Chapter 6 Sturm Liouville Theory Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 9, 2010)

Jacques Charles François Sturm (September 29, 1803 – December 15, 1855) was a French mathematician of German heritage.

http://en.wikipedia.org/wiki/Jacques Charles Fran%C3%A7ois Sturm

Joseph Liouville (24 March 1809 – 8 September 1882) was a French mathematician.

http://en.wikipedia.org/wiki/Joseph Liouville

$$Ly = p_0(x)y'' + p_1(x)y' + p_2(x)y$$
.

- (i) $p_0(x)$, $p_1(x)$, and $p_2(x)$ are real functions of x.
- (ii) $p_0(x), p_0'(x), p_0''(x), p_1(x), p_1'(x), \text{ and } p_2(x) \text{ are continuous}$

((Dirac notation))

$$\langle v|\hat{L}|u\rangle = \int_{a}^{b} v^{*}Ludx = \int_{a}^{b} v^{*}[p_{0}u'' + p_{1}u' + p_{2}u]dx.$$

$$\int_{a}^{b} v^{*}p_{0}u''dx = [v^{*}p_{0}u']_{a}^{b} - \int_{a}^{b} (v^{*}p_{0})'u'dx$$

$$= [v^{*}p_{0}u']_{a}^{b} - [(v^{*}p_{0})'u]_{a}^{b} + \int_{a}^{b} (p_{0}v^{*})''udx$$

$$\int_{a}^{b} v^{*} p_{1} u' dx = [v^{*} p_{1} u]_{a}^{b} - \int_{a}^{b} (v^{*} p_{1})' u dx.$$

Then

$$\langle v|\hat{L}|u\rangle = \int_{a}^{b} [(p_{0}v^{*})'' - (p_{1}v^{*})' + p_{2}v^{*}]udx + [v^{*}p_{0}u' - (v^{*}p_{0})'u + v^{*}p_{1}u]_{a}^{b}.$$

Here note that

$$[v^*p_0u'-(v^*p_0)'u+v^*p_1u]_a^b = [v^*p_0u'-(v^*'p_0+v^*p_0')u+v^*p_1u]_a^b$$
$$= [(u'v^*-uv^*')p_0+(p_1-p_0')uv^*]_a^b$$

Then we have

$$\langle v | \hat{L} | u \rangle = \int_{a}^{b} [(p_0 v^*)'' - (p_1 v^*)' + p_2 v^*] u dx + [(u'v^* - uv^*') p_0 + (p_1 - p_0') uv^*]_a^b.$$

The terms at the boundary (x = a and x = b) also vanish. So we get

$$\langle v | \hat{L} | u \rangle = \int_{a}^{b} [(p_0 v^*)'' - (p_1 v^*)' + p_2 v^*] u dx = \int_{a}^{b} u \overline{L} v^* dx,$$

$$\langle v | \hat{L} | u \rangle^* = \int_a^b [(p_0 v)'' - (p_1 v)' + p_2 v] u^* dx = \int_a^b u^* \overline{L} v dx,$$

where the adjoint operator \overline{L} is defined as

$$\overline{L}y = (p_0 y)'' - (p_1 y)' + p_2 y$$
.

Thus we have

$$\langle u|\hat{L}^{\dagger}|v\rangle = \langle v|\hat{L}|u\rangle^{*} = \int_{a}^{b} u^{*}\overline{L}vdx. \tag{1}$$

(here we define the Hermitian conjugate operator).

Note that

$$\langle u|\hat{L}|v\rangle = \int_{a}^{b} u^*Lvdx, \qquad (2)$$

from the definition. Suppose that $\overline{L}v = Lv$. Then we have

$$\langle u|\hat{L}^+|v\rangle = \langle u|\hat{L}|v\rangle$$
. (Hermitian).

When $\overline{L}y = Ly$,

$$\overline{L}y = (p_0 y)'' - (p_1 y)' + p_2 y = p_0 y'' + p_1 y' + p_2 y$$
,

or

$$p_0y''+2p_0'y'+p_0''y-(p_1'y+p_1y')=p_0y''+p_1y',$$

or

$$2(p_0'-p_1)y'+(p_0''-p_1')y=0$$
.

When the condition $p_0' = p_1$ is satisfied,

$$Ly = \overline{L}y = \frac{d}{dx}[p_0(x)y'] + p_2(x)y.$$

The operator L is said to be Hermitian with respect to the functions u and v, satisfying the boundary conditions.

((Mathematica))

(a) Example-1

L1: a linear operator L1B: an adjoint operator

What is the condition for the self-adjoint?

```
Clear["Global`*"];

L1 := p0[x] D[#, {x, 2}] + p1[x] D[#, x] + p2[x] # &

L1B := D[p0[x] #, {x, 2}] - D[p1[x] #, x] + p2[x] # &

eq1 = L1[\psi[x]] // Simplify

p2[x] \psi[x] + p1[x] \psi'[x] + p0[x] \psi''[x]

eq2 = L1B[\psi[x]] // Simplify

p2[x] \psi[x] - p1[x] \psi'[x] + 2p0'[x] \psi'[x] +

\psi[x] (-p1'[x] + p0''[x]) + p0[x] \psi''[x]

eq12 = Collect[(eq1 - eq2), {\psi[x], \psi[x], \psi[x], \psi]}

(2 p1[x] - 2 p0'[x]) \psi'[x] + \psi[x] (p1'[x] - p0''[x])
```

(b) Example-2

Arfken 10 - 1 - 8

For a second-order differential operator L that is self-adjoint, show that $y2\ L(y1)-y1\ L(y2)=[p(y1'y2-y1y2')]'$

```
Clear["Global`*"]
LS := D[p[x] D[#, x], x] + q[x] # &
eq1 = y2[x] LS[y1[x]] - y1[x] LS[y2[x]] // Simplify
y2[x] (p'[x] y1'[x] + p[x] y1''[x]) - y1[x] (p'[x] y2'[x] + p[x] y2''[x])
eq11 = Collect[eq1, {p[x], p'[x]}]
p'[x] (y2[x] y1'[x] - y1[x] y2'[x]) + p[x] (y2[x] y1''[x] - y1[x] y2''[x])
eq2 = D[p[x] (y2[x] y1'[x] - y1[x] y2'[x]), x]
p'[x] (y2[x] y1'[x] - y1[x] y2'[x]) + p[x] (y2[x] y1''[x] - y1[x] y2''[x])
eq11 - eq2
0
```

(c) Example-3

Given that Lu = 0 and gLu is self adjoint, show that for the adjoint operator \overline{L} , $\overline{L}(gu) = 0$.

We define the adjoint operator as follows.

L1 := p0[x] D[#, {x, 2}] + p1[x] D[#, x] + p2[x] # &

L1B := D[p0[x] #, {x, 2}] - D[p1[x] #, x] + p2[x] # &

eq1 = L1[u[x]]

p2[x] u[x] + p1[x] u'[x] + p0[x] u''[x]

eq11 = Solve[eq1 == 0, u''[x]]

$$\left\{\left\{u''[x] \rightarrow \frac{-p2[x] u[x] - p1[x] u'[x]}{p0[x]}\right\}\right\}$$

eq2 = g[x] L1[u[x]] // Expand

g[x] p2[x] u[x] + g[x] p1[x] u'[x] + g[x] p0[x] u''[x]

The condition that gLu is self - adjoint:

We now show that L1B[g u] = 0

6.2 Formation of self adjoint differential equation

Any linear 2nd differential equation can be put in this form by multiplying by an appropriate function f(x).

Suppose that

$$Ly = p_0 y'' + p_1 y' + p_2 y \text{ (general case)}.$$
 (1)

Multiplying this Eq.(1) by f

$$f(Ly) = fp_0y'' + fp_1y' + fp_2y = \frac{d}{dx}[fp_0y'] + fp_2y$$
,

or

$$\frac{d}{dx}(fp_0) = fp_1,$$

or

$$\frac{d(fp_0)}{fp_0} = \frac{p_1}{p_0} dx ,$$

or

$$f(x) = \frac{1}{p_0(x)} \exp(\int_0^x \frac{p_1(t)}{p_0(t)} dt)$$
.

For a self-adjoint L we have

$$Ly = \frac{d}{dx}[p(x)y'] + q(x)y.$$

6.3 Eigenvalue problem I

We now examine the differential equation

$$Ly + \lambda w(x)y = 0$$
.

 λ is called the eigenvalue and y(x) is called the eigenfunction for a particular λ . w(x) is the weight function.

Boundary condition:

(i)

$$Ay(a) + By'(a) = 0$$

$$Cy(b) + Dy'(b) = 0$$

where A. B, C, and D are given constants.

(ii) Periodic boundary condition

$$y(x) = y(x+b-a).$$

6.4 Example

(A) Legendre differential equation

$$(1-x^2)y''-2xy'+n(n+1)y=0$$
,
 $p_0(x)=1-x^2$, $p_1(x)=-2x=p_0'(x)$,

Thus this is self-adjoint

$$Ly + \lambda wy = 0$$
,

with

$$Ly = \frac{d}{dx}[(1-x^2)y'],$$

$$w = 1$$

$$\lambda = n(n+1)$$

(B) Laguerre's differential equation

$$xy''+(1-x)y'+ay=0$$
,

with

$$p_0(x) = x$$
, $p_1(x) = 1 - x$,

Since $p_0'(x) = 1 \neq p_1(x)$, this is not a self-adjoint. We multiply this Eq. by a function f,

$$f = \frac{1}{p_0(x)} \exp\left(\int_0^x \frac{p_1(t)}{p_0(t)} dt\right)$$
$$= \frac{1}{x} \exp\left(\int_0^x \frac{1-t}{t} dt\right)$$
$$= \frac{1}{x} \exp(\ln x - x) = \frac{1}{x} e^{-x} x = e^{-x}$$

Then we have

$$xe^{-x}y''+(1-x)e^{-x}y'+ae^{-x}y=0$$
,

or

$$Ly + \lambda wy = 0$$
,

with

$$Ly = \frac{d}{dx}(xe^{-x}y')$$

$$\lambda = a$$

$$u_1 - e^{-x}$$

(C) Hermite differential equation

$$y''-2xy'+2\alpha y=0,$$

$$p_0(x) = 1,$$
 $p_1(x) = -2x,$

Since $p_0'(x) = 0 \neq p_1(x) = -2$, this is not a self-adjoint. We multiply this Eq. by a function f,

$$f = \frac{1}{p_0(x)} \exp(\int_0^x \frac{p_1(t)}{p_0(t)} dt) = \exp[\int_0^x (-2t) dt] = e^{-x^2}.$$

Then we have

$$e^{-x^2}y''-2xe^{-x^2}y'+2\alpha e^{-x^2}y=0$$
,

or

$$Ly + \lambda wy = 0$$
,

with

$$Ly = \frac{d}{dx} (e^{-x^2} y')$$

$$\lambda = 2\alpha$$

$$2x + e^{-x^2}$$

(D) Bessel differential equation

$$x^2y''+xy'+(x^2-n^2)y=0$$
,

$$p_0(x) = x^2$$
, $p_1(x) = x$.

Since $p_0'(x) = 2x \neq p_1(x) = x$, this is not a self-adjoint. We multiply this Eq. by a function f,

$$f = \frac{1}{p_0(x)} \exp(\int_0^x \frac{p_1(t)}{p_0(t)} dt) = \frac{1}{x^2} \exp(\int_0^x \frac{t}{t^2} dt] = \frac{1}{x^2} \exp(\ln x) = \frac{1}{x}.$$

Then we have

$$xy''+y'+(x-\frac{n^2}{x})y=0$$
,

or

$$Ly + \lambda wy = 0,$$

with

$$Ly = \frac{d}{dx}(xy') - \frac{n^2}{x}y$$

$$\lambda = 1$$

$$w = x$$

6.5. Eigenvalue problem II

L is a self-adjoint differential operator. u and v are the solutions of

$$Ly + \lambda wy = 0$$

which satisfies the boundary condition

$$[v^*(pu')]_a^b = 0$$
 and $[u^*(pv')]_a^b = 0$

We now examine

$$\langle v|\hat{L}|u\rangle = \int_{a}^{b} v^{*}Ludx = \int_{a}^{b} v^{*}[(pu')'+qu]dx$$

$$= [v^{*}(pu')]_{a}^{b} - \int_{a}^{b} v^{*}'pu'dx + \int_{a}^{b} v^{*}qudx$$

$$= -\int_{a}^{b} v^{*}'pu'dx + \int_{a}^{b} v^{*}qudx = -[v^{*}(pu')]_{a}^{b} + \int_{a}^{b} (pv^{*}')'udx + \int_{a}^{b} v^{*}qudx$$

$$= \int_{a}^{b} (pv^{*}')'udx + \int_{a}^{b} v^{*}qudx = \int_{a}^{b} uLv^{*}udx = \langle u|\hat{L}|v\rangle^{*} = \langle v|\hat{L}^{+}|u\rangle$$

Then we have $\hat{L}^+ = \hat{L}$.

The Hermite operators have three properties that are of extreme importance in physics.

- A. The eigenvalues are real.
- B. The eigenfunctions are orthogonal.
- C. The eigenfunctions form a complete set.

A. Real eigenvalue

Let

$$Lu_i + \lambda_i w u_i = 0,$$

$$Lu_i + \lambda_i w u_i = 0$$

Then taking the complex conjugate

$$Lu_j^* + \lambda_j^* w u_j^* = 0$$

Here L is a real operator (p and q are real functions of x) and w(x) is a real function. But we permit λ_i and λ_j to be complex.

$$(u_{j}^{*}Lu_{i}-u_{i}Lu_{j}^{*})=(\lambda_{j}^{*}-\lambda_{i})wu_{i}u_{j}^{*},$$

$$\int_{a}^{b} u_{j}^{*} L u_{i} dx - \int_{a}^{b} u_{i} L u_{j}^{*} dx = (\lambda_{j}^{*} - \lambda_{i}) \int_{a}^{b} w u_{i} u_{j}^{*} dx.$$

Since *L* is Hermitian, the left-hand side vanishes,

$$\int_{a}^{b} u_{j}^{*} L u_{i} dx - \int_{a}^{b} u_{i} L u_{j}^{*} dx = \left\langle u_{j} \left| \hat{L} \right| u_{i} \right\rangle - \left\langle u_{i} \left| \hat{L} \right| u_{j} \right\rangle^{*} = \left\langle u_{j} \left| \hat{L} \right| u_{i} \right\rangle - \left\langle u_{j} \left| \hat{L} \right| u_{i} \right\rangle = 0,$$

$$(\lambda_j^* - \lambda_i) \int_a^b w u_i u_j^* dx = 0.$$

If i = j,

$$(\lambda_i^* - \lambda_i) \int_a^b w |u_i|^2 dx = 0.$$

Since $\int_{a}^{b} w |u_i|^2 dx = 1$ (normalization), we have

$$\lambda_i^* - \lambda_i = 0.$$

B. Orthogonal eigenfunctions

If we take $i \neq j$ and $\lambda_i \neq \lambda_j$, the integral of the product of the two different eigenfunctions vanish.

$$\int_{a}^{b} w u_i u_j^* dx = 0.$$

We say that the eigenfunctions $u_i(x)$ and $u_j(x)$ are orthogonal with respect to the weighting function w(x) over the interval [a,b]. We should mention that one does in the case of $\lambda_i = \lambda_j$ $(i \neq j)$ — when one has a degeneracy — so the functions $u_i(x)$ and $u_j(x)$ are linearly independent but not orthogonal.

C. Completeness

For any function $\psi(x)$, $\psi(x)$ can be expressed by

$$\psi(x) = \sum_{n} a_{n} u_{n}(x) .$$

The expansion coefficient is determined by the orthogonality of the u_n 's.

$$a_n = \int_a^b u_n^*(x) w(x) \psi(x) dx,$$

where

$$\int_{a}^{b} u_{n}^{*}(x)w(x)u_{m}(x)dx = \delta_{n.m}.$$

6.6 Simple differential operator: a particle in a box

We consider a simple case where

$$L = \frac{d^2}{dx^2}$$
 and $w(x) = 1$.

This operator is Hermitian since p(x) = 1 and q(x) = 0. The eigenfunctions and eigenvalues of this operator satisfy the equation,

$$Lu_n + \lambda_n u_n = 0$$

or

$$\frac{d^2}{dx^2}u_n + \lambda_n u_n = 0.$$

where $\lambda_n = -k_n^2$. The solution of this differential equation is

$$u_n(x) = A_n \cos(k_n x) + B_n \sin(k_n x)$$

If we specify the boundary conditions that $u_n(x=0) = u_n(x=a) = 0$, then we have

$$A_n = 0.$$
 and $k_n = \frac{\pi}{a}n$ $(n = 1, 2, 3,....).$

Then we have the normalized eigenfunction

$$u_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{\pi n}{a}x),$$

with the eigenvalue

$$\lambda_n = -\left(\frac{\pi n}{a}\right)^2.$$

This problem is the same as for the one dimensional Schrodinger equation of a particle in a well potential,

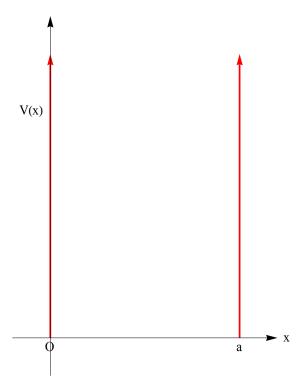


Fig.1 The infinite square-well potential energy.

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n(x) = E_n\psi_n(x)$$

or

$$\frac{d^{2}}{dx^{2}}\psi_{n}(x) + k_{n}^{2}\psi_{n}(x) = 0$$

where the energy eigenvalue is

$$E_n = \frac{\hbar^2}{2m} k_n^2.$$

Under the boundary condition that $\psi_n(x=0) = \psi_n(x=a) = 0$, then we have

$$k_n = \frac{\pi}{a}n$$
 (n = 1, 2, 3,....).

and the normalized wave function

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{\pi nx}{a})$$

with

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a}\right)^2.$$

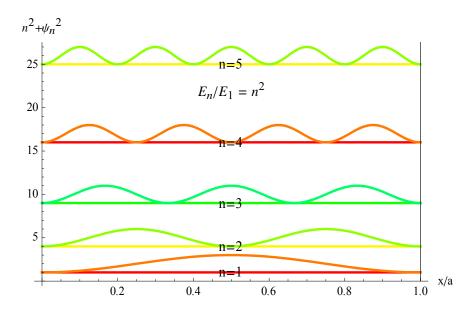


Fig.2 The energy level E_n is given by $E_n = E_1 n^2$. $E_1 = \frac{\hbar^2 \pi^2}{2ma^2}$. Plot of $(n^2 + \psi_n^2)$ as a function of x/a.

6.7 One dimensional harmonic oscillator: Quantum Mechanics

The commutation relation;

$$[\hat{x}, \hat{p}] = i\hbar$$
.

The Hamiltonian of the simple harmonics

$$\hat{H} = \frac{1}{2m} \, \hat{p}^2 + \frac{m \omega_0^2}{2} \, \hat{x}^2 \, .$$

The eigenvalue problem of the simple harmonics in quantum mechanics is given by

$$\hat{H}|n\rangle = \varepsilon_n|n\rangle$$
,

with

$$\varepsilon_n = \left(n + \frac{1}{2}\right)\hbar\omega_0,$$

where n = 0, 1, 2, 3,...

Here we introduce the creation operator and annihilation operators given by

$$\hat{a} = \frac{\beta}{\sqrt{2}} \left(\hat{x} + \frac{i\hat{p}}{m\omega_0} \right) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega_0}{\hbar}} \hat{x} + \frac{i\hat{p}}{\sqrt{m\hbar\omega_0}} \right),$$

$$\hat{a}^{+} = \frac{\beta}{\sqrt{2}} \left(\hat{x} - \frac{i\hat{p}}{m\omega_0} \right) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega_0}{\hbar}} \hat{x} - \frac{i\hat{p}}{\sqrt{m\hbar\omega_0}} \right),$$

with

$$\beta = \sqrt{\frac{m\omega_0}{\hbar}}$$
, (the unit of β is cm⁻¹).

The operators \hat{x} and \hat{p} are expressed in terms of \hat{a} and $\hat{a}^{\scriptscriptstyle +}$,

$$\hat{x} = \frac{1}{\sqrt{2}\beta} (\hat{a} + \hat{a}^{\dagger}) = \sqrt{\frac{\hbar}{2m\omega_0}} (\hat{a} + \hat{a}^{\dagger}),$$

$$\hat{p} = \frac{1}{\sqrt{2}\beta} \frac{m\omega_0}{i} (\hat{a} - \hat{a}^+) = \frac{1}{i} \sqrt{\frac{m\hbar\omega_0}{2}} (\hat{a} - \hat{a}^+).$$

Note that

$$[\hat{x}, \hat{p}] = \frac{1}{(\sqrt{2}\beta)^2} \frac{m\omega_0}{i} [\hat{a} + \hat{a}^+, \hat{a} - \hat{a}^+] = -\frac{\hbar}{i} [\hat{a}, \hat{a}^+],$$

then we have

$$\left[\hat{a},\hat{a}^{+}\right]=\hat{1}$$
.

Since

$$\hat{a}^{+}\hat{a} = \frac{\beta^{2}}{2} \left(\hat{x} - \frac{i\hat{p}}{m\omega_{0}} \right) \left(\hat{x} + \frac{i\hat{p}}{m\omega_{0}} \right) = \frac{\beta^{2}}{2} \left(\hat{x}^{2} + \frac{\hat{p}^{2}}{m^{2}\omega_{0}^{2}} - i\frac{1}{m\omega_{0}} [\hat{p}, \hat{x}] \right),$$

or

$$\hat{a}^{\dagger}\hat{a} = \frac{1}{\hbar\omega_0} \left(\hat{H} - \frac{1}{2}\hbar\omega_0 \right),$$

we obtaine the Hamiltonian as

$$\hat{H} = \hbar \omega_0 \left(\hat{N} + \frac{1}{2} \right).$$

where

$$\hat{N} = \hat{a}^{\dagger} \hat{a}$$
.

The operator \hat{N} is Hermitian since

$$\hat{N}^{+} = (\hat{a}^{+}\hat{a})^{+} = \hat{a}^{+}\hat{a} = \hat{N}$$

The eigenvectors of \hat{H} are those of \hat{N} , and vice versa since $[\hat{H}, \hat{N}] = 0$.

6.8 Annihilation operator \hat{a} and creation operator \hat{a}^+

$$[\hat{N}, \hat{a}] = [\hat{a}^{+} \hat{a}, \hat{a}] = \hat{a}^{+} \hat{a} \hat{a} - \hat{a} \hat{a}^{+} \hat{a} = [\hat{a}^{+}, \hat{a}] \hat{a} = -\hat{a} ,$$

$$[\hat{N}, \hat{a}^{+}] = [\hat{a}^{+} \hat{a}, \hat{a}^{+}] = \hat{a}^{+} \hat{a} \hat{a}^{+} - \hat{a}^{+} \hat{a}^{+} \hat{a} = \hat{a}^{+} [\hat{a}, \hat{a}^{+}] = \hat{a}^{+} .$$

Thus we have the relations

$$[\hat{N}, \hat{a}] = -\hat{a} ,$$

and

$$[\hat{N}, \hat{a}^+] = \hat{a}^+$$
.

From the relation $[\hat{N}, \hat{a}]|n\rangle = -\hat{a}|n\rangle$,

$$(\hat{N}\hat{a} - \hat{a}\hat{N})|n\rangle = -\hat{a}|n\rangle$$
,

or

$$\hat{N}(\hat{a}|n\rangle) = (n-1)\hat{a}|n\rangle,$$

which implies that $\hat{a}|n\rangle$ is the eigenket of \hat{N} with the eigenvalue (n-1),

$$\hat{a}|n\rangle \approx |n-1\rangle$$
.

Similarly, from the relation $[\hat{N}, \hat{a}^+]|n\rangle = \hat{a}^+|n\rangle$, we have

$$(\hat{N}\hat{a} - \hat{a}\hat{N})|n\rangle = -\hat{a}|n\rangle,$$

or

$$\hat{N}(\hat{a}^+|n\rangle) = (n+1)\hat{a}^+|n\rangle,$$

which implies that $\hat{a}^+|n\rangle$ is the eigenket of \hat{N} with the eigenvalue (n+1),

$$\hat{a}^+|n\rangle \approx |n+1\rangle$$
.

Now we need to show that n should be either zero or positive integers: n = 0, 1, 2, 3, ...

We note that

$$\langle n | \hat{a}^{\dagger} \hat{a} | n \rangle = n \langle n | n \rangle \ge 0$$

$$\langle n|\hat{a}\hat{a}^+|n\rangle = \langle n|\hat{a}^+\hat{a} + 1|n\rangle = (n+1)\langle n|n\rangle \ge 0$$

The norm of a ket vector is non-negative and the vanishing of the norm is a necessary and sufficient condition for the vanishing of the ket vector. In other words, $n \ge 0$. If n = 0, $\hat{a}|n\rangle = 0$. If $n \ne 0$, $\hat{a}|n\rangle$ is a nonzero ket vector of norm $n\langle n|n\rangle$. If n>0, one successively forms the set of eigenkets,

$$\hat{a}|n\rangle,\hat{a}^2|n\rangle,\hat{a}^3|n\rangle,\ldots,\hat{a}^p|n\rangle$$
, belonging to the eigenvalues, n -1, n -2, n -3,...., n - p ,

This set is certainly limited since the eigenvalues of \hat{N} have a lower limit of zero. In other words, the eigenket $\hat{a}^p | n \rangle \approx | n - p \rangle$, or n - p = 0. Thus n should be a positive integer. Similarly, one successively forms the set of eigenkets,

$$\hat{a}^+|n\rangle, \hat{a}^{+2}|n\rangle, \hat{a}^{+3}|n\rangle, \dots, \hat{a}^{+p}|n\rangle$$
, belonging to the eigenvalues, $n+1, n+2, n+3, \dots, n+p$,

Thus the eigenvalues are either zero or positive integers: n = 0, 1, 2, 3, 4,

(A) The properties of \hat{a}^+ and \hat{a}

(i)
$$\hat{a}|0\rangle = 0$$

since $\langle 0|\hat{a}^{\dagger}\hat{a}|0\rangle = 0$.

(ii)
$$\hat{a}^{+}|n\rangle = \sqrt{n+1}|n+1\rangle,$$
$$[\hat{N}, \hat{a}^{+}]|n\rangle = \hat{a}^{+}|n\rangle,$$
$$\hat{N}\hat{a}^{+}|n\rangle = \hat{a}^{+}\hat{N}|n\rangle + \hat{a}^{+}|n\rangle = (n+1)\hat{a}^{+}|n\rangle.$$

 $\hat{a}^+|n\rangle$ is an eigenket of \hat{N} with the eigenvalue (n+1).

Then

$$\hat{a}^+|n\rangle = c|n+1\rangle.$$

Since

$$\langle n|\hat{a}\hat{a}^+|n\rangle = |c|^2\langle n+1|n+1\rangle = |c|^2$$
,

or

$$\langle n|\hat{a}^{\dagger}\hat{a}+1|n\rangle=n+1=\left|c\right|^{2}$$
,

or

$$|c| = \sqrt{n+1} .$$

(iii)
$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$$
,
 $[\hat{N}, \hat{a}]|n\rangle = -\hat{a}|n\rangle$,
 $\hat{N}\hat{a}|n\rangle = \hat{a}\hat{N}|n\rangle - \hat{a}|n\rangle = (n-1)\hat{a}|n\rangle$.

 $\hat{a}|n\rangle$ is an eigenket of \hat{N} with the eigenvalue (n-1). Then we have

$$\hat{a}|n\rangle = c|n-1\rangle$$
.

Since

$$\left\langle n\left|\hat{a}^{+}\hat{a}\right|n\right\rangle =\left|c\right|^{2}\left\langle n-1\right|n-1\right\rangle =\left|c\right|^{2}=n\;,$$

or

$$|c| = \sqrt{n}$$
.

(B) Basis vectors in terms of $|0\rangle$

We use the relation

$$|1\rangle = \hat{a}^+|0\rangle$$

$$|2\rangle = \frac{1}{\sqrt{2}} \hat{a}^+ |1\rangle = \frac{1}{\sqrt{2!}} (\hat{a}^+)^2 |0\rangle$$

$$\left|3\right\rangle = \frac{1}{\sqrt{3}} \, \hat{a}^{+} \left|2\right\rangle = \frac{1}{\sqrt{3!}} \left(\hat{a}^{+}\right)^{3} \left|0\right\rangle$$

$$|n\rangle = \frac{1}{\sqrt{n}} \hat{a}^+ |n-1\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^+)^n |0\rangle$$

6.9 Matrices

The expression for $\hat{x}|n\rangle$ and $\hat{p}|n\rangle$

$$\hat{x}\big|n\big\rangle = \sqrt{\frac{\hbar}{2m\omega_0}} \Big(\hat{a} + \hat{a}^+\Big)n\big\rangle = \sqrt{\frac{\hbar}{2m\omega_0}} \Big(\sqrt{n+1}\big|n+1\big\rangle + \sqrt{n}\big|n-1\big\rangle\Big)$$

$$\hat{p}\big|n\big\rangle = \sqrt{\frac{m\hbar\,\omega_0}{2}}i\big(\hat{a}^+ - \hat{a}\big)n\big\rangle = \sqrt{\frac{m\hbar\,\omega_0}{2}}i\big(\sqrt{n+1}\big|n+1\big\rangle - \sqrt{n}\big|n-1\big\rangle\big)$$

Therefore the matrix elements of \hat{a} , \hat{a}^+ , \hat{x} , and \hat{p} operators in the $\{n\}$ representation are as follows.

$$\langle n'|\hat{a}|n\rangle = \sqrt{n}\delta_{n',n-1},$$

$$\langle n' | \hat{a}^+ | n \rangle = \sqrt{n+1} \delta_{n',n+1}$$
,

$$\langle n'|\hat{x}|n\rangle = \sqrt{\frac{\hbar}{2m\omega_0}} \left(\sqrt{n+1}\delta_{n',n+1} + \sqrt{n}\delta_{n',n-1}\right),$$

$$\langle n'|\hat{p}|n\rangle = i\sqrt{\frac{m\hbar\omega_0}{2}}\left(\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1}\right),$$

$$\hat{H} = \hbar \omega \begin{pmatrix} 1/2 & 0 & \cdots & 0 & \cdots \\ 0 & 3/2 & & & \\ \vdots & & \ddots & & \\ 0 & & & (2n+1)/2 & \\ \vdots & & & \ddots \end{pmatrix},$$

$$\hat{x} = \frac{1}{\sqrt{2}\beta} \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0 \\ \sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \sqrt{4} \\ 0 & 0 & 0 & \sqrt{4} & 0 \\ & \vdots & & & \end{pmatrix},$$

$$\hat{p} = \frac{m\omega_0}{\sqrt{2}i\beta} \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0 \\ -\sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\ 0 & -\sqrt{2} & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & -\sqrt{3} & 0 & \sqrt{4} \\ 0 & 0 & 0 & -\sqrt{4} & 0 \\ \vdots & & & \vdots \end{pmatrix},$$

$$\hat{a} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & 0 & 0 & \sqrt{4} \\ 0 & 0 & 0 & 0 & 0 \\ & \vdots & & & \end{pmatrix},$$

$$\hat{a}^{+} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 0 & \sqrt{4} & 0 \\ & \vdots & & & \end{pmatrix},$$

Mean values and root-mean-square deviations of \hat{x} and \hat{p} in the state $|n\rangle$.

$$\langle n|\hat{x}|n\rangle = 0,$$

$$\langle n|\hat{p}|n\rangle = 0,$$

$$(\Delta x)^2 = \langle n|\hat{x}^2|n\rangle = \left(n + \frac{1}{2}\right)\frac{\hbar}{m\omega_0},$$

$$(\Delta p)^2 = \langle n|\hat{p}^2|n\rangle = \left(n + \frac{1}{2}\right)m\hbar\omega_0.$$

The product $\Delta x \Delta p$ is evaluated as

$$\Delta x \Delta p = \left(n + \frac{1}{2}\right)\hbar \ge \frac{1}{2}\hbar$$
 (Heisenberg's principle of uncertainty)

Note that

$$\hat{x}^2 = \frac{\hbar}{2m\omega_0} (\hat{a}^+ + \hat{a})(\hat{a}^+ + \hat{a}) = \frac{\hbar}{2m\omega_0} (\hat{a}^+ \hat{a}^+ + \hat{a}\hat{a} + \hat{a}^+ \hat{a} + \hat{a}\hat{a}^+),$$

$$\hat{p}^2 = \frac{m\hbar\omega_0}{2} (\hat{a}^+ - \hat{a})(\hat{a}^+ - \hat{a}) = \frac{m\hbar\omega_0}{2} (\hat{a}^+ \hat{a}^+ + \hat{a}\hat{a} - \hat{a}^+\hat{a} - \hat{a}\hat{a}^+),$$

and

$$\langle n | (\hat{a}^+)^2 | n \rangle = 0$$
,

$$\langle n|\hat{a}^2|n\rangle=0$$
,

$$\langle n|\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}|n\rangle = \langle n|2\hat{a}^{\dagger}\hat{a} + 1|n\rangle = 2n + 1$$
.

Mean potential energy

$$\langle V \rangle = \frac{1}{2} m \omega^2 \langle n | \hat{x}^2 | n \rangle = \frac{1}{2} m \omega^2 (\Delta x)^2 = \frac{1}{2} \varepsilon_n.$$

Mean kinetic energy

$$\langle K \rangle = \frac{1}{2m} \langle n | \hat{p}^2 | n \rangle = \frac{1}{2m} (\Delta p)^2 = \frac{1}{2} \varepsilon_n.$$

Thus we have

$$\langle V \rangle = \langle K \rangle$$
.

6.10 Representation of the state $|n\rangle$ under the basis of $|x\rangle$ and $|\xi\rangle$

We assume that

$$\xi = \beta x$$
.

where ξ is a dimensionless quantity. Then we have

$$\langle \xi | \xi' \rangle = \delta(\xi - \xi') = \delta[\beta(x - x')] = \frac{1}{\beta} \delta(x - x') = \frac{1}{\beta} \langle x | x' \rangle,$$

using the property of the Dirac delta function (which will be discussed later). This implies that

$$\left|\xi\right\rangle = \frac{1}{\sqrt{\beta}}\left|x\right\rangle.$$

Using this notation, the wave functions in the presentation of $\{|x>\}$ and $\{|\xi>\}$ can be expressed by

$$\varphi_n(x) = \langle x | n \rangle = \sqrt{\beta} \langle \xi | n \rangle = \sqrt{\beta} \varphi_n(\xi).$$

We also note that

$$\hat{a} = \frac{1}{\sqrt{2}} (\xi + \frac{\partial}{\partial \xi}),$$

and

$$\hat{a}^{+} = \frac{1}{\sqrt{2}} (\xi - \frac{\partial}{\partial \xi}).$$

6.11 Solution for the wave function $\varphi_n(\xi)$

We start with

$$\hat{a}|0\rangle = 0$$
,

or

$$\frac{\beta}{\sqrt{2}} \left(\hat{x} + i \frac{\hat{p}}{m\omega_0} \right) |0\rangle = 0,$$

with

$$\beta = \sqrt{\frac{m\omega_0}{\hbar}} \; ,$$

$$\langle x | \frac{\beta}{\sqrt{2}} \left(\hat{x} + i \frac{\hat{p}}{m\omega_0} \right) | 0 \rangle = 0,$$

$$x\langle x|0\rangle + \frac{i}{m\omega_0}\langle x|\hat{p}|0\rangle = 0$$
.

We assume that

$$\varphi_0(x) = \langle x | 0 \rangle$$
.

Then we have

$$\beta x \varphi_0(x) + \frac{\hbar}{m\omega_0} \beta \frac{\partial}{\partial x} \varphi_0(x) = 0,$$

$$\beta x \varphi_0(x) + \frac{1}{\beta} \frac{\partial}{\partial x} \varphi_0(x) = 0$$
.

Since
$$\frac{\partial}{\partial x} = \frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi} = \beta \frac{\partial}{\partial \xi}$$
, we get

$$(\xi + \frac{\partial}{\partial \xi})\varphi_0(\xi) = 0,$$

or

$$\frac{\partial}{\partial \xi} \varphi_0(\xi) = -\xi \varphi_0(\xi) \,,$$

where

$$\varphi_0(\xi) = \langle \xi | 0 \rangle$$
.

The wave function $\varphi_0(\xi)$ can be obtained as

$$\varphi_0(\xi) = A_0 e^{-\xi^2/2}$$
.

The condition of normalization given by

$$1 = \int_{-\infty}^{\infty} |\varphi_0(\xi)|^2 d\xi = |A_0|^2 \int_{-\infty}^{\infty} e^{-\xi^2} d\xi = |A_0|^2 \pi$$

leads to $A_0 = \pi^{-1/4}$. Here we assume that A_0 is real. then we have

$$\varphi_0(\xi) = \pi^{-1/4} e^{-\xi^2/2}$$
.

The wave function $\varphi_n(x)$ is given by

$$\varphi_{n}(x) = \langle x | n \rangle = \frac{1}{\sqrt{n!}} \langle x | (\hat{a}^{+})^{n} | 0 \rangle = \frac{1}{\sqrt{n!}} \frac{1}{\sqrt{2^{n}}} \beta^{n} \langle x | (\hat{x} - \frac{i\hat{p}}{m\omega_{0}})^{n} | 0 \rangle$$
$$= \frac{1}{\sqrt{n!}} \frac{1}{\sqrt{2^{n}}} \beta^{n} \left(x - \frac{\hbar}{m\omega_{0}} \frac{\partial}{\partial x} \right)^{n} \varphi_{0}(x)$$

(Note)) In general, one can use the formula,

$$\langle x | f(\hat{x}, \hat{p}) | n \rangle = f(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) \langle x | n \rangle$$

Since

$$\varphi_n(\xi) = \frac{1}{\sqrt{\beta}} \varphi_n(x)$$

we have

$$\varphi_n(\xi) = \frac{1}{\sqrt{n!}} \frac{1}{\sqrt{2^n}} (\xi - \frac{\partial}{\partial \xi})^n \varphi_0(\xi),$$

or

$$\varphi_n(\xi) = (\sqrt{\pi} \, 2^n n!)^{-1/2} (\xi - \frac{\partial}{\partial \xi})^n e^{-\xi^2/2}.$$

Using the operator identity

$$\xi - \frac{\partial}{\partial \xi} = -e^{\xi^2/2} \frac{\partial}{\partial \xi} e^{-\xi^2/2}$$

$$(\xi - \frac{\partial}{\partial \xi})^2 = -e^{\xi^2/2} \frac{\partial}{\partial \xi} e^{-\xi^2/2} (-e^{\xi^2/2} \frac{\partial}{\partial \xi} e^{-\xi^2/2})$$
$$= (-1)^2 e^{\xi^2/2} \frac{\partial^2}{\partial \xi^2} e^{-\xi^2/2}$$

in general

$$(\xi - \frac{\partial}{\partial \xi})^n = (-1)^n e^{\xi^2/2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2/2}.$$

Then we obtain

$$\varphi_n(\xi) = (\sqrt{\pi} \, 2^n n!)^{-1/2} (-1)^n e^{\xi^2/2} \, \frac{\partial^n}{\partial \xi^n} e^{-\xi^2} \, .$$

Using the Hermite polynomial defined by

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2},$$

we have

$$\varphi_n(\xi) = (\sqrt{\pi} 2^n n!)^{-1/2} e^{-\xi^2/2} H_n(\xi).$$

((Note))

$$(\xi - \frac{\partial}{\partial \xi})^n e^{-\xi^2/2} = (-1)^n e^{\xi^2/2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2}$$

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2} = e^{\xi^2/2} (\xi - \frac{\partial}{\partial \xi})^n e^{-\xi^2/2}$$

The Hermite polynomial satisifies the differential equation

$$\left(\frac{d^{2}}{d\xi^{2}} - 2\xi \frac{d}{d\xi} + 2n\right) H_{n}(\xi) = 0.$$

6.12 A few auxiliary mathematical relations

(a)

$$\begin{split} \hat{H} &= \hbar \omega_0 \bigg(\hat{a}^+ \hat{a} + \frac{1}{2} \hat{1} \bigg) \\ \hat{a}^+ \hat{a} &= \frac{\beta^2}{2} \bigg(\hat{x} - \frac{i\hat{p}}{m\omega_0} \bigg) \bigg(\hat{x} + \frac{i\hat{p}}{m\omega_0} \bigg) \\ \langle x | \hat{H} \big| n \rangle &= \hbar \omega_0 \langle x \bigg| \bigg(\hat{a}^+ \hat{a} + \frac{1}{2} \hat{1} \bigg) \bigg| n \rangle = \hbar \omega_0 (n + \frac{1}{2}) \langle x | n \rangle \end{split}$$

or

$$\langle x \left| \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \hat{1} \right) \right| n \rangle = \frac{\beta^{2}}{2} \left(x - \frac{\hbar}{m\omega_{0}} \frac{\partial}{\partial x} \right) \left(x + \frac{\hbar}{m\omega_{0}} \frac{\partial}{\partial x} \right) \langle x | n \rangle = (n + \frac{1}{2}) \langle x | n \rangle$$

Here we use $\xi = \beta x$, $|\xi\rangle = \frac{1}{\sqrt{\beta}}|x\rangle$, and $\varphi_n(\xi) = \langle \xi|n\rangle$

$$\left(\xi - \frac{\partial}{\partial \xi}\right) \left(\xi + \frac{\partial}{\partial \xi}\right) \varphi_n(\xi) = (2n+1)\varphi_n(\xi)$$

where

$$\varphi_n(\xi) = (\sqrt{\pi} \, 2^n \, n!)^{-1/2} e^{-\xi^2/2} H_n(\xi)$$

or

$$\left(\xi - \frac{\partial}{\partial \xi}\right) \left(\xi + \frac{\partial}{\partial \xi}\right) e^{-\xi^2/2} H_n(\xi) = (2n+1)e^{-\xi^2/2} H_n(\xi).$$

(b)

$$\hat{a}^+|n\rangle = \sqrt{n+1}|n+1\rangle$$
,

$$\hat{a}^{+} = \frac{\beta}{\sqrt{2}} \left(\hat{x} - \frac{i\hat{p}}{m\omega_0} \right),$$

$$\langle x|\hat{a}^+|n\rangle = \sqrt{n+1}\langle x|n+1\rangle$$
,

or

$$\frac{\beta}{\sqrt{2}}\left(x - \frac{\hbar}{m\omega_0} \frac{\partial}{\partial x}\right) \langle x | n \rangle = \sqrt{n+1} \langle x | n+1 \rangle,$$

or

$$(\xi - \frac{\partial}{\partial \xi})\langle \xi | n \rangle = \sqrt{2(n+1)}\langle \xi | n+1 \rangle.$$
 (Arfken p.826)

(c)

Similarly we have

$$(\xi + \frac{\partial}{\partial \xi})\langle \xi | n \rangle = \sqrt{2n}\langle \xi | n - 1 \rangle,$$
 (Arfken p.826)

from the relation, $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$.

6.13 Mathematica

Using the Mathematica, we make the following calculations,

1. Derivation of the Hermite differential equation

$$\hat{a} = \frac{1}{\sqrt{2}} (\xi + \frac{\partial}{\partial \xi}),$$

and

$$\hat{a}^+ = \frac{1}{\sqrt{2}} (\xi - \frac{\partial}{\partial \xi}).$$

$$\hat{a}^{+}\hat{a}\langle\xi|n\rangle = n\langle\xi|n\rangle$$

2. Hermite polynomials

$$H_n(\xi) = e^{\xi^2/2} (\xi - \frac{\partial}{\partial \xi})^n e^{-\xi^2/2}$$

with

$$(\xi - \frac{\partial}{\partial \xi})^n = (-1)^n e^{\xi^2/2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2/2}$$

3. Wavefunctions

$$\varphi_n(\xi) = (\sqrt{\pi} \, 2^n \, n!)^{-1/2} e^{-\xi^2/2} H_n(\xi) = (\sqrt{\pi} \, 2^n \, n!)^{-1/2} (\xi - \frac{\partial}{\partial \xi})^n e^{-\xi^2/2}$$

((Mathematica))

Creation and annihilation operators: differential form

CR :=
$$\frac{1}{\sqrt{2}} (\xi \# - D[\#, \xi]) \&;$$

AN :=
$$\frac{1}{\sqrt{2}} (\xi \# + D[\#, \xi]) \&;$$

eq1 =
$$CR[AN[\psi[\xi]]] = n \psi[\xi] // Simplify$$

$$\psi[\xi] + 2 \operatorname{n} \psi[\xi] + \psi''[\xi] = \xi^2 \psi[\xi]$$

srule =
$$\left\{\psi \rightarrow \left(\text{Exp}\left[-\frac{\#^2}{2}\right] \, \text{H}[\#] \, \&\right)\right\};$$

$$e^{-\frac{\xi^2}{2}} (2 n H[\xi] - 2 \xi H'[\xi] + H''[\xi]) = 0$$

DSolve[eq11,
$$H[\xi]$$
, ξ]

$$\left\{\left\{\mathtt{H}[\xi] \to \mathtt{C}[1] \; \mathsf{HermiteH}[\mathtt{n},\; \xi] + \mathtt{C}[2] \; \mathsf{Hypergeometric1F1}\left[-\frac{\mathtt{n}}{2},\; \frac{1}{2},\; \xi^2\right]\right\}\right\}$$

$$\varphi[n_-, \xi_-] := \pi^{-1/4} (2^n n!)^{-1/2} \exp\left[-\frac{\xi^2}{2}\right] \text{ HermiteH}[n, \xi] // \text{ Simplify;}$$

$$\varphi 0 [\xi_{-}] := \pi^{-1/4} \exp \left[-\frac{\xi^2}{2} \right];$$

$$\psi[n_{-}, \xi_{-}] := \frac{1}{\sqrt{n!}}$$
 Nest[CR, φ 0[ξ], n] // FullSimplify

Table[$\{n, \psi[n, \xi], \varphi[n, \xi], \psi[n, \xi] - \varphi[n, \xi] \}$, $\{n, 0, 6\}$] // Simplify // TableForm

$$0 \quad \frac{e^{-\frac{\xi^2}{2}}}{\frac{\pi^{1/4}}} \qquad \frac{e^{-\frac{\xi^2}{2}}}{\frac{\pi^{1/4}}} \qquad 0$$

$$1 \quad \frac{\sqrt{2} e^{-\frac{\xi^2}{2} \xi}}{\pi^{1/4}} \qquad \qquad \frac{\sqrt{2} e^{-\frac{\xi^2}{2} \xi}}{\pi^{1/4}} \qquad \qquad 0$$

$$3 \quad \frac{e^{-\frac{\xi^2}{2}} \, \xi \, \left(-3 + 2 \, \xi^2\right)}{\sqrt{3} \, \pi^{1/4}} \qquad \qquad \frac{e^{-\frac{\xi^2}{2}} \, \xi \, \left(-3 + 2 \, \xi^2\right)}{\sqrt{3} \, \pi^{1/4}} \qquad \qquad 0$$

$$4 \quad \frac{e^{-\frac{\xi^2}{2}} \left(3+4 \xi^2 \left(-3+\xi^2\right)\right)}{2 \sqrt{6} \pi^{1/4}} \qquad \frac{e^{-\frac{\xi^2}{2}} \left(3-12 \xi^2+4 \xi^4\right)}{2 \sqrt{6} \pi^{1/4}} \qquad 0$$

$$5 \quad \frac{e^{-\frac{\xi^{2}}{2}} \, \xi \, \left(15+4 \, \xi^{2} \, \left(-5+\xi^{2}\right)\right)}{2 \, \sqrt{15} \, \pi^{1/4}} \qquad \frac{e^{-\frac{\xi^{2}}{2}} \, \xi \, \left(15-20 \, \xi^{2}+4 \, \xi^{4}\right)}{2 \, \sqrt{15} \, \pi^{1/4}} \qquad 0$$

$$6 \quad \frac{e^{-\frac{\xi^{2}}{2}} \, \left(-15+90 \, \xi^{2}-60 \, \xi^{4}+8 \, \xi^{6}\right)}{12 \, \sqrt{5} \, \pi^{1/4}} \qquad \frac{e^{-\frac{\xi^{2}}{2}} \, \left(-15+90 \, \xi^{2}-60 \, \xi^{4}+8 \, \xi^{6}\right)}{12 \, \sqrt{5} \, \pi^{1/4}} \qquad 0$$

$$6 \quad \frac{e^{-\frac{\xi^2}{2}} \left(-15+90 \, \xi^2-60 \, \xi^4+8 \, \xi^6\right)}{12 \, \sqrt{5} \, \pi^{1/4}} \quad \frac{e^{-\frac{\xi^2}{2}} \left(-15+90 \, \xi^2-60 \, \xi^4+8 \, \xi^6\right)}{12 \, \sqrt{5} \, \pi^{1/4}} \quad 0$$

6.14 Schrödinger equation

We consider the Schrödinger equation defined by

$$\langle x|\hat{H}|n\rangle = \varepsilon_n\langle x|n\rangle$$
,

or

$$\langle x|\frac{1}{2m}\hat{p}^2+\frac{m\omega_0^2}{2}\hat{x}^2|n\rangle=\varepsilon_n\langle x|n\rangle,$$

or

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{m\omega_0^2}{2}x^2\right)\varphi_n(x) = \varepsilon_n\varphi_n(x),$$

with

$$\varphi_n(x) = \langle x | n \rangle.$$

Here we use ξ instead of x;

$$\xi = \beta x$$
,

with

$$\beta = \sqrt{\frac{m\omega_0}{\hbar}}$$
. (unit: cm⁻¹).

Using the relations given by

$$\frac{\partial}{\partial x} = \frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi} = \beta \frac{\partial}{\partial \xi},$$

and

$$\frac{\partial^2}{\partial x^2} = \beta \frac{\partial}{\partial \xi} (\beta \frac{\partial}{\partial \xi}) = \beta^2 \frac{\partial^2}{\partial \xi^2},$$

we get

$$\left(-\frac{\hbar^2}{2m}\beta^2\frac{d^2}{d\xi^2} + \frac{m\omega_0^2}{2}\frac{\xi^2}{\beta^2}\right)\left\langle \xi \mid n \right\rangle = \varepsilon_n \left\langle \xi \mid n \right\rangle,$$

or

$$\left(-\frac{\hbar\omega_0}{2}\frac{d^2}{d\xi^2} + \frac{\hbar\omega_0}{2}\xi^2\right)\left\langle \xi \mid n \right\rangle = \hbar\omega_0(n + \frac{1}{2})\left\langle \xi \mid n \right\rangle,$$

or

$$\left(\frac{d^2}{d\xi^2} - \xi^2 + 2n + 1\right)\varphi_n(\xi) = 0,$$

with

$$\varphi_n(\xi) = \langle \xi | n \rangle = \frac{1}{\sqrt{\beta}} \varphi_n(x).$$

6.15 Sturm-Liouville type differential equation

We put

$$\varphi_n(\xi) = e^{-\xi^2/2} u_n(\xi),$$

with $u_n(\xi) = H_n(\xi)$: Hermite polynomials. $H_n(x)$ satisfies the differential equation.

$$H_n''(\xi) - 2\xi H_n'(\xi) + 2nH_n(\xi) = 0.$$
 (1)

Equation (1) is not a Sturm-Liouville type differential equation. In order to get the Sturm-Liouville type diffrential equation, we multiply the weight function $w(\xi)$,

$$w(\xi)H_n''(\xi) - 2\xi w(\xi)H_n'(\xi) + 2nw(\xi)H_n(\xi) = 0$$
.

The weight function should be determined such that

$$w(\xi)H_n''(\xi) - 2\xi w(\xi)H_n'(\xi) = \frac{d}{d\xi}[w(\xi)H_n'(\xi)].$$

or

$$w'(\xi) = -2\xi w(\xi)$$
,

$$w(\xi) = \exp(-\xi^2).$$

Then we have

$$L[H_n] + \lambda_n w(\xi) H_n(\xi) = 0,$$

with

$$L[H_n] = \frac{d}{d\xi} [w(\xi)H_n'(\xi)].$$

The weight function is given by

$$w(\xi) = \exp(-\xi^2).$$

The eigenvalue is

$$\lambda_n = 2n$$
.

6.16 Orthogonality

We consider the eigenfunctions,

$$L[H_n] + 2n \exp(-\xi^2)H_n = 0$$
,

and

$$L[H_m] + 2m \exp(-\xi^2)H_m = 0.$$

We show that operator \hat{L} is a Hermitian.

$$\int_{-\infty}^{\infty} H_m^* L[H_n] d\xi = \int_{-\infty}^{\infty} H_n L[H_m^*] d\xi.$$

((Proof))

$$\begin{split} \left\langle H_{m} \middle| \hat{L} \middle| H_{n} \right\rangle &= \left\langle H_{n} \middle| \hat{L}^{\dagger} \middle| H_{m} \right\rangle^{*} \\ \left\langle H_{m} \middle| \hat{L} \middle| H_{n} \right\rangle &= \int_{-\infty}^{\infty} H_{m}^{*} L[H_{n}] d\xi = \int_{-\infty}^{\infty} H_{m}^{*} \frac{d}{d\xi} [w(\xi) H_{n}'(\xi)] d\xi \\ &= -\int_{-\infty}^{\infty} (\frac{d}{d\xi} H_{m}^{*}) [w(\xi) H_{n}'(\xi)] d\xi = \int_{-\infty}^{\infty} \frac{d}{d\xi} (w(\xi) \frac{d}{d\xi} H_{m}^{*}) H_{n}(\xi) d\xi \\ &= \int_{-\infty}^{\infty} H_{n} L[H_{m}^{*}] d\xi = \int_{-\infty}^{\infty} H_{n} L[H_{m}]^{*} d\xi \\ &= \left(\int_{-\infty}^{\infty} H_{n}^{*} L[H_{m}] d\xi\right)^{*} = \left\langle H_{n} \middle| \hat{L} \middle| H_{m} \right\rangle^{*} \end{split}$$

In other words, we get

$$\hat{L}^+ = \hat{L}$$
. (Hermitian operator)

Then we have

$$\int_{-\infty}^{\infty} H_m^*[-2nw(\xi)]H_n(\xi)d\xi = \left(\int_{-\infty}^{\infty} H_n^*[-2mw(\xi)]H_m(\xi)d\xi\right)^*,$$

$$(n-m)\int_{-\infty}^{\infty} H_m^* w(\xi)] H_n(\xi) d\xi = 0,$$

or

$$(n-m)\int_{-\infty}^{\infty} H_m^* e^{-\xi^2} H_n(\xi) d\xi = 0,$$

If $n \neq m$,

$$\int_{-\infty}^{\infty} H_m^*(\xi) e^{-\xi^2} H_n(\xi) d\xi = 0 ,$$

or

$$\int_{-\infty}^{\infty} H_m(\xi) e^{-\xi^2} H_n(\xi) d\xi = 0.$$

since $H_n(\xi)$ is a real function.

6.17 Normalization

Here we define the wave function as

$$\varphi_n(\xi) = (\sqrt{\pi} 2^n n!)^{-1/2} e^{-\xi^2/2} H_n(\xi),$$

where

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2}.$$

We show that $\varphi_n(\xi)$ is the normalized wave function;

$$\int_{-\infty}^{\infty} \varphi_n^*(\xi) \varphi_n(\xi) d\xi = 1,$$

or

$$\int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) H_n(\xi) d\xi = 2^n n! \sqrt{\pi} .$$

((Proof))

$$\int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) H_n(\xi) d\xi = (-1)^n \int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) [e^{\xi^2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2}] d\xi =$$

$$= (-1)^n \int_{-\infty}^{\infty} H_n(\xi) \frac{\partial^n}{\partial \xi^n} e^{-\xi^2} d\xi = (-1)^n (-1)^n \int_{-\infty}^{\infty} e^{-\xi^2} \frac{\partial^n}{\partial \xi^n} H_n(\xi) d\xi$$

 $H_n(\xi)$ is the Hermite polynomial and is a function of ξ . The highest power is ξ^n and the coefficient for the power ξ^n is 2^n .

$$\frac{\partial^n}{\partial \xi^n} H_n(\xi) = 2^n n!.$$

Thus we have

$$\int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) H_n(\xi) d\xi = 2^n n! \int_{-\infty}^{\infty} e^{-\xi^2} d\xi = 2^n n! \sqrt{\pi} ,$$

or

$$\int_{-\infty}^{\infty} \varphi_n^*(\xi) \varphi_n(\xi) d\xi = 1.$$

6.18 Dirac delta function

An arbitrary function $\psi(\xi)$ can be expanded in terms of complete set $\{u_n(\xi)\}$ as

$$\psi(\xi) = \sum_{n} a_{n} u_{n}(\xi) .$$

Note that

$$\int_{a}^{b} u_{n}^{*}(\varsigma)w(\varsigma)\psi(\varsigma)d\varsigma = \int_{a}^{b} u_{n}^{*}(\varsigma)w(\varsigma)\sum_{m} a_{m}u_{m}(\varsigma)d\varsigma$$

$$= \sum_{m} a_{m}\int_{a}^{b} u_{n}^{*}(\varsigma)w(\varsigma)u_{m}(\varsigma)d\varsigma$$

$$= \sum_{m} a_{m}\delta_{nm} = a_{n}$$

where

$$\int_{a}^{b} u_{n}^{*}(\varsigma)w(\varsigma)u_{m}(\varsigma)d\varsigma = \delta_{nm}.$$

Then we have

$$\psi(\xi) = \sum_{n} u_{n}(\xi) \int_{a}^{b} u_{n}^{*}(\zeta) w(\zeta) \psi(\zeta) d\zeta = \int_{a}^{b} \sum_{n} [u_{n}(\xi) w(\zeta) u_{n}^{*}(\zeta)] \psi(\zeta) d\zeta.$$

Since $\psi(\xi)$ is an arbitrary function, one can say that

$$\sum_{n} [u_n(\xi)w(\varsigma)u_n^*(\varsigma)] = w(\varsigma)\sum_{n} [u_n(\xi)u_n^*(\varsigma)] = \delta(\varsigma - \xi).$$

Then we have

$$\psi(\xi) = \int_{a}^{b} \delta(\varsigma - \xi) \psi(\varsigma) d\varsigma,$$

from the property of the delta function.

In the case of the Hermite differential equation,

$$u_n(\xi) = (2^n n! \sqrt{\pi})^{-1/2} H_n(\xi),$$

with

$$w(\xi) = e^{-\xi^2} ,$$

and

$$\int_{-\infty}^{\infty} e^{-\xi^2} u_n^*(\xi) u_n(\xi) d\xi = (2^n n! \sqrt{\pi})^{-1} \int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) H_n(\xi) d\xi = 1.$$

6.19 Dirac function by Hermite polynomials

The Dirac delta function can be formed using the Hermite polynomials.

$$\delta(\varsigma - \xi) = w(\varsigma) \sum_{n} [u_{n}(\xi)u_{n}^{*}(\varsigma)]$$
$$= e^{-\varsigma^{2}} \sum_{n} \frac{H_{n}(\xi)H_{n}(\varsigma)}{2^{n} n! \sqrt{\pi}}$$

((Mathematica))

```
Clear["Global`*"]
f[x_, k_] :=
 \operatorname{Exp}\left[-x^2\right]
  Sum \left[ \frac{\text{HermiteH}[n, 0] \text{ HermiteH}[n, x]}{2^n n! \sqrt{\pi}}, \right]
   \{n, 0, k\}
pl1 =
  Plot[
    Evaluate[Table[f[x, k],
       \{k, 50, 250, 50\}], \{x, -1, 1\},
    PlotRange → All,
    PlotStyle → Table[{Hue[0.15i], Thick},
       {i, 0, 10}],
    AxesLabel \rightarrow {"\xi", "f(\xi)"}];
g1 = Graphics[
    {Text[Style["n=50", Black, 12],
       \{0, 3\}],
     Text[Style["n=100", Black, 12],
       \{0, 4.5\}],
     Text[Style["n=250", Black, 12],
       {0, 7}]}];
Show[pl1, g1]
                       f(\xi)
```

6.20

Plot of wave functionWe make a plot of the function $|\varphi_n(\xi)|^2$ as a function of ξ for n = 0, 1, 2, 3,..., where

$$\varphi_n(\xi) = (\sqrt{\pi} \, 2^n \, n!)^{-1/2} e^{-\xi^2/2} H_n(\xi)$$

((Mathematica))

Simple Harmonics wave function: plot of $\varphi n[\xi]$

```
conjugateRule = {Complex[re_, im_] ⇒ Complex[re, -im]};
Unprotect[SuperStar];
SuperStar /: exp_ * := exp /. conjugateRule;
Protect[SuperStar];
\psi[n_{-}, \xi_{-}] := 2^{-n/2} \pi^{-1/4} (n!)^{-1/2} \exp\left[-\frac{\xi^2}{2}\right] \text{ HermiteH}[n, \xi];
\Phi[n_{-}, \xi_{-}] := \psi[n, \xi]^{2};
pt1[n] := Plot[Evaluate[\Phi[n, \xi]], \{\xi, -6, 6\},
   PlotLabel \rightarrow {n}, PlotPoints \rightarrow 100, PlotRange \rightarrow All,
   DisplayFunction → Identity, Frame → True];
pt2 = Evaluate[Table[pt1[n], {n, 0, 8}]];
Show[GraphicsGrid[Partition[pt2, 2]]]
                 {0}
                                                     {1}
                                       0.4
   0.5
                                       0.3
   0.4
   0.3
                                       0.2
   0.2
                                       0.1
   0.1
   0.0
      -6 \ -4 \ -2 \ 0
                      2
                                          -6 -4 -2
                                                          2
                                                      0
                                                      {3}
  0.35
0.30
0.25
0.20
                                       0.35
                                       0.30
0.25
                                       0.20
  0.15
0.10
                                       0.15
                                       0.10
  0.10
0.05
0.00
                                       0.05
                                       0.00
                                              -4 -2
      -6 -4 -2
                  0
                                                      0
                 {4}
                                                      {5}
                                       0.30
  0.30
                                       0.25
  0.25
                                       0.20
  0.20
  0.15
0.10
                                       0.15
                                       0.10
                                       0.05
  0.05
                                       0.00
  0.00
      -6 -4 -2
                                              -4 -2
                                                      0
                 {6}
                                                      {7}
   0.30
                                       0.30
   0.25
                                       0.25
   0.20
                                       0.20
   0.15
                                       0.15
                                       0.10
   0.10
   0.05
                                       0.05
   0.00
                                       0.00
      -6 \ -4 \ -2 \ 0 \ 2
                                           -6 -4 -2 0
```

6.21 Classical limit: comparison with classical mechanics

Classical mechanics:

$$x = x_M \cos(\omega t - \varphi),$$

$$p = m \frac{dx}{dt} = -m\omega_0 x_M \sin(\omega t - \varphi),$$

$$E = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2 = \frac{1}{2}m\omega_0^2 x_M^2.$$

Comparison (classical mechanics and quantum mechanics)

We choose $\varphi = \pi/2$.

$$x = x_M \sin(\omega t)$$

$$p = m\frac{dx}{dt} = m\omega_0 x_M \cos(\omega t).$$

We define a classical "positional probability" as

$$W_{class}(x)dx = \frac{dt}{T},$$

where dt is the amount of time within dx and $T = 2\pi/\omega$.

$$dx = \omega x_M \cos(\omega t) dt = \omega x_M dt \sqrt{1 - \sin^2(\omega t)} = \omega x_M dt \sqrt{1 - (\frac{x}{x_M})^2},$$

since
$$\cos(\omega t) = \pm \sqrt{1 - \sin^2(\omega t)} = \pm \sqrt{1 - \left(\frac{x}{x_M}\right)^2}$$
,

$$W_{class}(x)\omega x_M dt \sqrt{1-\left(\frac{x}{x_M}\right)^2} = \frac{dt}{T} = \frac{\omega dt}{2\pi},$$

or

$$W_{class}(x) = \frac{1}{2\pi} \frac{1}{x_M \sqrt{1 - (\frac{x}{x_M})^2}}$$
.

But this expression is not correct. Requiring that the total probability of finding the particle between $-x_M$ and x_M is unity determine the following correct expression

$$W_{class}(x) = \frac{1}{\pi} \frac{1}{x_M \sqrt{1 - (\frac{x}{x_M})^2}}$$

In fact

$$\int_{-x_M}^{x_M} W_{class}(x) dx = \int_{-x_M}^{x_M} \frac{1}{\pi} \frac{1}{x_M \sqrt{1 - (\frac{x}{x_M})^2}} dx = 1.$$

The reason for the factor 2 is as follows. The particle passes between x and x + dx twice during a period. We note that

$$x_{M} = \sqrt{\frac{2E}{m\omega_{0}^{2}}} = \sqrt{\frac{2\hbar\omega_{0}(n+\frac{1}{2})}{m\omega_{0}^{2}}} = \sqrt{2n+1}\sqrt{\frac{\hbar}{m\omega_{0}}} = \frac{\sqrt{2n+1}}{\beta}.$$

Since

$$W_{class}(\xi)d\xi = W_{class}(x)dx$$
,

or

$$W_{class}(\xi)d\xi = W_{class}(x)dx = W_{class}(x)\frac{1}{\beta}d\xi,$$

or

$$W_{class}(\xi) = W_{class}(x) \frac{1}{\beta},$$

and

$$\xi = \beta x$$
,

$$W_{class}(\xi)d\xi = W_{class}(x)dx = \frac{\beta}{\pi\sqrt{2n+1}} \frac{1}{\sqrt{1-(\frac{\xi}{\sqrt{2n+1}})^2}} \frac{d\xi}{\beta},$$

$$W_{class}(\xi) = \frac{1}{\pi\sqrt{2n+1}} \frac{1}{\sqrt{1-(\frac{\xi}{\sqrt{2n+1}})^2}}$$
.

Classical limit is given by

$$\frac{\xi^2}{2} = n + \frac{1}{2}.$$

The intercepts of the parabora $(\xi^2/2)$ with horizontal lines (n+1/2) are the positions of the classical turning points. $W_{class}(\xi)$ is compared with $|\varphi_n(\xi)|^2$ (quantum mechanics).

$$W_{class}(\xi) = \lim_{n \to \infty} \frac{1}{2\varepsilon} \int_{\xi-\varepsilon}^{\xi+\varepsilon} |\varphi_n(\xi)|^2 d\xi.$$

((Mathematica))

Classical limit of the simple harmonics

```
Clear["Global`*"]  \varphi[n_-, \, \xi_-] := 2^{-n/2} \, \pi^{-1/4} \, (n!)^{-1/2} \, \text{Exp} \Big[ -\frac{\xi^2}{2} \Big] \, \text{HermiteH}[n, \, \xi];   \text{plot1} = \text{Plot}[\text{Table}[\varphi[n, \, \xi] \,^2 + n + 0.5, \, \{n, \, 0, \, 10\}] \, / / \, \text{Evaluate},   \{\xi, \, -6, \, 6\}, \, \text{PlotStyle} \rightarrow \text{Table}[\{\text{Thick}, \, \text{Hue}[0.07 \, i]\}, \, \{i, \, 0, \, 10\}],   \text{Background} \rightarrow \text{LightGray}];   \text{plot2} = \text{Plot}[\, \xi^2 / \, 2, \, \{\xi, \, -6, \, 6\}, \, \text{PlotStyle} \rightarrow \text{Thickness}[0.01],   \text{Frame} \rightarrow \text{True}];   \text{plot3} = \text{Plot}[\text{Table}[n + 0.5, \, \{n, \, 0, \, 10\}] \, / / \, \text{Evaluate}, \, \{\xi, \, -6, \, 6\},   \text{PlotStyle} \rightarrow \text{Table}[\{\text{Thick}, \, \text{Hue}[0.07 \, i]\}, \, \{i, \, 0, \, 10\}]];   \text{Show}[\text{plot1}, \, \text{plot2}, \, \text{plot3}, \, \text{PlotRange} \rightarrow \{\{-6, \, 6\}, \, \{0, \, 12\}\}]
```

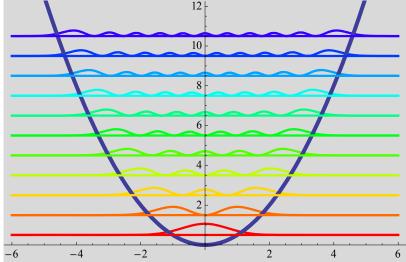
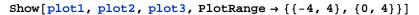
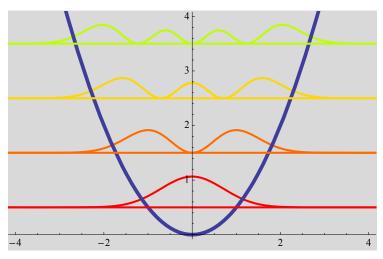


Fig.5





Classical limit

wc [
$$\xi_{-}$$
, n_{-}] := $\frac{1}{\pi \sqrt{2 n + 1}} \frac{1}{\sqrt{1 - \frac{\xi^{2}}{2 n + 1}}}$

dplot1 = Plot[Evaluate[wc[ξ , 30]], { ξ , -7, 7}, PlotStyle \rightarrow {Thick, Blue}, PlotRange \rightarrow All, Background \rightarrow LightGray];

dplot2 = Plot[Evaluate[φ [30, ξ]^2], { ξ , -10, 10}, PlotPoints → 100, PlotStyle → {Thick, Hue[0]}, PlotRange → All, Background → LightGray];

g1 = Graphics[{ Text[Style["Classical limit", Black, 15], {-5, 0.07}],
 Text[Style["n = 30", Black, 20], {1, 0.15}]}];

Show[dplot1, dplot2, g1]

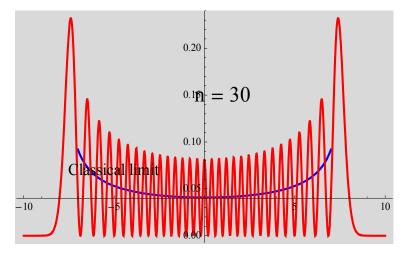


Fig.6 and 7

6.22 One dimensional Schrödinger equation

We consider the one dimensional motion of a particle in a potential energy V(x). The Schrödinger equation is given by

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)+V(x)\psi(x)=E\psi(x),$$

or

$$\frac{d^{2}}{dx^{2}}\psi(x) - \frac{2m}{\hbar^{2}}V(x)\psi(x) + \frac{2m}{\hbar^{2}}E\psi(x) = 0.$$

This equation is rewritten as

$$L\psi(x) + \lambda\psi(x) = 0$$
,

where

$$L\psi(x) = \frac{d^2}{dx^2}\psi(x) + q(x)\psi(x), \qquad \lambda = \frac{2m}{\hbar^2}E,$$

with

$$q(x) = -\frac{2m}{\hbar^2}V(x).$$

L is the self-adjoint operator, and λ is the eigenvalue. The weight function is w(x) = 1.

6.23 One dimensional bound state

As a simple example of the calculation of discrete energy levels of a particle (with mass m) in quantum mechanics, we consider the one dimensional motion of a particle in the presence of a square-well potential barrier (width 2a and a depth V_0) as shown below.

$$V(x) = 0$$
 for $|x| > a$, and $-V_0$ for $-a < x < a$.

If the energy of the particle E is negative, the particle is confined and in a bound state. Here we discuss the energy eigenvalues and the eigenfunctions for the bound states from the solution of the Schrödinger equation.

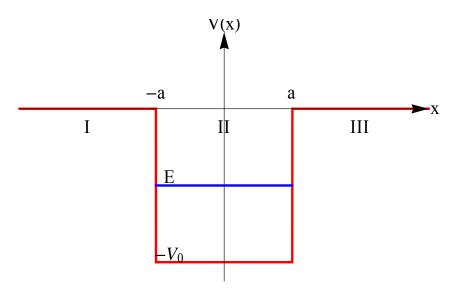


Fig. 8 One dimensional square well potential of width 2a and depth V_0 .

(a) The parity of the wave function

When potential is an even function (symmetric with respect to x), the wave function should have even parity or odd parity.

((Proof))

$$[\hat{\pi},\hat{H}]=0.$$

 $\hat{\pi}$ is the parity operator.

$$\hat{\pi}^2 = 1 \qquad \qquad \hat{\pi}^+ = \hat{\pi} = \hat{\pi}^{-1} .$$

$$\hat{\pi}\hat{x}\hat{\pi} = -\hat{x} . \qquad \hat{\pi}\hat{p}\hat{\pi} = -\hat{p} .$$

 \hat{H} is the Hamiltonian.

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}),$$

and

$$\hat{\pi}\hat{H}\hat{\pi} = \hat{\pi} [\frac{\hat{p}^2}{2m} + V(\hat{x})]\hat{\pi}$$

$$= \frac{1}{2m} (\hat{\pi}\hat{p}\hat{\pi})^2 + V(\hat{\pi}\hat{x}\hat{\pi})$$

$$= \frac{1}{2m} (-\hat{p})^2 + V(-\hat{x})$$

$$= \frac{1}{2m} \hat{p}^2 + V(\hat{x})$$

since $V(-\hat{x}) = V(\hat{x})$. Then we have a simultaneous eigenket:

$$\hat{H}|\psi\rangle = E|\psi\rangle$$
, and $\hat{\pi}|\psi\rangle = \lambda|\psi\rangle$.

Since $\hat{\pi}^2 = 1$,

$$\hat{\pi}^2 |\psi\rangle = \lambda \hat{\pi} |\psi\rangle = \lambda^2 |\psi\rangle = |\psi\rangle.$$

Thus we have $\lambda = \pm 1$.

or

$$\hat{\pi}|\psi\rangle = \pm |\psi\rangle$$
,

$$\langle x|\hat{\pi}|\psi\rangle = \pm\langle x|\psi\rangle.$$

Since

$$\hat{\pi}|x\rangle = |-x\rangle$$
, or $\langle x|\hat{\pi}^+ = \langle x|\hat{\pi} = \langle -x|$

we have

$$\langle -x|\psi\rangle = \pm \langle x|\psi\rangle,$$

or

$$\psi(-x) = \pm \psi(x) .$$

(b) Wavefunctions

In the Regions I, II, and III, the Schrödinger equation takes the form

$$\frac{d^2}{dx^2}\psi(x) - \kappa^2\psi(x) = 0$$
 outside the well.

$$\frac{d^2}{dx^2}\psi(x) + k^2\psi(x) = 0$$
 inside the well.

Here we define

$$\kappa^2 = \frac{2m}{\hbar^2} |E|, \qquad k^2 = \frac{2m}{\hbar^2} (V_0 - |E|).$$

Here we introduce parameters (β and σ) for convenience,

$$\kappa^{2} = \frac{2m}{\hbar^{2}} |E| = \frac{2mV_{0}}{\hbar^{2}} \frac{|E|}{V_{0}} = \frac{2mV_{0}a^{2}}{\hbar^{2}} \frac{1}{a^{2}} \frac{|E|}{V_{0}} = \frac{\beta^{2}}{a^{2}} \varepsilon,$$

or

$$\kappa^2 = \frac{\beta^2}{a^2} \varepsilon,$$

and

$$k^{2} = \frac{2m}{\hbar^{2}}(V_{0} - |E|) = \frac{2mV_{0}}{\hbar^{2}}(1 - \frac{|E|}{V_{0}}) = \frac{1}{a^{2}}\beta^{2}(1 - \varepsilon),$$

where

$$\varepsilon = \frac{|E|}{V_0}$$
, and $\beta = \sqrt{\frac{2mV_0a^2}{\hbar^2}}$.

We note that

$$k^2 + \kappa^2 = \frac{\beta^2}{a^2},$$

or

$$\xi^2 + \eta^2 = \beta^2,$$

where $ka = \xi$ and $ka = \eta$. The energy ε is given by

$$\varepsilon = \frac{\eta^2}{\beta^2} = 1 - \frac{\xi^2}{\beta^2} .$$

The stationary solution of the three regions are given by

$$\varphi_I(x) = Ae^{\kappa x}$$
,

$$\varphi_{II}(x) = B_1 e^{ikx} + B_2 e^{-ikx},$$

$$\varphi_{III}(x) = Ce^{-\kappa x}$$
.

(i) The wave function with even parity

$$A = C$$
,

$$B_1 = B_2 \equiv \frac{B}{2} .$$

The wavefunctions can be described by

$$\varphi_I(x) = Ae^{\kappa x}$$
,

$$\varphi_{II}(x) = B\cos(kx),$$

$$\varphi_{III}(x) = Ae^{-\kappa x}$$
.

The derivatives are obtained by

$$\frac{d\varphi_I(x)}{dx} = A \kappa e^{\kappa x},$$

$$\frac{d\varphi_{II}(x)}{dx} = -Bk\sin(kx),$$

$$\frac{d\varphi_{III}(x)}{dx} = -A\kappa e^{-\kappa x}.$$

At x = a, $\varphi(x)$ and $\frac{d\varphi(x)}{dx}$ are continuous. Then we have

$$Ae^{-\kappa a}-B\cos(ka)=0,$$

$$-A\kappa e^{-\kappa a} + Bk\sin(ka) = 0,$$

or

$$MX=0$$
,

where

$$M = \begin{pmatrix} e^{-\kappa a} & -\cos(ka) \\ -\kappa e^{-\kappa a} & k\sin(ka) \end{pmatrix}, \qquad X = \begin{pmatrix} A \\ B \end{pmatrix}.$$

The condition det*M*=0 leads to

$$k \sin(ka)e^{-\kappa a} = \kappa e^{-\kappa a} \cos(ka)$$
,

or

$$tan(ka) = \frac{\kappa}{k}$$
 for the even parity,

or

$$\kappa a = ka \tan(ka)$$
 for the even parity.

or

$$\eta = \xi \tan \xi$$
.

The constants A, B, and C are given by

$$A = C = Be^{\kappa a} \cos(ka)$$
.

The condition of the normalization leads to the value of *B*.

(ii) The wave function with odd parity

$$A = -C$$
,

$$B_1 = -B_2 \equiv \frac{B}{2i} .$$

The wavefunctions are given by

$$\varphi_I(x) = -Ae^{\kappa x}$$
,

$$\varphi_{II}(x) = B\sin(kx)$$
,

$$\varphi_{III}(x) = Ae^{-\kappa x}$$
.

The derivatives are obtained as

$$\frac{d\varphi_I(x)}{dx} = -A \kappa e^{\kappa x},$$

$$\frac{d\varphi_{II}(x)}{dx} = Bk\cos(kx),$$

$$\frac{d\varphi_{III}(x)}{dx} = -A\kappa e^{-\kappa x}.$$

At x = a, $\varphi(x)$ and $\frac{d\varphi(x)}{dx}$ are continuous. Then we have

$$-Ae^{-\kappa a}+B\sin(ka)=0,$$

$$-A\kappa e^{-\kappa a} - Bk\cos(ka) = 0,$$

or

$$MX=0$$
,

where

$$M = \begin{pmatrix} -e^{-\kappa a} & \sin(ka) \\ -\kappa e^{-\kappa a} & -k\cos(\frac{ka}{2}) \end{pmatrix}, \qquad X = \begin{pmatrix} A \\ B \end{pmatrix}.$$

The condition det*M*=0 leads to

$$k\cos(ka)e^{-\kappa a} = -\kappa e^{-\kappa a}\sin(ka)$$
,

or

$$\kappa a = -ka \cot(ka)$$
 for the odd parity,

or

$$\eta = -\xi \cot \xi$$
.

We solve this eigenvalue problem using the Mathematica. The result is as follows.

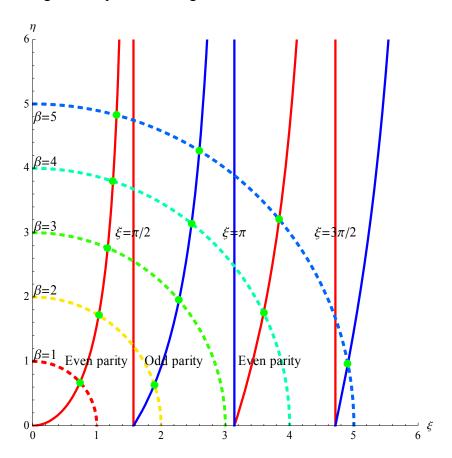


Fig.9 Graphical solution. One solution with even parity for $0<\beta<\pi/2$. One solution with even parity and one solution with odd parity for $\pi/2<\beta<\pi$. Two solutions with even parity and one solution with odd parity for $\pi<\beta<3\pi/2$. Two solutions with even parity and two solutions with odd parity for $3\pi/2<\beta<2\pi$. $\eta=\xi\tan\xi$ for the even parity (red lines). $\eta=-\xi\cot\xi$ for the odd parity (blue lines). The circles are denoted by $\xi^2+\eta^2=\beta^2$. The parameter β is changed as $\beta=1,2,3,4$, and δ . $\varepsilon=\frac{|E|}{V_0}=\frac{\eta^2}{\beta^2}=1-\frac{\xi^2}{\beta^2}$. $\xi=ka$ and $\eta=\kappa a$.

The normalized wavefunction for the even parity and odd parity are given by

for the regions I, II, and III, where ψ_e is the wavefunction with the even parity and ψ_0 is the wavefunction with the odd parity.

$$\beta = 1$$

$$\xi_{11} = 0.739085 \qquad \eta_{11} = 0.673612 \qquad \varepsilon_{II} = 0.453753 \qquad \text{even}$$

$$\beta = 2$$

$$\xi_{21} = 1.02987 \qquad \eta_{21} = 1.71446 \qquad \varepsilon_{21} = 0.734844 \qquad \text{even}$$

$$\xi_{22} = 1.89549 \qquad \eta_{22} = 0.638045 \qquad \varepsilon_{22} = 0.101775 \qquad \text{odd}$$

$$\beta = 3$$

$$\xi_{31} = 1.17012 \qquad \eta_{31} = 2.76239 \qquad \varepsilon_{31} = 0.847869 \qquad \text{even}$$

$$\xi_{32} = 2.27886 \qquad \eta_{32} = 1.9511 \qquad \varepsilon_{32} = 0.422976 \qquad \text{odd}$$

$$\beta = 4$$

$$\xi_{41} = 1.25235 \qquad \eta_{41} = 3.7989 \qquad \varepsilon_{41} = 0.901976 \qquad \text{even}$$

$$\xi_{42} = 2.47458 \qquad \eta_{42} = 3.14269 \qquad \varepsilon_{42} = 0.617279 \qquad \text{odd}$$

$$\xi_{43} = 3.5953 \qquad \eta_{43} = 1.75322 \qquad \varepsilon_{43} = 0.192111 \qquad \text{even}$$

even

```
\beta = 5
\xi_{51} = 1.30644
                                \eta_{51} = 4.8263,
                                                                 \varepsilon_{51} = 0.931729
                                                                                                  even
\xi_{52} = 2.59574
                                \eta_{52} = 4.27342,
                                                                 \varepsilon_{52} = 0.730486
                                                                                                  odd
\xi_{53} = 3.83747
                                \eta_{53} = 3.20528,
                                                                 \varepsilon_{53} = 0.410954
                                                                                                  even
\xi_{54} = = 4.9063
                                 \eta_{54} = .963467,
                                                                 \varepsilon_{54} = 0.0371307
                                                                                                  odd
```

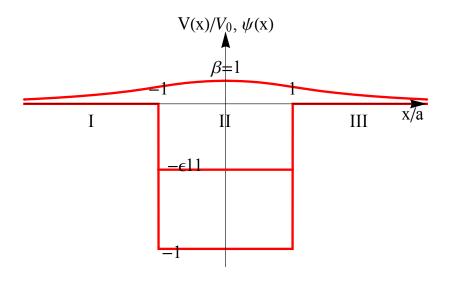


Fig.10 Square well potential V(x) of width 2a and depth V_0 . $\beta = 1$ and the corresponding wavefunction $\psi(x)$ which is normalized. There is one bound state (even parity) (- $\varepsilon_{11} = -0.45735$), where $\varepsilon = |E|/V_0$.

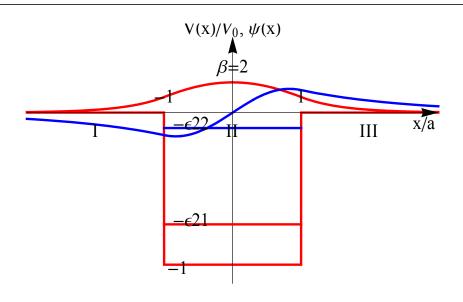


Fig.11 $\beta = 2$. There are two bound states. (i) The bound state (denoted by red) with even parity (- $\varepsilon_{21} = -0.734844$). (ii) The bound state (denoted by blue) with odd parity (- $\varepsilon_{22} = -0.101775$).

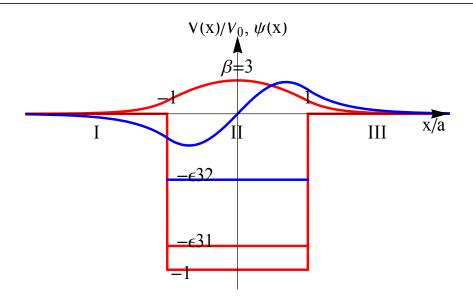


Fig. 12 $\beta = 3$. There are two bound states. (i) The bound state (denoted by red) with even parity ($-\varepsilon_{31} = -0.847869$). (ii) The bound state (denoted by blue) with odd parity ($-\varepsilon_{32} = -0.422976$).

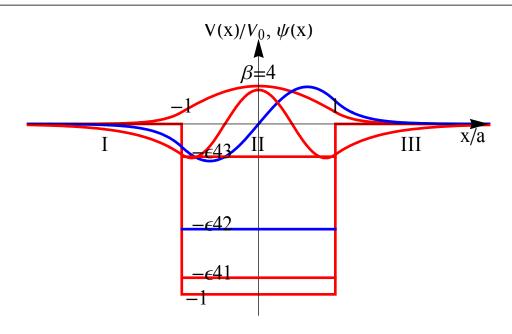


Fig.13 $\beta = 4$. There are three bound states. (i) The bound state (denoted by red) with even parity ($-\varepsilon_{41} = -0.901976$). (ii) The bound state (denoted by blue)

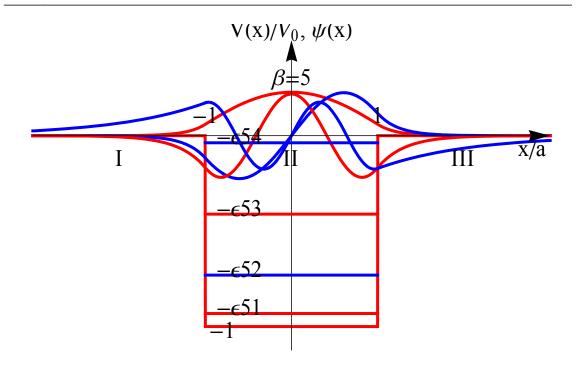


Fig.14 $\beta = 5$. There are four bound states. (i) The bound state (denoted by red) with even parity ($-\varepsilon_{51} = -0.931729$). (ii) The bound state (denoted by blue) with odd parity ($-\varepsilon_{52} = -0.730486$). (iii) The bound state (denoted by red) with even parity ($-\varepsilon_{53} = -0.410954$). (iv) The bound state (denoted by blue) with odd parity ($-\varepsilon_{54} = -0.0371307$).

REFERENCES

- 1. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955).
- 2. E. Merzbacher, Quantum Mechanics Third edition (John Wiley and Sons, New York, 1998,