Chapter 9
Complex functions
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: October 23, 2010)

Baron Augustin-Louis Cauchy (21 August 1789 — 23 May 1857, French pronunciation
was a French mathematician who was an early pioneer of analysis. He started the project
of formulating and proving the theorems of infinitesimal calculus in a rigorous manner.
He also gave several important theorems in complex analysis and initiated the study of
permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a
great influence over his contemporaries and successors. His writings cover the entire
range of mathematics and mathematical physics.

http://en.wikipedia.org/wiki/Augustin-Louis Cauchy
9.1 Function of a complex

Z=X+ly.
Z is a complex number and both x and y are real.

Suppose we write f(z) - that is a function of z - by this we mean that for each value of z -
f(z) can take a complex value.

f(z) is a function of two real variables X and Y.
f(z) =u(x,y) +iv(x,y)

where u(X,y) and Vv(X,Yy) are real functions.



f(z2)=2" =(x+iy)’

3

= x> + 3% (iy) + 3x(iy)* + (iy)

=(x* =3xy*) +i(3x*y - y?)

u=x’-3xy’
v=3x’y-y’

(a)
In our study of complex functions, we will consider those sorts of functions which
turn up in physical problems.
-1.e., our functions will have a “smoothness requirement”.
-1.e., they are differentiable.

(1) How do we define the derivative of a complex function?
It seems like it should be

@: lim f(z+Az2)- f(z)'
oz Az—0 AZ

But Az has two paths - i.e., AZ = AX +IiAy
-thus Az — 0 can assume in an infinite number of ways.
Az = Are' and Az — 0 is obtained when Ar — 0 but a can have any value.
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((Example))

Say f(z)=x+2iy and let us compute directly



lim f(z+Az)- f(2)
Az—0 AZ

forz=0,

and two different o values:

(a) a=0, Az=Ar

lim f(z+Az)- (2) _ lim {(X+Ar)+2iy} — (x+2iy) _
AZ—0 Az Ar—0 Ar

1

(b) a=7/2, Az=Are”™"* =iAr and Ax=0.

lim f(z+Az)- (2) ~ lim {x+2|(y+ér)}—(x+2ly) _5
Az—0 AZ Ar—0 IAY

Thus for f(z)=Xx+2iy, we do not get a unique result. We say that this f(z) is not
differentiable.

f(z,+Az)-f(z
For a function of Z to be differentiable at z = z,, we need lim @, A) (Z) to
Z—> Z

exist (i.e. finite) and the result should be independent of any Az.

9.2  Cauchy-Riemann conditions
Let’s see what restrictions are imposed on f(z) of it is to be differentiable.

f(z) =u(x,y) +iv(x,y)

df i f(z+Az)- T(2)

—=1
dZ Az—0 AZ
i WA AX Y + Ay) —U(X, Y)] + i[V(X+ AX, Y + Ay) —V(X, Y)]
v AX + 1Ay

We get unique result no matter what o is in Az = Are'* |

Fora=0, Ax#0, Ay =0

gza_uﬂg (1)
dz oOx oX
Fora=m/2, Ax=0, Ay #0

ﬂz_ia_u @ )

+
dz oy o



And both results must be the same

ou_ov ov_ —8—u (Cauchy-Riemann condition)

x oy
or

u =V,

v, =-u

The Cauchy-Riemann conditions are necessary for the existence of a derivative of f(2).

J

If df /dz exists, the Cauchy-Riemann conditions must hold. Conversely, if the Cauchy-

Riemann conditions are satisfied and the partial derivatives of U and Vv are continuous,
then df /dz exists.

of =[a—u+iﬂj5x+(a—u+i@]§y

oX  OX oy oy
(8u+iavj5x+ @H@ oy (au+iavj+ 8—u+i@ ¥
i_@x OX oy oy _\ox  oX oy oy )X
& X+idy 1Y
X
Note that

_+__ =
oy oy  ox  ox

U, v _.ou 8v_i(8_u .8vj
ox  ox)

using the Cauchy-Riemann conditions.

Then we have

i:(é_u_”ﬂj (1)

oL oX  OX

On the other hand
o (&JH&V]@ {0 ov ov .0 0 ov
[_j :ay_—ay:T _u+|_ :_i(__+i_u):_u+i_
oz ¥=0 10y iloy oy oXx oXx° oOx OX

)



@) g2
oz Jo=0  \ox  ox)’
-0

Egs. (1) ,(2), and (3) show that ;in%i is independent of the direction of approach in the

oL

complex plane as long as the partial derivatives are continuous.

((Note))
Cauchy-Riemann conditions

ou ov ov_ au

x oy ox oy

Fu_ o
(3X2 6y6x 62 82
= 2 + 2
ov. U ox” oy
oxoy oy
Similarly
v 2l
ox* 0yoX o? o2
= 2 + 2
o’u _ o’v ox™ oy
oxoy oy’

]u =0  Laplace eq. for 2D

]V =0  Laplace eq. for 2D

Therefore, both u and v are harmonic function that satisfy the Laplace’s equation.

Furthermore, comparing the 2D gradients

ou duy_ v v

Vu = ~ s~ )= 5
(ax ay) (ay OX
ov v ou ou.’
VW= ()= (o
OX oy o0y OX

Then we have

Vu-Vv=0.



The lines of constant u (level curves) are orthogonal to the lines of constant v, anywhere
that f'(z) # 0. If u represents a potential function, then v represents the corresponding

stream function (lines of force), or vice versa.
((Example))

f(2)=2"=u+iv=x"—y* +i2xy
or

u=x>—-y>, v=2xy.

We make a ContourPlot of u = const, a StreamPlot of Vu , a ContourPlot of v = const and
a StreamPlot of Vv by using the Mathematica.
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Fig. A ContourPlot of u = x* - y* = constant and a StreamPlot of Vu .
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Fig. A ContourPlot of v = 2Xy = constant and a StreamPlot of Vv .

9.3 Example

James J. Kelly
Graduate Mathematical Physics

Level curves of f(z)222=u+ziv are shown.
f= (x+iy)3 // Expand
x3+311x2y—3xy2—11y3
u=Simplify[Re[f], {X € Reals, y € Reals}]

x‘o’—3xy2

v =Simplify[Im[Ff], {X € Reals, y € Reals}]
3 x? y—y3






9.4 Example

f'(z)—a_u+i@—_i8_u+@—a_u+iﬂ
ox ox oy oy oy ogy)

f(z)=2"=(x+iy)’ = (¢ =3xy*) +i3x’y - y*)
u=(x’-3xy*), v=3x’y-y’)

f'(z):a—u+i@:3x2 —3y* +i6xy
OX  OX
or

.0u ov . .
f'(2) = =i — + — = —i(=6xy) + 3x> =3y> =3x> =3y’ +i6Xy
oy oy

((Laplace equation))

Il

|
o))
>

Can we write f'(z) as a derivative? The answer is yes.
f'(2) =22° =3(x+iy)” =3(x* —y* +2ixy)
=3(x* = y*) + 6ixy

9.5  Mathematica
Cauchy-Riemann condition



Cauchy-Rieman conditions

*

SuperStar /: expr_* :=expr /. {Complex[a , b ] = Complex[a, -b]}

RC[T_] := Module[{u, vV, W, uy, VX, ux, vy}, w=ComplexExpand[f[X+1iVy]];
u=(w+w*) /2 /7 Simplify; v = (w-w*)/(24) // Simplify;
uy =D[u, y] // Simplify; vx =D[v, x] // Simplify;
ux = D[u, x] // Simplify; vy =D[v, y] // Simplify;
uxx = D[ux, x] // Simplify; uyy =D[uy, y] // Simplify;
vxx = D[vx, x] // Simplify; vyy = D[vy, y] // Simplify;
List[{"u", u}, {"v", v}, {"uy™, uy}, {"vx", vx}, {"ux", ux},
{"vy", vy}, {"uy+vx™, uy +vx}, {"ux-vy", ux-vy},
{"uxx+uyy"™, uxx +uyy}, {"vxx+vyy", vxx+vyy}]]

fl = Function[{z}, z*]

Function| {z}, 24]

RC[T1] // Simplify // TableForm

u x4 - 6 x? y2+y4
4xy (xz—yz)

uy 4y (73x2+y2)

VX 12x2y74y3

ux 4 (x3—3xy2)

vy 4 (x3—3xy2)

uy+Vvx 0

ux-vy 0

uxx+uyy O

vxxX+vyy O

f2 = Function[{z}, Z°]

Function|{z}, 23]

RC[f2] // Simplify // TableForm

u x3 - 3xy2

\Y, 3 %2 yfy3

uy -6XxYy

VX 66Xy

ux 3 (x2 7y2)
2 2

vy 3 (x°-y?)

uy+vx 0

ux-vy 0

uxx+uyy O

vxXx+vyy 0O



3 = Function[{z}, z°]

Function|{z}, 25]

RC[F3] 7/ Simplify // TableForm

u x5—10x3y2+5xy4
5x4y—10x2y3+y5

uy 20xy (-x2 +y?)

VX 20 Xy (xz—y2>

ux 5 (x* - 6x2y? +y*)

vy 5 (x*-6x%y? +y*)

uy+Vvx 0
ux-vy 0
uxx+uyy O
vxXxX+vyy O

f4 = Function[{z}, 1/ 7]

Function{{z}, %}

RC[T4] // Simplify // TableForm

u X2+y2
v - X2+yz
__2Xy
Uy (X2+y2) 2
2X
VX ( 2+y2)2
—x2+y2
ux (X2+y2)2
7x2+y2
uy+vx 0
ux-vy 0

uxx+uyy O
vxXX+vyy O



f5 = Function[{z}, z z¥]

Function[{z}, zz"]

RC[f5] // Simplify // TableForm

u X2 4+ y2
\Y 0

uy 2y

VX 0

ux 2 X

vy 0

uy +vx 2y
ux-vy 2 X
uxx+uyy 4

vxXxX+vyy O

f6 = Function[{z}, z*]

Function[{z}, z"]

RC[f6] // Simplify // TableForm

u X
\4 -y
uy 0
VX 0
ux 1
vy -1

uy+vx 0
ux-vy 2
uxx+uyy O
vxx+vyy O

((Definition)) Analytic

If f(2) is differentiable at z = 7, and in some small region around z,, we say that f(z) is
analytic at z = z,. If f(z) is analytic everywhere in the (finite) complex plane, we call it an
entire function.

((Example)) Arfken 6-2-8

Using f(re'?)=R(r,0)e""? | in which R(r,0) and ®(r,d) are differentiable real
functions of r and 6, show that the Cauchy-Riemann condition in polar coordinates
become



R0 __pr.6200:0)

AR(r,0) _ R(r,0) 00(r,6)
’ 00 or

@) or r 00

b L
:

Hint: set up the derivative first with dz radial (r — r+dr) and then with dz tangential (r —
0+ do).
((Mathematica))

Artken 6 -2 -8

(a) Derivative with or while 6 fixed
Clear["Global "]

R[r +6r, o] et2lr+r.él _R[r, o] et2lr,e] ) )
// Simplify

eql = . ,
(r+6r)et® - (r) e'®

e 9 (~e! IOl R[r, 0] + &' *IMOOI R[r+ 61, 0])
5r

We apply the L' Hospital theorem to calculate.

D[e®® (-e®I™-O1R[r, 6] + & 2I™*"-C1 R[r+ 61, 6]), 61] /. 67 >0

eqll =
D[ér, 6r] /. 6r>»0

e 9 (PO R0 r oy gl ®MO RIr, 6] 80 [r, 6])

(b) Derivative with 66 while r fixed

R[r, 6+66] et 2[r:0+%] _R[r, o] et 2.0l ) _
// Simplify

eq2 = . .
(r) el (6+66) _ (r) e]ls

e 9 (-e! Ol R(r, 0] + ! 2N 9T R[r, 50+ 0])

((1+ei%)r

We apply the L' Hospital theorem to calculate.

D[ (-et®I"-CI R[r, 6] + et 2I"-%°*°I R[r, s6+06]), 6] /. 66 » 0
// Expand

eq22 = X
D[(—1+e1‘59) r, 66] /.86-50

i (efil O+1 3[I,0] R(O,l) [r, 6] ef]'l ©+1 &[r,0] R[r, o] @(0,1) [r, 6]
- +
r r

eq3 = r (eqll - eq22) e 1201 1€ // FullSimplify

iROYr, 01 +rR™Y(r, 01 -Rir, 6] (2% (r, 01 -ira®9(r, 6))

The real part and the imaginary part of eq3=0,

“Rir,013%Yr, 01 +rrRL0 [r, 61=0
ROV r, 01+ rrir, 0] %% [r, 0]=0



9.6  Cauchy’s integral theorem
Integral of a complex variable over a contour in the complex plane. We divide the
contour z,z, into n intervals by picking n-1 intermediate points (&) on the contour.

¥

Consider the sum
Sy :Z f(é/j)(zj _Zj—l)a
j=1

where ¢ ; is a point on the curve between z; and z;.1. Now let n — oo with ‘Z i —Zi,|—0

o

for all j.

1522 F(¢E -2 = f(2)dz,
1= Zy
(contour integral)

(exists and is independent of the details of choosing points z; and &;.)

z, X¥s X2 X2
j f(2)dz = I(u +iv)(dx +idy) = I(udx —vdy) +i j(vdx +udy).
7 X1 Y1 X1 XY

9.7  Cauchy’s integral theorem
If a function f(z) is analytic and its partial derivatives are continuous throughout

some simple connected region R, for every closed path C in R, the line integral of f(z)
around C is zero:

jf(z)dz=§f(z)dz=o.



(A)  Stroke’s theorem proof

dz =dx+idy,
f(2) =u(x,u)+iv(x,y),

j§ f(z)dz = §(udx —vdy) + i§(vdx +udy).
We consider the Stroke’s theorem
§VxA-da:§A-dr
with

da = dxdyz

OA, OA
Adx+ A dy) = [(VxA),dxdy = || —- ——= |dxd
:>£(XX+yy) !(x)zxy I(ax WJXV

S

Let A, =u, A =-v.



First term = §(udx vdy) = J(— XN %)d dy

Let A, =V, Ay =u.

Second term = §(de +udy) = I [— - @dedy

oy
Thus

if f(2)dz = §(udx —vdy) + ifﬁ(vdx +udy)

= (—+—dedy +i [——%}dxdy =0

If f(z) is analytic, the Cauchy-Riemann condition is satisfied.

(B)  Cauchy-Goursat Proof
Suppose that f(z) is analytic and its partial derivatives are continuous throughout the
region R.

§f(z)dz:0
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We subdivide the region inside the contour C into a network of small squares. Then
§ f(2)dz = Z§ f(z)dz.
c i c

All integrals along interior lines cancel out. Now we consider

i; f(z)dz,

with the contour path C;,



Z;: an interior point of the j-th subregion. We construct the function

f(2)- f(z,
Q—(Z,ZQzM—ﬂ .
-1, dz|,_,,

We may make for "¢ >0,
‘5j(z,zj)‘<g

where e is an arbitrary chosen small positive quantity.

(z-2;)0,(z,2;)=f(2)- f(zj)—%

(Z_Zj)

7=

(z—-2;)}dz

Z=1;

df
ét;]f(z)dz—i(z—zj)5j(z,zj)dz+i{f(zj)+a

Since ﬁdz =0 and ﬁt;Zdz =0,
C; C

] ]

- §(z—zj)5j(z,zj)dz <As—0.
Cj

ii;f(z)dz

If a function f(z) is analytic on and within a closed path C,

ii;f(z)dz:o.

((Note))

(1



o= 1€)@; 210 =22 -7, = 2 -7,
Z 1= j=

(2)
o n N7 o427 1Q
[ zdz =2 2 = 2T - 2 = 2 - 7))
z, i= i= i= ]
1,
:E(Zo2 —Zé)
Thus we have

ii;dz:O and ii;zdz:O
C C

((Multiply connected region))
We consider the multiply connected region in which f(z) is not defined (not analytic)

in the interior R.

We can construct a contour for which the theorem holds. The new contour never crosses
the interior R.

From the Cauchy’s theorem, we have



iﬁf(z)dz: jf(z)dz+ j f(z)dz + jf(z)dz+jf(z)dz:0.

ABC DEF

Since

J' f(2)dz :—j f(2)dz,

then

If(z)dz:— jf(z)dz: jf(z)dz.

ABC DEF FED

Therefore we obtain

j f(2)dz = I f(z)dz.

ABC FED

where the contours C; (= A-B-C) and C, (= F-E-D) are the counterclockwise.

9.8  Cauchy’s integral formula

i; Zf (ZZ) dz = 27if (z,) Cauchy’s integral
“ 4o

We consider a function f(z) that is analytic on a closed contour A-B-C and within the
interior by the path A-B-C. f(z)/(z—z,) is not analytic at z=2,. We apply the



Cauchy’s integral theorem to the contour ABCDEF. In this region f(z)/(z-2z,) is
analytic.

I 1@ dz+j @ dz+.[ @ dz+j @) dz=0,

ABCZ_ZO CDZ_ZO oer £~ 2 Al =2

or

I f(Z)dz—J' f(Z)dz:o.

ABCZ_ZO FEDZ_ZO

Let z =z, +re'’, r is small and will eventually be made to approach zero.
We have

f 1@ 4, - Iwremidez jf(zo+rei9)id6.

i0

Fep £~ 2o FED re FED
Taking the limit as r — 0, we obtain
2z
[ @ dz =if (z,) [ d6 = 27if (z,) (Residue)
asc £~ 4o 0

f 7y is exterior to Cy,

J. (@ dz=0.
clz_zo

We have therefore

LI f(2) dzz{ f(z,) z,:interior

2m ¢ 11, 0 Z, : exterior

9.9 Derivatives

Suppose that f(z) is analytic. By the definition of derivative, we have



f(zo +5Zo) — f(zo)

fia) = Jim —20=0
0 0
_ im 1 § f(z)dz _§ f(z)dz
>0 2moz,\ Y 72— (2, + L) -1,
_ im 1 oz, T (2)
220270, Y (2~ 2y — L NZ —Z,)
_ L§ f(2)
277 (2-12,)

Similarly,

) _L! f(2)
@)= 27 js(z—zo)n+1 oz

p 2-2) M (2=, - @) (k-2

05ty (2 -2, — ) (22 ) (22

Thus
hm f (k)(ZO + é‘ZO) - f(k)(zo) — £§ (k + 1)(2 - ZO)k f(Z)dZ
250 x, 277 (z-27,)™"
B (k + 1)!§ f(2)
27 I (z2-12,))"

The requirement that f(z) be analytic not only gurantees a first derivative but also
derivatives of all orderes as well.

Goursat’s theorem

The existence of f"(z) shows that f’(z) is continuous.”

f(z) is analytic
2

f'(z) is analytic
\2

f"(z) is analytic



\

f™(2) is analytic
All the derivatives of f(z) are analytic within R.

Morera’s theorem
This is the converse of Cauchy’s integral theorem.

“If a function f(z) is continuous in a simple connected region R and fﬁ f(z)dz =0 for
C

every closed contour C within R, then f(z) is analytic throughout R.

9.10 Taylor expansion and Laurent expansion
(a) Taylor expansion

f(z) is analytic on and within C. z =2, is the nearest point for which f(z) is not
analytic. C is a circle centered at zo with radius |z' - ZO|(< |z1 - zo|) .

Cauchy integral formula



1 ¢ f(z2h)dZ

S )_% 7'-z
_L§ f(z")dz'
24l (2 -2,)—(2-2,)
:_§ f(z")dz'
me _(Z_Zo)
. 0)[1 (Z'_ZJ (1)
:nz_(;gi (Z _Zo)
< L _F(@)dz"
20 i -y
=§$f(">(zo)<z—zo)“

where 7' is a point on the contour C, and z is any point interior to C.

1 [ee)
—= Zt” for |t| <1 (even for complex number t).

f (n) — L‘ f (Z ) '
(2,) §C—(Z,_Zo)m dz

Taylor expansion: f(z) is analyticat z =z, .

(b) Laurentz expansion

f(z) is not analytic in the regions denoted by green.



According to the Cauchy theorem, we have

1 f(zhdz" 1 f(z"dz’ f(z"dz’ f(z"dz’ f(z"dz
f(2)=— —Lrl—‘:‘—f[f (,) *'I (,) N I (’) *'I (’)
27 ppcpera 22 27 pe 71 b 2 —1Z Z'-1 7'-1
1 f(z"dz f(z")dz'
___[I (Z) _I (2" |

27 YA 7'-z

]

DEF FA

ABC FED

On the path (ABC), we have
|2'-z,>|z2—2,|

On the path (FED), we have
|2'-z,|<|z2—-2,]

Then



1 f(z")dz' :L § f(z)dz'

2 5. 7'-1 27 2. (' =2))—(2-1,)
_ f(z)dz'
27 pac (z—-2,)
Z)| 1 ="——"
(Z )|: ( _Zo)}
f(z) 27%) gy
:ii ( — o)
n=0 27 C (Z _Zo)
X oa Lo F(@)dZ
_nzz(;(z %) 27zii;(z’—zo)”“
:ian(z_zo)n

and

_L§ f(Z’)dZ':L{) f(z")dz'

27 'z 24 L —(Z'-17))+(2-1,)

o o
=74 o (5 _ 0){1_((22_2200))}
BRI =
=27 4 (z-2y)
DT A
=gim(z—zo> -z o

These two series are combined into one series (Laurent series)
f (Z) = zan(z - Zo)n + an(z - ZO)_n s
n=0 n=1

with

Lol f@) 4.

n 2721 §ABC (Z —7 )n+1



_ 1 ' ' n-1 '
bn_2—m_§§f(z)(z—zo) dz

FED

(1) Analytic at z =z,

If f(2) is analytic in the vicinity of zy, we can perform a Taylor series expansion.
f(z)=>a,(z-2,)".
n=0

(2) Isolated singular point at z =z,
We say we have an isolated singular point at z = z,.

b1+b2++b”+
T e A S

(1) As long as one of the b’s are nonzero, z, is a singular point.

f(Z)=nZ:(;an(Z—Zo)” 3

(i)  If b, does not vanish, but all b; with j>n vanish, then f(z) has a pole of order n.
(ili)  Ifb; #0 and all other by’s = 0 the pole is a single pole.

(iv)  Isolated essential singularity (all the b;’s) normally does not occur in physics.

9.11 Examples of Taylor and Lorentz expansions (Mathematica)

9.11.1 Example-1



Clear["Global "]

Series[Exp[z], {z, 0, 10}]

z2 z3 A 25 z
142+ —+ — + — + — + — +
2 6 24 120 720

47 ~8 #9 #10
+ + + +
5040 40320 362880 3628800

o[z 1

Series[Cos[z], {z, 0, 10}]

72 Z4 6 78 210
1-—+— - + - +
2 24 720 40320 3628800

o[z 1

Series[SiIn[z], {z, 0, 10}]

z3 2z z' z° 11
zZ- — + - + +0[z]
6 120 5040 362880

Series[Cot[z], {z, 0, 10}] // Normal

1 z z3 22° z! 279
Zz 3 45 945 4725 93555

Series[Tan[z], {z, 0, 10}] // Normal

z3 225 17z2"7 622°
+ +
3 15 315 2835




Series[Csc[z]®, {z, 0, 10}] // Normal

z2 2z4% Z6 2 78 1382 210
— + + + +
5 189 675 10395 58046625

1
+ — +
22

Wik
=

Series[Sec[z]?, {z, 0, 10}] // Normal

, 22z% 1725 6228 1382210
1+2z2°+ + + +
3 45 315 14175

Series[ , {z, 0, 10}] // Normal

Sin[z]

723 312° 127 2z’ 73 29
+ + +
360 15120 604800 3421440

1 =z
— + — +
Zz 6

L
Series[ , {z, 0, 10}] // Normal

Sin[z]

z2 7z% 3125 127 28 73 210
1+ — + + + +
6 360 15120 604800 3421440

Series[zsin[z], {z, 0, 10}] // Normal

72 z4 26 28 710
- + - +
120 5040 362880 39916800 6227020800

1
+ — +
Z2

ol



1
Series[ , {z, 0, 10}] // Normal

Cos[z]

z2 5z4% 6128 27728 50521210
1+ — + + + +
2 24 720 8064 3628800

Series[Csc[z]®Log[1-2], {z, O, 10}] // Normal

1 1 2z 5z2 1723 17z% 2292°
2 z 3 12 45 60 945
153126 50227 5903z8 218722z° 158707 210

7560 2835 37800 155925 1247400

V4

Series[ , {z, 0, 10}] // Normal

Sin[z] -Tan[z]
11 z2 157 z4
+ +
120 15120
641 z6 1417 28 1402 631 z10
+ +
604800 13305600 130767436800

+

NI

2
22

Series[Sinh[z], {z, 0, 10}]

z3 2z z/ z° 11
Z+ — + + + +0[z]
6 120 5040 362880

Series[Cosh[z], {z, 0, 10}]

22 4 46 ~8 ~10 1
1+ — + — + + + +0[z]
2 24 720 40320 3628800
~ Csc[z]
Serues[ , {z, 0, 10}]
Z
1 1 7z2 31z% 12725
— + = + + + +
z2 6 360 15120 604800
73 28 1414477 z10 1
+ +0[z]
3421440 653837184000
i sec[z]
Serles[ ., {z, 0, 10}]
Z
5z3 61z 277z’ 50521Z2° 1

1' O[z]
z

+ z + + + + +
2 24 720 8064 3628800



9.11.2 Example-2

Clear["Global "*"]

Series[ , {z, 0, 10}]

1+2z

2 3 4 5 6 7 8 9 10+O[Z]1l

l1-z+z2°-z2°+2"-2°+z2 -2 +2°-2"+2

Series[Log[l+2], {z, 0, 10}]

72 23 74  z5 46 2! 28 z9 210

Z- — + — - — ———+———+———+O[Z]11

2 3 4 5 6 7 8 9 10

) 1
Serles[—, {z, 2, 10}] // Normal

z(z-2)°

1 1 1 1 1
-— 4 - + +— (-2+2Z) -
16 2 (-2+2)% 4(-2+2)%2 8(-2+z) 32

i (—2+Z)2+ (—2+Z)3—i (—2+Z)4+ (—2+Z)5—
64 128 256 512
(-2+2)%  (—2+2)7 (-2+2)8 (-2+2)? (-2+2)10

1024 i 2048 4096 ’ 8192 16384



Exp[i 2]

Series[ , {z, 1, 10}] // Normal

(22+1)2
9 1 i

16 e 4<e(—jl+z)2 2e (-1 +2)
231 (-i+z) 67 (-1+2)2 371 (-i+2z)3

+

48 e 192 e 160 e
1663 (-1 +z)4 69831 (-1+2z)° 5431 (-1i+2)°
+ p— —
11520 e 80640 ¢ 107520 e
5237 i (-i+2z)! 942659 (-1 +2z)8
+ +
181440 e 58 060800 e
2133591 (-i+2z)9 38020573 (-1 +2z)10
23654400 e 7664 025600 e
i 1 1+1
Serles[ , {z, a, 5}] // Normal //
z%+a* \ 2
PowerExpand
1 i 5 51 _(I+i) a
3 2" _(16 16>( 2 ?
8 a4 3 ( (1+i)a 2 ab
V2 a ( =4l +z) V2
(1+i) a 2 1 iy [ (+i)a 3
51( V2 +Z) (64+64)( V2 +Z>
32 af V2 a’
_ (1+i) a 4 15  15i, (_ (1+i)a 5
7( 2 +Z> (358 256>( T2 7

128 a8 ) V2 ad



Series[(1-2)™*, {z, 0, 5}] 7/ Normal // Simplify

1
B (12+12iz- (6-61) 2 - (6-21) 2°-52% - (4+1) 2°)

2 {z, c, 5}] // Normal

3 1 1
+ +
256c* 16 (-c+2z)* 8c (-c+z)3

+

1 1 (-Cc+2z)2
32¢?2 (-c+z)?2 32c® (-c+2) 256 cb
(-c+2)3 11 (-c+z)4 3 (-c+2z2)°

+
256 ¢’ 4096 c® 2048 ¢

74

Series[ e {z, -c, 5}] // Normal

(-2

3 1 1 1
4" i
256 c 16 (c+2z)

+ +
8c (c+z)3 32 c? (c+z)2

1 (c+z)2 (c+z)® 11 (c+z)% 3 (c+2z)°
32c3 (c+z) 256 256 ¢’ 4096 c8 2048 c?

Cot[rx 2z
Series[#, {z, a, 1}] // Normal

(z-a)

o 2
Cot[aﬂ]z+7T2Cot[am3+ - Cotl[arn] .

(-a+2) -a+2z

3
T4 B otran
3 3

2 Cot[an] +

(-a+2) 2 4

~ 7% Cot[a ]

9.11.3 Example-3



Clear["Global " %"]

Series[ . . {z, 0, 6}]

Exp[z] -1

2 4 6
l—E-+Ef——E—7+ z +O[Z]7
2 12 720 30240

B 1
Serles[ , {z, 0, 10}]
e’ -1
11 z z z° z’ z9 1
e + - + +0[z]
z 2 12 720 30240 1209600 47900160

1 1 1 1 1 1 1 1
+ — + + + + + + +
z 2z2 623 24z% 120z° 720z% 50402z’
1 1 1 1411
g * 9 * 10+ 0 { _]
4032028 3628802z° 3628800 z z

9.12 Calculation of residue

i?f(z)dz = § f(2)dz + §f(z)dz + ﬁi; f(o)dz+......
=27i[Res(z=12)+Res(z=12,)+Res(z=1,) +....

[

b
f(z)=a,+a(z-2)+...+—+
() 0 1( O) Z_ZO (Z_ZO)Z

Using Cauchy’s theorem,



b,

:ff(Z)dZZi;[ao+a1(z_zo)+"']dz+ﬁ§[ b, +(z—20)

z-1,

or

b,

(Z_ Zo)

~+..]dz

i f(z)dz = §[ztilzo -
We now calculate

| = §(z ~z,)"dz

z—2z,=re"

dz =r(id@)e"
2
0

Then we have

. l_)lz )dz = 27ib, =271 Res(z = z,)

§f(z)dz:§(

0
The problem is reduced to finding the value of b;.

(1) f(z) has a simple pole.

f(z)=a,+a,(z—2))+...+ b
-1,

(z-z,)f(2)=a,(z—2,)+a,(z-2,)" +...+ Db,
lim(z-z,)f(z)=b, =Res(z=12,)

(11) A pole of order n

| = I(re‘g)_"r(ide)eig = ir‘”“Te‘””"”de =27r"s,
0

> +..]dz



b
f(z)=a,+a(z— 1
(Z) O+ l(z ZO)+ +Z_ZO+(Z_ZO)2+ +(Z—Zo)n

(2-2,)"f(2)=(z-2))"[a, +a,(z—2,)+..]+b(z—2,)" +b,(z=2,) +..+D,

d"'(z-2,)"f(2)
dz™!

=b,(n-1)!

n-1 n
b, =Res[z=1z,]=lim I d"[(z- 291) f(2)]
-7, (n _1)| dz"

((Note)) Mathematica
Residue[expr, {X, Xo}];
to find the residue of expression when X equals X.

The residue is defined as the coefficient of 1/ (z-z,) in the Laurent expansion of
expr.

NResidue[expr, {x, X0}];
to find numerically the residue of expression when X equals Xo.
Series[f, {X, X0, N}];

to generate a power series expansion for f about the point x=X, to order (X - Xo)".

9.13 Mathematica
9.13.1 Example-1

(a) Find the poles of

1
yAR |

f(z)=



Clear["Global " %"];

h [Z_] =

—1+28,

eql = NSolve[Denominator[h[z]] =0, z];

listl = Table[{Re[z] /. eql[[i]], Im[z] /- eql[[i]]},
{i, Length[eql]}]

{{-1., 0}, {-0.707107, -0.707107},
(-0.707107, 0.707107}, {O., -1.}, {O., 1.},
(0.707107, -0.707107}, {0.707107, 0.707107}, {1., 0}}

ListPlot[listl, PlotStyle » {Red, Thick, PointSize[0.02]},
AspectRatio -» 1, Background -» LightGray,
AxesLabel - {"x", "y"}]

y

1.0
[ [
0.5}
-1.0 05 0.5 "
—0.5+
[ [
- 1.0
(b) Find the poles of
f(2)=—

2*+1



Clear["Global " %"];

hiz_] !
z = ;
B 1+28

eql = NSolve[Denominator[h[z]] =0, z];

listl = Table[{Re[z] /- eql[[i]l], Im[z] /- eql[[i]]},
{1, Length[eql]}]

({-0.92388, -0.382683}, {-0.92388, 0.382683],
(-0.382683, -0.92388}, {-0.382683, 0.92388},
{0.382683, -0.92388), ({0.382683, 0.92388),
{0.92388, -0.382683), {0.92388, 0.382683) )

ListPlot[listl, PlotStyle » {Blue, Thick, PointSize[0.02]},
AspectRatio -» 1, Background - LightGray,
AxesLabel -» {"'x", "y"}]

[ J L [ J
0.5
[ ] ([ ]
—6.5 I 0.‘5 g
[ ([ ]
-0.5+
[ J [ [ J
9.13.2 Example-2

((Mathematica))

The residue is the coefficient of the term @-20™" in the Laurent expansion of a
function about the point Z20. (For a very detailed survey of applications of residues, In
Mathematica, we get the residue of a function at a given point via Residue.

Find the residue of the function



1
e -1

f@)=

atz=0.(a)n=4.(b)n=0,1, ..., 10.
Residue[expr, {X, Xxo}1 the residue of expr when X equals Xg

Clear["Global %'"];

1 1
F[z ,n ] := —

z" e’ -1

Series[F[z, 4], {z, 0, 10}] // Normal

1 1 1 1 z z3

—_— - + - + - +

729 274 1223 720z 30240 1209600
z° 691 z7 z°

47900160 1307 674368000 ’ 74724249600

Residue[F[z, 4], {z, 0}]

1
720

Table[{n, Residue[F[z, n], {z, 0}]}, {n, O, 10}] // TableForm

0 1
1 _1
2
2 1
12
3 0
4 __1
720
5 0
6 _1
30240
7 0
8 o1
1209 600
9 0
10 I S
47900 160
9.13.3 Example-3

Find the residues of the function given by



e
l1+e

f(2)=

2z




Clear["Global *"];

72 @7

Tl = ,
1+ e?”

eql = Solve[Denominator[fl] == 0, z];

zl=2z/.eql[[1]]

in
2

z2 =27 /. eql[[2]]

17T

2

Series[Tl, {z, z1, 3}] // Normal
i 2 1

J—T—,—+—Ji (24+7T2) (jl—ﬂ+z)—
2 8(%+z> 48 2

2 i (240+77%) (L242)°
2880

Series[fl, {z, z2, 3}] // Normal

+,——i1'1 (24+7r2> (—j—ﬂ +Z) -
irn 48 2

ia 2 j(zm+7n%(-%i+43
Tl-— +2z] +
( ) 2880

Residue[fl, {z, z2}]
i 2
8




9.134

9.135

Examples 4

Find the residue of F[z] = 272l at zj = 0.
z

Clear["Global " %"];

7t COT [ Z]
flz_] = - ;
zZ

Series[f[z], {z, 0, 10}]

1 2 a4z 21823 825 271077 1382 712 29

Residue[f[z], {z, 0}]

Example 5

7T
— - - - +
z3 3z 45 945 4725 93 555 638512875

O[z

]

11



Show that [;—3%- dz = 4 i, where Cisthe circle C 2 | z | = 2 taken with positive
Z° +

orientation.

22
flz_] = x
2+27

eql = Solve[Denominator [f[z]] =0, z]

{{z+—j\/§}, {z+im/7}}

datal = Table[{Re[z], Im[z]} /- eql, {i, 1, Length[eql]}]
{{{o, -v2}, {0, V2}}, {{0, -2}, {0, V2 }}}

Tl = ListPlot[datal, PlotStyle » { PointSize[0.02], Red},
AspectRatio -» Automatic];

gl = Graphics[{Blue, Thick, Circle[{0, 0}, 2]}1;

Show[fl, g1]

ri= Residue[f[Z] , {Z’ V2 1}]

1
r2 = Residue[f[Z] > {Z’ V2 1}]
1

sol =2nxa rl+2xar2

41 7



9.13.6 Example 6

Use residues to integrate Jcﬁ dz aroundthecircle C- | z | = 3.
2% 2% -2z

1
fl[z]=——;
-2724+234+ 2%
eql = Solve[Denominator[f[z]] == 0, 7]

{{z->-2}, {z->0}, {z-0}, {z>1}}

Length[eql]
4

datal = Table[{Re[z], Im[z]} /- eql, {i, 1, Length[eql]}]

{{{725 0}! {0! 0}! {O, O}, {ls O}}! {{72! 0}! {O, O}, {O! O}! {1! 0}}!
{{-2, 0}, {0, 0}, {0, O}, {1, O}}, {{-2, O}, {0, O}, {0, O}, {1, O}}}

fl = ListPlot[datal, PlotStyle » { PointSize[0.04], Red},
AspectRatio -» Automatic]; gl = Graphics[{Blue, Thick, Circle[{0, 0}, 31}1;
Show[fl, gl]

Table[{z /- eql[[1]], Residue[Ff[Z], {Z, z/-eql[[i]]1}]1}, {i, 1, Length[eql]}]

({-2. -2}, (0. -3} (0. -7} (1. 3}

Sum[2 x i Residue[F[Z], {Z, z /- eq2[[i]]1}], {i, 1, Length[eq2]}]
0

9.14 Calculus of residue



9.41 Jordan’s lemma

Jordan's lemma is a result frequently used in conjunction with the residue theorem to
evaluate contour integrals and improper integrals. The theorem is named after the French
mathematician Camille Jordan.

We want to calculate the integral given by

T f (x)e™dx,

where a>0 or a<0, and

lim f(z)=0.

|z| >0

In order to do that, we consider the path integral around the contour C; for a>0 (the upper
half plane) and the contour C, for a<0 (the lower half plane) in the complex plane.

y

A

I

Y
>

(i) a>0

§ f(2)e™dz = j f (e dx+ lim I

C
If the integral reduces to zero in the upper semi-circle (77, R—)

lim I, = lim [e=t(@)dz=0.
L

R—w

Note: iaz =ia(a +if)=-af +iaa . When (>0, the integral on the large semi-circle
becomes zero. Then we have



T f(x)e™dx = § f(z)e™dz =271 ) Residues

o upper
half
plane

where f(z) has poles inside the contour C;.

(ii) a<0

I

[ fo0e™dx+ liml = § f(2)edz =27 )" Residues
—o0 - C, lolwer

half
plane

when

lim I, = lim jeiaz f(2)dz=0
I

R—o

((Note))

jlaz =ia(a +if)=—-af +iaa . When <0, the integral on the large semi-circle becomes
zero. Then we have

T f (x)e™dx = § f (z)e™dz =271 ) Residues

C, lolwer
half
plane

In summary,

For a>0,



T f(x)e™dx = iﬁ f(z)e™dz = 271 ) Residues .

C, upper
half
plane

For a<0,

T f (x)e™dx :§ f(z)e™dz =271 D Residues.
—o0 CZ

lower
half
plane

(2 Integral along the contour of half-circle
Suppose that f(z) has a simple pole on the real axis. We now consider the contour
integral along the half circle centered at the pole (z = 2y),

j f(2)dz

For simplicity we suppose that f(z) has a single pole at z = z,,.

a,

+0(2)= b +9(2),

-1, z-1,

f(z)=

where a.; = by, g(2) is analytic.
Now we have the integral around the contour C; (upper-half circle with the radius ¢
located at the point z = zj)

b,
z-1,

I=§f(2)dz=§ +9(z)]dz

0 V1 :
- dz—b [ seido ~ b, [id6 - b,
clz_zo ”69' 0

Ci

Zp
or

| = fi; f(z)dz =(—n)Res(z=12,) [clock-wise (CW) rotation]



where a_, =Res(z =z,).

Next we have the integral around the contour C, (lower-half circle with the radius ¢
located at the point z = zj)

| = §f(z)dz = §[ b g(z)]dz

C, Z—-1,

T

b 2
:iz_lzodz:bli

2r :
;igge”ide ~b, [id0 = b,

or

| = ff) f(z)dz =nRes(z=12,) [counter clock-wise(CCW) rotation]|
c,

9.15 Calculation of residue

Residue theorem
f (Z) = Zan(z - Zo)n >
| = aniﬁ(z -z,)"dz,
C

i0
z-17,=re",



n+1,0 *

2 2K
l=a, j(re"’)” reidg =ia _r"" J‘el(nmede = 27ia ™S
0 0

§ I (2 )dz a'_ I"e S[Z Z( |
27Zi '

A set of isolated singularities;

§f(z)dz+§f(z)dz+ jS f(z)dz + § f(z)dz+...=0.



Here C is a path with CCW and C, C,, ... are paths with CW.
i§ f(z)dz= _§ f(z)dz - §> f(z)dz - f§ f(z)dz
C C C, Cs
=2n[Res(z,)+Res(z,)+Res(z,) +...]
((Note))

b, + b, + b, +.t n
—Z (Z_Zo)2 (Z_Zo)3 (Z_Zo)n

(a) As long as one of the b’s are non zero, 7, is a singular point.

f(Z)ZnZ(;an(Z—Zo)" 3

(b) If b, does not vanish, but all b; with j>n does vanish, then f(z) has a pole of order n.
(c) If b1#0, and all other b;’s = 0, then the pole is a simple pole.

(d) If f(z) has a pole of order n, 1/f(z) has a zero of order n.

(e) A function that is analytic in a region except for isolated singular points is

(f) Isolated essential singularity (all the b;’s) normally does not occur in physics.

9.16 Mathematica

9.16.1 Application I

€
1= X (b>0).



Note that

|f(Z)|<%—>O (R—> ).
For a>0,
| = jdze“’ﬂf(z)
cisr
For a<0,
| = J'dzeiaZ f(2)

C2+I'

since iaz =1a (a +1 f) =1aa - af). We need to choose the path (upper half plane) for a>0
and the path (lower half plane) for a<0 (Jordan's lemma). There are poles on the real axis
at z =+ b. We must specify how to go around. We consider the four cases (Cases I - IV).

((Case I))



For a>0 (upper half-plane),

§ dz—Pj dx mMRes(z=-b)+ziRes(z=b)
Cl+T 2’ -b’
=27 Re S(Z =Db)
The second term of the right-hand side clock-wise
The third term of the right hand side counter clock-wise

Then we have

P ﬁdx  7[Res(z = ~b) +Res(z =b)] =~ sin(ab)

—00

For a<0 (lower half-plane),

§ e dz—PJ' dx mMRes(z=-b)+nRes(z=Dh)
c2+rz -b?

=-27iRe s(z =-h)

or



P Xze_ 5 Ox=—7i[Res(z = -b) + Res(z =b)] = %Sin(ab)

—00

((Case 1))

For a>0 (upper half-plane)

§ zze— o dz=P I Xze_ o dx + 71 Res(z =-b)—7iRes(z =b)
Cl+I -0
=2mRes(z=-b)
The second term of the right-hand side counter clock-wise
The third term of the right hand side clock-wise

Then we have

P J‘ ﬁdx = 7i[Res(z = -b) +Res(z =b)]= —%sin(ab)

—00



For a<0 (lower half-plane)

iaz

§ : dZ—Pj dx+mRes(z——b) mRes(z=h)
c2+rz ~b?
=27 Res(z =b)
or
P [0 Xze_ 5 Ox=—7i[Res(z = -b) + Res(z =b)] = %Sin(ab)
((Case-111))

(a) For a>0 (upper half-plane), we have

iaz

§ ze . dz—Pj dx+mRes(z —b)+ 7 Res(z =D)
:2mRes(z:b)+27ziRes(z=—b)

since there are two poles inside the contour. Then we have



P k= silRes(z =-b) + Res(z =b)]

- (for a>0).
= " sin(ab)
b

(b) For a<0 (lower half-plane), we have

§ dz—PJ dx+mRes(z_—b)+mRes(z_b)
c2+T 2’ -b’

=0
since there is no pole in the contour.
0 iax

P ® dx=-7i[Res(z =—b)+Res(z =b)]
X2_b2

—00

= %sin(ab)

((Case-1V))

For a>0 (upper half-plane)



or

iaz

j; dz—Pj dx—;ziRes(z:—b)+7ziRes(z:b)
Cl+T 2’ -b’
=2mRe S(Z =D)
P I 2e o’ dx = zi[Res(z = -b)+ Res(z =b)]
X (a>0)
= —%sin(ab)

For a<0 (lower half plane)

or

9.16.2

iaz

ﬁi; ° dZ—Pj dx 7iRes(z =—-b)+ ziRes(z =Db)
c1+csz _b
=-2mRes(z =-b)
P_J; Xze_ b2 dx = —zi[Res(z =—b) + Res(z =b)]

(a<0)
= %sin(ab)

Application 11



iax

cos(ax cos(ax) . 17 e
I (@) 4 j (@) 4 j

= d b>0).
X +b2 X +b2 2° x*+b? X ©>0)

0

The last equality holds because of

J- sm(ax)d _0

0 (the integrand is an odd function of X)
x> +

£ iax
So we calculate | = Iﬁdx.
X +Db

For a>0 (upper-half plane),

iaz iaz iax —ab

e e
dz = dz + dx 27iRes(z =ib) =
I 22 +b? CJ‘lzz+b2 I es( )= b

Cl+I

since there is one single pole at z = ib and the contour integral around the path C1 is zero
(Jordan's lemma).

For a<0 (lower half-plane),
eiaz i iax ab

I mdz = J. e dz + I dx——27z1Res(z =—ib) =

C2+I




since there is one single pole at z = -ib and the contour integral around the path C2 is zero
(Jordan's lemma).

9.16.3 Application 111
We consider the derivation of familiar integral

((Case-1))
It can be found by integrating

iz

e
I = j; —dz
Cl+T'+C2 z

around the contour of Fig. The integrand has a simple pole at z = 0. This pole is avoided
by placing a semicircular path C2 (the radius r —0) around it. There are no poles inside
the contour. So | = 0.

Cl+T'+C2

The first term is equal to zero (the radius of C1 R—oo, Jordan's lemma). Then we have
T e :
Pj—dx—mRes(z =0)=0
" X

or



T e Fsin X .
P__[OTdX=2|_([ < dx =ir

or

“sin X Vs
j—dx:—
v X 2

((Case-11))
For the calculation of the integral, we can choose the different contour shown in Fig.

| = § e—izdz=.f£dz+J'£dz+.[idz=27z1'Res(z:0)
r z CZZ

Cl+I'+C2 Z Cl z

The integrand has a simple pole at z = 0 in this contour. Using the Jordan's lemma for the
contour integral around the contour C1, we have

P.[e—dx:ﬂiRes(z:O):m'.
S X

9.16.4 Application IV Unit step function

o s

|(s)=jeX

—00

dx




For s>0,

isz

43 eiidz:J.eiidz+P]geidx+J.e—dz:O
Cl z —© X C

z z

Cl1+I'+C3 3

since there is no pole inside the contour. From the Jordan's lemma, the first term (the
contour integral around C1) is equal to zero. Then we have

PIe—dx:—je—dz=—(—7zi)Res(z:0):7z1'
—0 X C3 z
For s<0
§ e—dz=_fe—dz+Pje—dx+.fe—dz:0
C2+I'+C4 z C2 z —o0 X C4 z

since there is no pole inside the contour. From the Jordan's lemma, the first term (the
contour integral around C2) is equal to zero. Then we have

isz

P % —dx=-["—dz=~(ri)Res(z=0) =
J X z

C4

In summary, we obtain



{i;z (s>0)
I(s)=1 .
-7 (s<0)
Fors=0,
Tldx:o
X

We consider

0 isx 1 O
u(s)=l+L_PJ'e dx =] 2G>0
2 2n 0,(s<0)

—00
and

u(is)=1/2ats=0.

u(s)
1.0

0.8}

0.6}

0.4}

0.2}

-1 1 2

9.16.5 The ig prescription
We derive the formula

' e Lz
X+lg X

where ¢ (—0) is a positive infinitesimally small quantity.

(1) Case-I

1, = tim | ) g
550 4 X—ig



y
I'l z=l€ 2
E— > » —P X
1

Since the only singularity near the real axis is z = ig, we make the following deformation
of the contour without changing the value of I. The contour runs along the real axis (the
path /1) and goes around counterclockwise, below the origin in a semicircle (C1), and
resumes along the real axis (the path 72).

Ilzifix)dx+(£f(zz)dz+rj;¥dx

:P'[—f(x)dxwziRes(z:O)
2x

:PTMdXHzif(O)
S X

or
Lo_pliimsm.
X—=1& X
(2) Case-I1
1, = 1im [ ) g
50 X+ig
I'l
E— = — X




Since the only singularity near the real axis is z = -ig, we make the following
deformation of the contour without changing the value of |, The contour runs along the
real axis (the path /1) and goes around clockwise, above the origin in a semicircle (C2),
and resumes along the real axis (the path 72).

IZZI ff(x)dx+cj;f§2)dz+'[wdx

Il r2 X

- pi@dx — 7iRes(z = 0)

—p [ 19 4 it o)
Jx

or
1_ = Pl—izré'(x)
X+ie X
9.16.7 Fresnel integral

o0

)by = [ sin()dx =L | Z
Jcos(x )dx —_!sm(x )dx —2\/;

0

0o TA

Je‘zzdz + Ie‘zzdz + Ie‘zzdz =0
OA AB BO



N3
2

2 % 2
I, = Ie‘z dz :J‘e‘X dx =
OA 0

BO
1, = [e*dz=—[e" dz
BO OB
z=re"*, dz=e""dr, zZ*=r%""?=ir’.
I, = —e‘”/4ze‘r2dr =— (ljii) []:cos(rz) —isin(r?)]dr
AB

z=Re", dz =Re'id@, 7 =R%".

/4
I, = Ie‘zzdz: jexp(—RZez“‘))Re”’ide

AB 0

7/ /2

4 /2
1< [exp[-R* cos(26)IRd6 =§ [exp[-R” cos(p)ldg =§ [ exp[—R’ sin(p)]d
0 0

0

or

z/

2 _a-R?
|I3| < g _[exp[—Rz sin(p)]de < zi=¢")
0

4R

-0

as R—o0. Note that we use the inequality sing < zgo for 0<@=<m/2.
T



f(¢)

x x 3x
8 4 8
~0.05}
? 2 :
~0.101 f(¢)= — ¢ — Sin[¢]
: /8
~0.15]
~0.20}
Since |, +1, =0, we have
Jroo1+i% e . )
—— =—=|[cos(r”) —isin(r-)]dr
> " j [cos(r?) ~isin(r*)]
or
l\/za —i) = [[cos(r*) —isin(r*)Jdr
2V2 o
or
K T 1 |z
cos(r’)dr =|sin(r*)dr ==, /=
! (r") j (rdr=—3
9.16.8 Arfken 7-1-15
Use the large square contour with R—0 to prove that
y
A
iR
<€
a2 A
C3

Cl

) Van o



Tsinx
X

—00

dx=r
((Solution))

iz =r Lix R Lix iz iz iz iz
0=§>er2=Le?dx+.!.e7dx+(£e7dz+cjz%dz+C£erz+.Ie7dz

iz R i(R+iy) R -y
J& | =|fiay S — < [ay® = a-e™) 0.
&2 o R+lyl ¢ R R

iz R i(x+iR) R
[Sdg=|[axE— <L [aee® =2¢™ >0
S, Z = X+IR| Ry

iz 0 i(=R+iy)
[ %z =|[iay <— jdye ~La—e™ -0
S Z ~  —R+iy| Ry R

Then
je—dz+je—dz+je—dz =0
Cl1 z (3 z 3 z
Since
e” i )
J—dz =—zniRes(z=0)=—n
!z
we have
< el i
P|—dx=mn
15
or

T sin X
PI < dx=r

9.17 Cut line for the multivalued function



Single valued function: a function which is mostly analytical with some singularities

We can generalize discussion to multi-valued functions using a geometrical construction
known as Riemann surfaces.

We consider logarithmic functions
Inz= 1n|z| +iargz

Argz is uniquely defined only up to multiple of 2 7.
Argz =0+ 2

(1) To see what this means, we consider a closed path C enclosing z = 0. Start at z =
Zp and follow the value of Inz as it changes continuously as we go along the
contour C. Whatever we had for argz, initially we find that argz, has increased by

21t when we return to z,.

(InZ)) i = (AN Z) )i + 27 .

20

((Branch point))
A point in complex plane that has this property, i.e.,

f (ZO) final # f (ZO ))initial
for any loop around it, is called a “branch point,” of the function.

Inz has a branch point at z = 0.

(11) Letz=1/2’, then we have



Inz=Inz'=1n

I —
;—Iargz

It is easy to see that Inz’ has a branch point at z’ = 0 and z = .
In summary, Inz has two branch points at |z| = 0 and |z| = o.

(iii)  If we draw line or curve joining the two branch points, this line is referred to as a
branch cut. So the complex plane is cut from branch point to another.

((Example))

Branch cut

Z = infinity

f(z)=Inz

We cut the plane along the positive half of the real axis.
f,(z)=Inr+i6

where
z=re"

where r>0 and 0<0<2r.
This is really a single valued function. Similarly we can define

f(z)=Inr+i(0+2x)
where >0 and 0<0<2rx.
and

f (z)=Inr+i(0-2x)

where r>0and 0<@<2r.



and a whole inifinite sequence for functions

fo, far, fao, faoyenenii , Fin,

which are single value and can be used to replace the multivalued function Inz.

(iv)

(V)

Each f,(2) suffers a discontinuity across the cut — i.e., 2mi- but the values of f,(z)

above cut is the same as f,,+1(z) below cut.

e Thus it is suggestive to say that we have an infinite series of cut planes on top
of one another.

e The plane that f,;(2) is defined on, lied right above the f,(2).

e The adjacent planes are connected across the cut.

e The lower lip pf'the n+1 plane is connected to the upper lip of the n-th plane.

So when we cross a cut, we are going from one-cut-plane to another cut-plane.

Each plane is called a Rieman sheet. Supposition of all planes in the helix array is
called Rieman surface.

What has all of this achieved?

Started with Inz. We have one single valued function defined on Rieman surface
instead of multivalued function.

Branch points: when we go around them, we go to the different sheet.

We can define the order of branch points. We have an n-th order branch point if
we have to go around it n+1 times to some back to a function original value
[minimum n].

So z =0 is a branch point of infinite order for Inz.

9.19

Cut-line

The cut line runs along some curve from the z = 0 out to infinity.
We consider

(a) vz

Cut along the negative real axis

z=re" (—x<0<r)

The angle @is restricted so as not to cross the cut line.



(1) Cut along the negative real axis as the cut line

Jz =+Jre?? for -z <O<nx

@

pointa (z, =re'”) —AJre"? =iVr
pointb (z, =re™™) —ifre? =—iJr

There is thus a discontinuity across the cut. The function is not analytic on the cut

(i1) Cut along the positive real axis as the cut line

Jz =+re?”? for 0< 6 <2
pointa (z, = reio)_, Jre® =

pointb (z, =re””) — Jre® =—r



There is thus a discontinuity across the cut. The function is not analytic on the cut line

(b) Vz—a=+7'

'=7—a

z’=0 (or z = a) and infinity (z = o) are branch points.

negative real axis

(©) y(z+D(z-1)

positive real axis

Check on the possibility of taking the line segment joining z+1 and z-1 as a cut line

z+1=re"
z—1=pe"

where 0<0 <27 and 0< ¢ <27

i(0+¢)/2

f(z)=./rpe



-
3‘—42/!\1
L ] L

=1 /. 5 =1 7
—-- —f-
0 ¢ (6+9)/2
1 0 0 0
2 0 T /2
3 0 T /2
4 T T T
5 2n T 37/2
6 27 T 3n/2
7 21 21 21

(1) The phase at points 5 and 6 is not the same as the points 2 and 3. This behavior
can be expected at a branch point cut line.

(i1) The phase at point 7 exceeds that at 1 by 2z So the function f(z) is therefore
single valued for the contour shown encircling both branch points.

d)  J(z-a)z-b)z-c)

There are three branch points. So there are two cut lines.

_

e

(d) y(z-a)z-b)z~-c)z-d)



There are four branch points. So there are two cut lines.
/ b

d

~

((Note))

(1) A function with a branch point and a required cut line will not be a continuous
across the cut line.

(i)  In general, there will be a phase difference on opposite sides of this cut line.

(iii)  Thus the line integrals on opposite sides of the cut line will not generally cancel
each other.

9.20 Examples of cut line (Mathematica)

9.20.1 z
Plot3D of Im|[ Jz ]—there is a cut line on the negative X axis (X<0).

i e m

9.20.2 J(z+1)(z-1)



Plot3D of Im[4/(z +1)(z —1) ]—>there is a cut line between z=1 and z = -1.

9.20.3 (z+Dz(z-1)

Plot3D of Im[/(z+1)z(z—1) ]| >A cut line between z = 1 and z = 0, and a cut line
between z = -1 and the negative X axis (X<-1).

9.204 \(z+1)z(z-1)(z~-2)



Plot3D of Im|[ \/(Z +1)z(z—-1)(z - 2) ]>A cut line between z = -1 and z = 0, and a cut line
betweenz=1and z =2.

9.20.5 In(2)
Plot3D of Im[In(z)]—>there is a cut line on the negative X axis.




9.21 Applications
9.21.1 Arfken 7-1-18
Show that

Toxe a
J S 0X = —
o (X+1) sin(7za)

where |a|<1. We note that z= 0 is a branch point and the positive X axis is a cut line.

a

_ Z
S (z+1)?

f(2)

Since there is one pole at z = e'”, we have

[f(dz+ [f@dz+ [f(dz+ [f(2)dz=27iRes(z=¢").

ABCDE HGF

a anial

z=xe", 7% = X%

dz = dxe"



a

II:jf(z)dz:‘T(XXa e‘°dx=T X

(as R—0).

) (x+ 1)’ ) (x+ 1)
EF
z=xe", 2% = x%"™
dz = dxe*”
L 2ia [ X 2zia
1, =Aé|'Ff(z)dz =£me dx = —e l.(x+1)2 dx = -,
ABCD (radius R)
z=Re", z2* =R%"’
dz =Re"id6
[ f(2)d= T%Re”’ ido| < TRa: d0 =R (27) >0
ABCDE o (Re+1) o R
HGF (radius p)

iad

Z:peig’ Za:pae

dz = pe'’id@
2z aeia0 ) 2z )
[f(@)dz= (”w—z peidg =ip™ [e7*Vd0 >0 (as p—>0).
HGF o (e +1) 0

Then we have
I, +1,=(1-¢e")l, =27iRes(z=¢€"")
or

_ 27iRes(z=€") 27(-a)e™” A

1-e - sin(ar)

Il

i27a l_ei27za

where



1 d

R s(z = ei/r — Bl +1 2 L= aza—l L= a.eiﬂ(a—l) — _aeiaﬂ'
es( ) (2—1)!dz[( ) (z+1)2]z’e |Z:e
9.21.2 Application 11
Evaluate
¢ dx
l=|——— a>0).
!(x+a)3\/§ (@>0)

1
"O= rart

f(z) has a pole at z = -a. We note that z = 0 is a branch point and the positive X axis is a
cut line.

[f(dz+ [f@)dz+ [f(2dz+ [f(2)dz=27iRes(z=ae")

ABCDE HGF

HA

12 _ J1/2

szeio, 7 =X eia0/2 — 1/2

X



dz = dxe"

R 1
= .f f(z)dz :lmdx

HA

z=xe™",

dz = dxe*™ = dx

7112 — y1/2g7 _\/;

I,=|f(z)dz= dx =
I 2) I(x+a)\/_ (x+1)
ABCD (radius R)
Z:ReiH Z1/2 — Rl/Zei9/2
dz=Re'idg
2z 1
i0:
J f(z)dz| = I(Reig+ a)’ R %" Re™idg) <
ABCDE 0
as R—oo.
HGF (radius p)
7 :miﬁ’ Z1/2 — pl/ZeiG/Z
dz = pe'’id@
2z 1 p]/z 2r
[ f(@)dz = j(pe A e pe'id = Ie'5/2d0—>0
HGF 0
as p—0.

Then we have

I, +1,=2l =27iRes(z =ae"”) = 2zi(—

or

——dx =1,

3.
8 5/2

2

I

0

os77) =

Rl/2

dé =

RY/4

4a5/2

R™*"?(27)—>0



I, = RY/4

8a5/2
((Mathematica))
_ 1 1 I
Residue| — ———, {z, aExp[:’ur]}] // Simplify[#, a> 0] &
z1/2 (z+a)?
3i
g ad/2
1 1
Series| — —, {z, aExp[i~x], 2}] // Simplify[#, a> 0] & // Normal
7172 (z+a)3
51 i ) i ) 31 35i (a+z) 63i (a+2z)?
16a’’? +Ja (a+z)3 2a%2 (a+z)2 8a%? (a+2z) 128 a9/2 256 all/?

Note that the residue is equal to the coefficient of 1/(z + a).
9.22 Kronig-Kramers relation

We consider the motion of a particle (mass m and charge q) in the presence of electric
field.

m(X+ p,X+w,' X)=QqE = F
x =Re[X 7], F =Re[F e '"].

where o is the angular frequency, X is the total displacement and F is the applied electric
field.

m(_a)z _poia)+ a)Oz)Xw = Fco = an)

°E 1
qx(u:q “ 2 2 -
m w, —w —lwp,

=a(w)E,

Here o w) is called response function and is defined by

q2
Of(a)):— 2 2 .
m o, -0 —iwp,



We need not to assume this form of o(w), but we make use of three properties of the
response function viewed as a function of the complex variables. Now we regard o(w) as
a function of complex variable w.

fo=q’/m,
and
f
a(w) = -
0, -0 —lup,
The pole of o w):
o’ +iwp,—w, =0,
o=_ Py & 4o - p)’
5 .
Case (1): 4a)02 —,002 >0.
y
A
q
[ ] [ ]
Two poles
Case (2): 4a)02 - ,002 <0.

o= —ip, ii\/poz 4o,



» <

Two poles

Thus we have the following features.

(D
)

€)

The poles of o w) are all below the real axis.
The integral of o w)/ @ vanishes when taken around an infinite semicircle in the
upper half of the complex plane. It suffices that o @)/ @ —0 uniformly as |@| —>o0.

lim 2(2)
o> @

0.

a(w)=a'(w)+ia"(w),

where o'(w) is even and a"(w) is odd with respect to real w. Now we calculate

§Mdz.

CZ—(()

We note that Integrant has a simple pole at the real axis.



Since

P J' ﬂdx: i7Res(z =w) =ira(w),

or

a(®)=— P,[ o d

Now we have

a(w)=a'(@)+ia" (o)
_1 P[T de]’
X—®

—00



a (x)dx
X—®

05'(60):%P]E

o

_Lpp | A1) gy T“"(X) dx]‘

Ty X—o X—w

Since , a"(—X) = —a"(X) (odd function), we have

o' (@) = % P i‘"_(x) dx+ [ (%) 4]

L X—w L X+

:EPI Xa (Xz dx

2
T o X -

Similarly

o0

" (w) =L P[ | (%) 4 + ]0 (%) 41
VA 0 X—w 0 X+ w

a'(X)
N dx

20 ¢
R e

APPENDIX
A.1 Mathematica

Residue[expr, {X, Xo}];
to find the residue of expression when X equals X.

The residue is defined as the coefficient of 1/ (z-2,) in the Laurent expansion of
expr.

NResidue[expr, {X, X0}];
to find numerically the residue of expression when X equals Xo.
Series[f, {X, X0, N}];

to generate a power series expansion for f about the point x=X, to order (X - Xo)".

A.2  Principal part of an integral



We consider a real function f(x) that blows up at x = a. The principal part of the
integral is defined as

P T f (x)dx = 18133[Tf (X)dx + T f0dx]

at+e

((Example))

1 N 1
26 2&°

1 CF1 %1 .
Pdex=11m[j7dx+j7dx]=£glg(— )=0

-0



