
&2 &2
4 e 2 (3452 [3.62)) e 2 (3-1252.464) o
2\/@”1/4 2\/€ﬂ1/4
£2 2
. e 2 ¢ (15+4 £2 (75+§2)) e 2 ¢ (15720 2.4 §4) 0
2+/15 1/4 2/15 1/4
2 2
e’% (715+90 £2_60 £4.8 56) e’% (715+9o £2.60 4.8 56)

0
12+/5 »1/4 12+/5 »1/4

6.14 Schrodinger equation
We consider the Schrodinger equation defined by

(x|H|n) =&, (x|n),
or
2
(K 5+ ) = g, (x]n),
or
nod? ’
_%W+m%xz)¢n(><)=€n¢n(><),

with



9,(X) = (x|n).
Here we use & instead of X;
£=px.
with

ma,
-t

(unit: cm™).

B=

Using the relations given by

0 _060 50

X OX O ﬂag
and

82 .0 .0 , 82

PVl ég(ﬂ g) B 0
we get

o s ML el el
or

ho, d°  ho, ., B 1

== a2 §)<§|n>—hwo(n+2)<§|n>,
or

(dz —E 420+ D, (£) =0

dé_,z (Dn — Yo
with

?n(&) =(&[n) = \/E%(X)



6.15 Sturm-Liouville type differential equation
We put

0, (&) =€ U (&),

with U, (&) = H,(&): Hermite polynomials. H,(x) satisfies the differential equation.

H,"(¢)—2&H,'(e) +2nH, () = 0. (1)

Equation (1) is not a Sturm-Liouville type differential equation. In order to get the
Sturm-Liouville type diffrential equation, we multiply the weight function w(¢),

W(SH,"(S) =2eW(HH,'(5) + 2nw(S)H,(5) = 0.

The weight function should be determined such that
W(S)H,"(S)—2aw(5)H,'(5) = ;—f[w(f)Hn'(é)] :

or
W'(&)=—2eW(S),
w(g) =exp(~&).

Then we have
L[H, ]+ A,W($H, (5) =0,

d§

The weight function is given by
W(&) =exp(=¢?).
The eigenvalue is

A =2n.

n



6.16 Orthogonality
We consider the eigenfunctions,

L[Hn]+2nexp(—§2)Hn =0,
and

L[H,, ]+ 2mexp(-&*)H,, =0.
We show that operator L is a Hermitian.
[Ho LH 1dE = [H LIH, e

((Proof))
(Hu|OH,) = (H, |CH,,)
. T © . '
<Hm|L|Hn>=_ijm L[Hn]d§=_LHm qeMOH
[ wEH, e = [-Lwe-Ln,H @)
3 df m n _Oodl): df: m n
= THnL[Hm*]dé= THnL[Hm]"‘dé

:UHH*L[Hm]dgj =(H,|(|H,)

In other words, we get
L =L. (Hermitian operator)

Then we have

[Ha [20w(&)IH, (£)dé = ( [ Hn*[—2mw<5>]Hm(cf>d5] :

or



(n—m) [H,'WE)IH,(£)dé =0,

or
(n-m) [H, e Hy(E)ds =0,
Ifn#m,
[H, (@6 H,@)dé -0,
or

[Ha(©e < H, (&)dg =0.

since Hy(&) is a real function.

6.17 Normalization
Here we define the wave function as

0,(£) = (2"l 2e 2 H (&),
where

an
ot"

2
e .

H, (&) =(-1)"e"

We show that ¢, (&) is the normalized wave function;

[o) ©p(ds=1,

or

o0

[ H (OH, (&)ds =2"nr

—00

((Proof))



< _ g2 noo _ g2 2 an _ g2

_If TH,(HH,(&)E = (1) j e H, (&)[ef Frk “lde =
__nw " & =_n_nw—§20”n
=(-1) _LHn(cf)%ne d& = (-1)"(-1) _Le 5§an(§>d§

H, (&) is the Hermite polynomial and is a function of & The highest power is " and the

coefficient for the power & is 2"

&n
oE"

H. (&) =2"n!.
Thus we have

e Hy@H, &) =2'nt e e =2z
or

[0, @, ds=1.

6.18 Dirac delta function
An arbitrary function y (&) can be expanded in terms of complete set {U,(&)} as

w(E) =2 a,u,(&).
Note that
b b
U W)W (9)ds = [ur(©)W($) 2 ($)dg

b
= >, [ur(eW(e)u, (5)ds

where



b
[ur W)U (5)ds =5,
Then we have
b b
w(&)= Zun(f)IUZ(g)W(g)w(g)dg -~ j D U, (EW()U, (9 (¢)ds .

Since (&) is an arbitrary function, one can say that
2 U, (W)U ()] = W(E) D [Uy () ()] = 56 = &)

Then we have
b
(&)= [ -Ew(s)ds,

from the property of the delta function.
In the case of the Hermite differential equation,

U, (&) = 2"n7) T H, (&),
with
w(é)=e*,

and
[eu, ©u,©)ds =@ niVr) ! [e H (HH,(§)dE=1.

6.19 Dirac function by Hermite polynomials
The Dirac delta function can be formed using the Hermite polynomials.

5(g = &) =W($) D [Un(Hun(6)]

_ Ny H.(OH, ()
¢ Z 2"

((Mathematica))



Clear["Global "]

f[x , k] :=
Exp[-x°]
HermiteH[n, O] HermiteH[n, x]
Sum[ .
2'nt vV
(n, 0, k3]
pll:
Plot[

Evaluate[Table[Tf[x, K],

{k, 50, 250, 50}11, {x, -1, 1},
PlotRange - All,
PlotStyle » Table[{Hue[0.151], Thick},

{i, 0, 10}1,

AxesLabel -» {"¢&", " (£)"}];

gl = Graphics]|
{Text[Style["n=50", Black, 12],
{0, 3}1,
Text[Style[''n=100", Black, 12],
{0, 4.5}1,
Text[Style["n=250", Black, 12],
{0, 7}1}1:

Show[pll, g1]




Fig.3

6.20 Plot of wave function
We make a plot of the functi0n|(pn (§)|2 as a function of £forn=0, 1, 2, 3,..., where

0,(&) = (72" e 2H (&)

((Mathematica))



Simple Harmonics wave function: plot of ¢n[£]

conjugateRule = {Complex[re , im_] = Complex[re, -im]};
Unprotect[SuperStar] ;

SuperStar /: exp_ * 1= exp /. conjugateRule;
Protect[SuperStar] ;

2
wn , £1 1= 22 g4 yy-1s2 Exp[—%] HermiteH[n, £1;

g[n_, £1 :=y¢[n, £1%;

ptl[n ] := Plot[Evaluate[&[n, £]], {&, -6, 6},
PlotLabel » {n}, PlotPoints -» 100, PlotRange -» All,
DisplayFunction » ldentity, Frame » True] ;

pt2 = Evaluate[Table[ptl[n], {n, O, 8}]11;

Show [GraphicsGrid [Partition[pt2, 2]]]
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Fig.4

6.21 Classical limit: comparison with classical mechanics
Classical mechanics:

X = Xy, cos(at — @),
dx :
p= ma = —-Mw,X, sin(ot - @),

* 1
E=2 +=Mogx’ =—ma]x,’.
2m 2 2

Comparison (classical mechanics and quantum mechanics)
We choose ¢ = /2.

X = Xy, sin(at),
dx
p=M— = MoX,, cos(wt).

dt

We define a classical “positional probability” as
dt
W, . .(X)dx =—,
class( ) T

where dt is the amount of time within dXx and T = 2/ w.

dx = ax,, cos(wt)dt = ax,,dty1-sin’*(at) = wx,,dt |1 —(Xi Y,
M

2
since cos(at) =+4/1-sin’(at) =+, /1 - [Lj ,
XM

X , dt ot
W, . .(X)ox,dt [l -(—) =— =—,
class( )a) M (XM) T '

or

1 1
Wclass(x) =5

27 X 2.
Xy | 1—(—
M‘/ D



But this expression is not correct. Requiring that the total probability of finding the
particle between —Xy and Xy is unity determine the following correct expression

1

1
Wclass(x) = ;—X .
Xm 1/1—()(7)2
M

j class(x)dx_j —dX—l
T 1=

The reason for the factor 2 is as follows. The particle passes between X and X +dx twice
during a period. We note that

In fact

_ |2E _ _N2n+1
I v =
Since
W, ()AE= Wy, (X)X,
or
Wy ()0E = W, (00X = W (0 ﬂdf
or
Wy (6) = Wy ()%
[
and
£= px,
s L e

class (f)df C|aSS(X)dX =

72'\/2I"I+1\/1_( £ )2?’
NI



1 1

Wclass (é:) =

z2n+1 \/1_( & ) '
N2n+1
Classical limit is given by
2
Sl
2 2

The intercepts of the parabora (£2/2) with horizontal lines (n+1/2) are the positions of the

classical turning points. W, (&) is compared with |g0n (§)|2 (quantum mechanics).

class

E+e

-1 )
Wos (&) = %L’L‘géf 0, (£)]d¢.

—&

((Mathematica))



Classical limit of the simple harmonics

Clear["Global " %"]
4:2
o[n , £ =272 g4 (h)-1r2 Exp[—?] HermiteH[n, £]:

plotl = Plot[Table[¢[Nn, £]1"2+n+0.5, {n, 0, 10}] // Evaluate,
{¢&, -6, 6}, PlotStyle » Table[{Thick, Hue[0.07 1]}, {i, O, 10}],
Background - LightGray];

plot2 = Plot[ £2 /2, {&, -6, 6}, PlotStyle » Thickness[0.01],
Frame - True] ;

plot3 = Plot[Table[n+ 0.5, {n, 0, 10}] // Evaluate, {&¢, -6, 6},
PlotStyle -» Table[{Thick, Hue[0.07 1]}, {i, O, 10}]11;

Show[plotl, plot2, plot3, PlotRange » {{-6, 6}, {0, 12}}]

Fig.5



Show[plotl, plot2, plot3, PlotRange -» {{-4, 4}, {0, 4}}]
\ ! /

\ /

w2
T

~/

4

NS}
s~

2 )
Classical limit

1 1

avV2n +1 N
2n+1

dplotl = Plot[Evaluate[wc[&, 3011, {&, -7, 7}, PlotStyle » {Thick, Blue},
PlotRange -» All, Background - LightGray];

WC[{_, n_] o=

dplot2 = Plot[Evaluate[¢[30, £]1°2], {£, -10, 10}, PlotPoints - 100,
PlotStyle -» {Thick, Hue[0]}, PlotRange » All, Background - LightGray] ;

gl = Graphics[{ Text[Style["Classical limit", Black, 15], {-5, 0.07}],
Text[Style['"'n = 30", Black, 201, {1, 0.15}]1}1 ;

Show[dplotl, dplot2, gl]

| |

0.1y = 30

,‘!g H

i HHHH!HIIHH 0

Fig.6 and 7




6.22 One dimensional Schrodinger equation
We consider the one dimensional motion of a particle in a potential energy V(X). The
Schrédinger equation is given by

_f_d_zw(x) +V Xy (x)=Ew(x),
m dx

or

d? 2m 2m
WW(X)—h—ZV(X)W(X)Jrh—zEl//(X)ZO-

This equation is rewritten as
Ly(X)+ Ay () =0,

where
d2
LW(X)=WW(X)+OI(X)V/(X), A=—FE,

with
2m
q(x) = _FV(X) .

L is the self-adjoint operator, and A is the eigenvalue. The weight function is w(x) = 1.

6.23  One dimensional bound state

As a simple example of the calculation of discrete energy levels of a particle (with
mass m) in quantum mechanics, we consider the one dimensional motion of a particle in
the presence of a square-well potential barrier (width 2a and a depth V) as shown below.

V(x) = 0 for |x|>a, and -V, for -a<x<a.
If the energy of the particle E is negative, the particle is confined and in a bound state.

Here we discuss the energy eigenvalues and the eigenfunctions for the bound states from
the solution of the Schrodinger equation.



I Il I11

-V

Fig.8 One dimensional square well potential of width 2a and depth V.
(@) The parity of the wave function
When potential is an even function (symmetric with respect to X), the wave function

should have even parity or odd parity.

((Proof))
[#,H]=0.

7 is the parity operator.

=1 At=R=i"
Ri=-R.  Apr=-p

H is the Hamiltonian.

R p2
H=—+V(X),
2m

and



A2

M7 =A—+V ()

p
2m

MEY +V (AR 7)

1
= om¢
1 N n
=5 (P +V (%)
m
A2 A

1
=P 4V
P (X)

since V (=%) =V (R) . Then we have a simultaneous eigenket:
Hly)=E|w), and #|y)=Aly).

Since 7° =1,
#ly)=Adly)=Zlw) =|v).

Thus we have 4 =+1.

or
Aw)=4y),
(xllw) = £(xw)
Since
) = - X}, o {x}#" = (x]# = (~x
we have
(=xlw) = £(x|y),
or
w(=X) =2y (X).

(b)  Wavefunctions
In the Regions I, I1, and III, the Schrodinger equation takes the form



2

%W(X) — Ky (x)=0 outside the well.

2

%W(X) +kw(x)=0 inside the well.

Here we define

2
: =T, -[ED.

Here we introduce parameters (£ and o) for convenience,

2 2
. 2m|E| _2my, H: 2mV,a LZ|E| B

- —:—8,
n’ n oV, nooaty, a’
or
2
KZ:%&
and
k=" —|E|)——2mV° (I—E)—iﬂz(l—g)
/N n’ v,” a’ ’
where
E 2
8=¥, and f= 2m\/20a :
) 7}
We note that
2
k2+K2=%,
or
&+’ =p,

where ka = £ and ka = 7. The energy ¢is given by



2 2
g:n—:1—§—.

B B
The stationary solution of the three regions are given by
¢ (X) = Ae”,
@, (X)=Be" +Be™,
@, (X)=Ce™.
Q) The wave function with even parity

A=C,
B

B1 :B2 EE.

The wavefunctions can be described by
¢ (X) = Ae”,
@, (X) = Beos(kx),
@ (X) = Ae ™.

The derivatives are obtained by

d¢| (X) — AKeKX
dx ’

920 _ gy sin(k).
dx

dgy, (X) —_A
dx

—KX

ke

Atx=a, ¢(X) and % are continuous. Then we have
X

Ae ™ —Bcos(ka)=0,

— Axe™™ + Bksin(ka) =0,



or
MX=0,

where

@ A
M = e cos(ka) ’ X = .
— ke ksin(ka) B
The condition detM=0 leads to

k sin(ka)e ™ = ke cos(ka),

or
tan(ka) = E for the even parity,
or
xa = katan(ka) for the even parity.
or
n=<¢tané.

The constants A, B, and C are given by
A=C =Be"cos(ka).
The condition of the normalization leads to the value of B.

(i)  The wave function with odd parity

The wavefunctions are given by

¢ (X) =—Ae”,



@, (X) = Bsin(kx),
O (X) = Ae ™.
The derivatives are obtained as

KX

dx

dou () = Bk cos(kx),
dx

doy, (%) — _Ae ™
dx '

Atx=a, ¢(X) and % are continuous. Then we have
X

— Ae™ + Bsin(ka) =0,

— Axe™ —Bkcos(ka) =0,
or

MX=0,

where
—e ™ sin(ka) A
M = X = .
—-ke® —k COS(E) ’ (BJ
2
The condition detM=0 leads to
k cos(ka)e™ = —xe *sin(ka),
or

xa = —kacot(ka) for the odd parity,

or

n=-&coté.



We solve this eigenvalue problem using the Mathematica. The result is as follows.

3p=3 k2 e [ =1

—

B=1 . . )
£~.~]~Eve parity | Odfl parity Eyen parity

L3
.

.

LY
)

]

L A
1

Fig.9 Graphical solution. One solution with even parity for 0<f</2. One solution with
even parity and one solution with odd parity for 772<f<z. Two solutions with
even parity and one solution with odd parity for #7<f<3 /2. Two solutions with
even parity and two solutions with odd parity for 37/2<f<2z. n=_~Etané for the

even parity (red lines). 7 =—-&coté for the odd parity (blue lines). The circles are
denoted by & +7° = 7. The parameter Bis changed as f=1,2, 3,4, and 5. £=

2 2
E:n_—l—f— &=kaand = xa.

v, g B

The normalized wavefunction for the even parity and odd parity are given by



yel =

yelll

yol =

yolll

for the regions I, I, and III, where . is the wavefunction with the even parity and y is

e*M Cos[£]

Cos[x €]

e

Cos [£]2 , Sin[2¢]

n

Sin[x €]

2¢

e

the wavefunction with the odd parity.

s yell =
1, CesI€1%  sin[2¢]
n 2¢
eXN1 Cos[€£] )
1, CosI€1% | sin[2¢]
n 2¢
e™XN SIn[€&]
- ; yoll =
1. Sin[£]12 _ Sin[2¢£]
n 2¢
eXN SIN[§]
1, Sin [£1%  Sin[2¢]
n 2¢

Sin[£12 _ Sin[2¢]

n

2¢

p=1

&1 =0.739085 mi1 = 0.673612 &1 = 0.453753 even
p=2

&1=1.02987 n2 = 1.71446 &1 =0.734844 even
&n =1.89549 1722 =0.638045 &2 =0.101775 odd
p=3

&1=1.17012 1131 =2.76239 &1 = 0.847869 even
632 =2.27886 2= 1.9511 &3 = 0.422976 odd
B=4

9841 =1.25235 Na = 3.7989 &y = 0.901976 cven
Eap =2.47458 iy = 3.14269 en =0.617279 odd
&3 =3.5953 a3 = 1.75322 &3 =0.192111 even



B=5

&s1 =1.30644 ns1 =4.8263, &1=0.931729 even
&so = 2.59574 N5y =4.27342, &2 =10.730486 odd
&s3 =3.83747 ns3 = 3.20528, &3=10.410954 even
&4 ==4.9063 154 =.963467, &4=10.0371307 odd
V)N, Y(x)
A
ﬁ::l
I il mo XA

—cll

=t
Fig.10 Square well potential V(x) of width 2a and depth V. f = 1 and the

corresponding wavefunction y(X) which is normalized. There is one
bound state (even parity) (- &1 = -0.45735), where &= |E|/V,.

V(X)/Vo, Y(X)
A

B2
J >
T =< o xR

—e21




Fig.11 f = 2. There are two bound states. (i) The bound state (denoted by red)
with even parity (- &) = -0.734844). (i1) The bound state (denoted by blue)
with odd parity (-&, =-0.101775).

VX)/Vg, Y(X)
A
ﬁ::3
I il m XA
—£32
—e31
=1
Fig.12 L = 3. There are two bound states. (i) The bound state (denoted by red)

with even parity (-&; = -0.847869). (i1) The bound state (denoted by blue)
with odd parity (-&3, = -0.422976).

VX)/Vy, Y(X)
A
ﬂ::4
I W4 A\ o X/
—c4?
—e4]
=1
Fig.13 f = 4. There are three bound states. (i) The bound state (denoted by red)

with even parity (-&; = -0.901976). (ii) The bound state (denoted by blue)



with odd parity (-& = -0.617279). (iii) The bound state (denoted by red)
with even parity (-&3 =-0.192111).

VX)/Vy, Y¥(X)

—e53

—e89

—e51
=

Fig.14 f = 5. There are four bound states. (i) The bound state (denoted by red)
with even parity (-&; = -0.931729). (ii) The bound state (denoted by blue)
with odd parity (-&; = -0.730486). (iii) The bound state (denoted by red)
with even parity (-&3 = -0.410954). (iv) The bound state (denoted by blue)
with odd parity (-&54 =-0.0371307).
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