
Chapter 9 
Complex functions 

Masatsugu Sei Suzuki 
Department of Physics, SUNY at Binghamton 

(Date: October 23, 2010) 
 
 

Baron Augustin-Louis Cauchy (21 August 1789 – 23 May 1857; French pronunciation 
was a French mathematician who was an early pioneer of analysis. He started the project 
of formulating and proving the theorems of infinitesimal calculus in a rigorous manner. 
He also gave several important theorems in complex analysis and initiated the study of 
permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a 
great influence over his contemporaries and successors. His writings cover the entire 
range of mathematics and mathematical physics.  

 
 
http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy 
 
9.1 Function of a complex 
 

iyxz  . 
 
z is a complex number and both x and y are real. 
 
Suppose we write f(z) - that is a function of z - by this we mean that for each value of z - 
f(z) can take a complex value. 
 
f(z) is a function of two real variables x and y. 
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where ),( yxu  and ),( yxv  are real functions. 
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(a) 

In our study of complex functions, we will consider those sorts of functions which 
turn up in physical problems. 
-i.e., our functions will have a “smoothness requirement”. 
-i.e., they are differentiable. 
 
(1) How do we define the derivative of a complex function? 
It seems like it should be  
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But z  has two paths - i.e., yixz   
-thus 0z  can assume in an infinite number of ways. 

irez   and 0z  is obtained when 0r  but  can have any value.  
 

 
 
((Example)) 
 
Say iyxzf 2)(   and let us compute directly 
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  for z = 0, 

 
and two different  values: 
 
(a) 0 , rz   
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(b) 2/  , rirez i  2/  and 0x . 
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Thus for iyxzf 2)(  , we do not get a unique result. We say that this )(zf  is not 
differentiable. 

For a function of z to be differentiable at 0zz  , we need 
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 to 

exist (i.e. finite) and the result should be independent of any z . 
 
9.2 Cauchy-Riemann conditions 

Let’s see what restrictions are imposed on )(zf  of it is to be differentiable. 
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We get unique result no matter what  is in irez  . 
 
For  = 0, 0x , 0y  
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For  = /2, 0x , 0y  
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And both results must be the same 
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  (Cauchy-Riemann condition) 

or 
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The Cauchy-Riemann conditions are necessary for the existence of a derivative of )(zf . 

 
If dzdf /  exists, the Cauchy-Riemann conditions must hold. Conversely, if the Cauchy-
Riemann conditions are satisfied and the partial derivatives of u and v are continuous, 
then dzdf /  exists. 
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Note that 
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using the Cauchy-Riemann conditions. 
 
Then we have 
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On the other hand 
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, (3) 

 

Eqs. (1) ,(2), and (3) show that 
z

f
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 is independent of the direction of approach in the 

complex plane as long as the partial derivatives are continuous.  
 
((Note)) 
 
Cauchy-Riemann conditions 
 

y

v

x

u








,  
y

u

x

v








, 

 




























2

22

2

2

2

y

u

yx

v

xy

v

x

u

  0
2

2

2

2
















u
yx

 Laplace eq. for 2D 

 
Similarly 
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 Laplace eq. for 2D 

 
Therefore, both u and v are harmonic function that satisfy the Laplace’s equation. 
Furthermore, comparing the 2D gradients 
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Then we have 
 

0 vu . 
 



The lines of constant u (level curves) are orthogonal to the lines of constant v, anywhere 
that 0)(' zf . If u represents a potential function, then v represents the corresponding 
stream function (lines of force), or vice versa. 
 
((Example)) 
 

xyiyxivuzzf 2)( 222   
 
or 
 

22 yxu  , v = 2 xy. 
 
We make a ContourPlot of u = const, a StreamPlot of u , a ContourPlot of v = const and 
a StreamPlot of v  by using the Mathematica. 
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Fig. A ContourPlot of u = x2 - y2 = constant and a StreamPlot of u . 
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Fig. A ContourPlot of v = 2xy = constant and a StreamPlot of v . 
 
 
9.3 Example 
 
James J. Kelly
Graduate Mathematical Physics

Level curves of f(z)=z2=u+Âv are shown. 

f  x   y3  Expand

x3  3  x2 y  3 x y2   y3

u  SimplifyRef, x  Reals, y  Reals
x3  3 x y2

v  SimplifyImf, x  Reals, y  Reals
3 x2 y  y3

 



ContourPlotEvaluateTableu  k, k, 5, 5, 0.1,

x, 2, 2, y, 2, 2

-2 -1 0 1 2

-2

-1

0

1

2

ContourPlotEvaluateTablev  k, k, 5, 5, 0.1,

x, 2, 2, y, 2, 2

-2 -1 0 1 2
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9.4 Example 
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((Laplace equation)) 
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Can we write )(' zf  as a derivative? The answer is yes. 
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9.5 Mathematica 
Cauchy-Riemann condition 



Cauchy-Rieman conditions

SuperStar : expr_ : expr . Complexa_, b_  Complexa, b
RCf_ : Moduleu, v, w, uy, vx, ux, vy, w  ComplexExpandfx   y;

u  w  w 2  Simplify; v  w  w  2   Simplify;

uy  Du, y  Simplify; vx  Dv, x  Simplify;

ux  Du, x  Simplify; vy  Dv, y  Simplify;

uxx  Dux, x  Simplify; uyy  Duy, y  Simplify;

vxx  Dvx, x  Simplify; vyy  Dvy, y  Simplify;

List"u", u, "v", v, "uy", uy, "vx", vx, "ux", ux,

"vy", vy, "uyvx", uy  vx, "uxvy", ux  vy,

"uxxuyy", uxx  uyy, "vxxvyy", vxx  vyy

f1  Functionz, z4
Functionz, z4

RCf1  Simplify  TableForm

u x4  6 x2 y2  y4

v 4 x y x2  y2
uy 4 y 3 x2  y2
vx 12 x2 y  4 y3

ux 4 x3  3 x y2
vy 4 x3  3 x y2
uyvx 0
uxvy 0
uxxuyy 0
vxxvyy 0

f2  Functionz, z3
Functionz, z3

RCf2  Simplify  TableForm

u x3  3 x y2

v 3 x2 y  y3

uy 6 x y
vx 6 x y

ux 3 x2  y2
vy 3 x2  y2
uyvx 0
uxvy 0
uxxuyy 0
vxxvyy 0  



f3  Functionz, z5
Functionz, z5

RCf3  Simplify  TableForm

u x5  10 x3 y2  5 x y4

v 5 x4 y  10 x2 y3  y5

uy 20 x y x2  y2
vx 20 x y x2  y2
ux 5 x4  6 x2 y2  y4
vy 5 x4  6 x2 y2  y4
uyvx 0
uxvy 0
uxxuyy 0
vxxvyy 0

f4  Functionz, 1z
Functionz,

1

z


RCf4  Simplify  TableForm

u x
x2y2

v  y
x2y2

uy  2 x y

x2y22

vx 2 x y

x2y22

ux x2y2

x2y22

vy x2y2

x2y22

uyvx 0
uxvy 0
uxxuyy 0
vxxvyy 0  



f5  Functionz, z z
Functionz, z z

RCf5  Simplify  TableForm

u x2  y2

v 0
uy 2 y
vx 0
ux 2 x
vy 0
uyvx 2 y
uxvy 2 x
uxxuyy 4
vxxvyy 0

f6  Functionz, z
Functionz, z

RCf6  Simplify  TableForm

u x
v y
uy 0
vx 0
ux 1
vy 1
uyvx 0
uxvy 2
uxxuyy 0
vxxvyy 0  

 
((Definition)) Analytic 
 

If f(z) is differentiable at z = z0 and in some small region around z0, we say that f(z) is 
analytic at z = z0. If f(z) is analytic everywhere in the (finite) complex plane, we call it an 
entire function. 
 
 
((Example)) Arfken 6-2-8 

Using ),(),()(   rii erRref  , in which ),( rR  and ),( r  are differentiable real 

functions of r and , show that the Cauchy-Riemann condition in polar coordinates 
become 
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Hint: set up the derivative first with dz radial (r → r+dr) and then with dz tangential (r → 
+ d). 
 
((Mathematica)) 

Arfken 6 - 2 - 8
(a) Derivative with dr while q fixed 

Clear"Global`"

eq1 
Rr  r,   rr,  Rr,   r,

r  r    r  
 Simplify

   r, Rr,    rr, Rr  r, 
r

We apply the L' Hospital theorem to calculate.

eq11 
D   r, Rr,    rr, Rr  r, , r . r  0

Dr, r . r  0

   r, R1,0r,     r, Rr,  1,0r, 

(b) Derivative with dq while r fixed 

eq2 
Rr,     r,  Rr,   r,

r    r  
 Simplify

   r, Rr,    r, Rr,   
1    r

We apply the L' Hospital theorem to calculate.

eq22 
D   r, Rr,    r, Rr,   ,  .   0

D1    r,  .   0
 Expand


   r, R0,1r, 

r

  r, Rr,  0,1r, 

r

eq3  r eq11  eq22  r,    FullSimplify

 R0,1r,   r R1,0r,   Rr,  0,1r,    r 1,0r, 

The real part and the imaginary part of eq3=0,

Rr,  0,1r,   r R1,0r, =0

R0,1r,   r Rr,  1,0r, =0

 



 
________________________________________________________________________ 
9.6 Cauchy’s integral theorem 

Integral of a complex variable over a contour in the complex plane. We divide the 
contour 00 zz   into n intervals by picking n-1 intermediate points (i) on the contour. 
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where j  is a point on the curve between zj and zj-1. Now let n  with 01  jj zz  

for all j. 
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(contour integral) 
 
(exists and is independent of the details of choosing points zj and j.) 
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________________________________________________________________________ 
9.7 Cauchy’s integral theorem 

If a function )(zf  is analytic and its partial derivatives are continuous throughout 
some simple connected region R, for every closed path C in R, the line integral of )(zf  
around C is zero: 
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________________________________________________________________________ 
(A) Stroke’s theorem proof 
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We consider the Stroke’s theorem 
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Let uAx  , vAy  . 
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Let vAx  , uAy  . 

 

Second term  
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If )(zf  is analytic, the Cauchy-Riemann condition is satisfied.  
 
(B) Cauchy-Goursat Proof 

Suppose that )(zf  is analytic and its partial derivatives are continuous throughout the 
region R.  
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We subdivide the region inside the contour C into a network of small squares. Then 
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All integrals along interior lines cancel out. Now we consider 
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with the contour path Cj, 
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zj: an interior point of the j-th subregion. We construct the function 
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We may make for 0 , 
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where e is an arbitrary chosen small positive quantity. 
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If a function )(zf  is analytic on and within a closed path C, 
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((Note)) 
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Thus we have 
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C

dz   and  0
C

zdz  

____________________________________________________________ 
((Multiply connected region)) 

We consider the multiply connected region in which )(zf  is not defined (not analytic) 
in the interior R. 
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We can construct a contour for which the theorem holds. The new contour never crosses 
the interior R. 
 
From the Cauchy’s theorem, we have 
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FEDDEFABC
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Therefore we obtain 
 

 
FEDABC

dzzfdzzf )()( . 

 
where the contours C1 (= A-B-C) and C2 (= F-E-D) are the counterclockwise. 
________________________________________________________________________ 
9.8 Cauchy’s integral formula 
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We consider a function )(zf  that is analytic on a closed contour A-B-C and within the 

interior by the path A-B-C. )/()( 0zzzf   is not analytic at 0zz  . We apply the 



Cauchy’s integral theorem to the contour ABCDEF. In this region )/()( 0zzzf   is 

analytic. 
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Let irezz  0 , r is small and will eventually be made to approach zero.  
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Taking the limit as 0r , we obtain 
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    (Residue) 
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9.9 Derivatives 
 
Suppose that )(zf  is analytic. By the definition of derivative, we have 
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The requirement that )(zf  be analytic not only gurantees a first derivative but also 
derivatives of all orderes as well.  
 
Goursat’s theorem 
 

The existence of )(zf   shows that )(zf   is continuous.” 
 
 

)(zf  is analytic 
 

 
 

)(zf   is analytic 
 

 
 

)(zf   is analytic 
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)()( zf n  is analytic 
 

All the derivatives of )(zf  are analytic within R. 
 
 
Morera’s theorem 

This is the converse of Cauchy’s integral theorem. 

“If a function )(zf  is continuous in a simple connected region R and 0)( 
C

dzzf  for 

every closed contour C within R, then )(zf  is analytic throughout R.  
 
________________________________________________________________________ 
9.10 Taylor expansion and Laurent expansion 
 
(a) Taylor expansion 
 

)(zf  is analytic on and within C. 1zz   is the nearest point for which )(zf  is not 

analytic. C is a circle centered at z0 with radius )( 010 zzzz  . 
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Cauchy integral formula 
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where z is a point on the contour C, and z is any point interior to C. 
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Taylor expansion: )(zf  is analytic at 0zz  .  

 
(b) Laurentz expansion 
 
f(z) is not analytic in the regions denoted by green. 
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According to the Cauchy theorem, we have 
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On the path (ABC), we have  
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These two series are combined into one series (Laurent series) 
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_____________________________________________________________________ 
(1) Analytic at z = z0 
 

If f(z) is analytic in the vicinity of z0, we can perform a Taylor series expansion. 
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(2) Isolated singular point at z = z0 

We say we have an isolated singular point at z = z0. 
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(i) As long as one of the b’s are nonzero, z0 is a singular point. 
 
(ii) If bn does not vanish, but all bj with j>n vanish, then f(z) has a pole of order n. 
 
(iii) If b1 ≠0 and all other bj’s = 0 the pole is a single pole.  
 
(iv) Isolated essential singularity (all the bj’s) normally does not occur in physics. 
 
 
9.11 Examples of Taylor and Lorentz expansions (Mathematica) 
 
9.11.1 Example-1 



Clear"Global`"
SeriesExpz, z, 0, 10

1  z 
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z3
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z4
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z7
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z8

40 320


z9
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z10
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 Oz11

SeriesCosz, z, 0, 10
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z4
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z6

720


z8

40 320


z10
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 Oz11

SeriesSinz, z, 0, 10

z 
z3

6


z5

120


z7

5040


z9
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 Oz11

SeriesCotz, z, 0, 10  Normal

1

z


z

3


z3

45


2 z5

945


z7

4725


2 z9

93 555

SeriesTanz, z, 0, 10  Normal

z 
z3

3


2 z5

15


17 z7

315


62 z9

2835  



SeriesCscz2 , z, 0, 10  Normal

1

3


1

z2
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15


2 z4

189


z6
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2 z8
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1382 z10
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SeriesSecz2 , z, 0, 10  Normal
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2 z4
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17 z6

45


62 z8

315


1382 z10
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Series 1

Sinz, z, 0, 10  Normal
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z


z
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7 z3
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31 z5

15 120


127 z7
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Series z

Sinz, z, 0, 10  Normal
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z2
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7 z4
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Seriesz3 Sinz, z, 0, 10  Normal
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Cosz, z, 0, 10  Normal
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SeriesCscz2 Log1  z, z, 0, 10  Normal
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SeriesSinhz, z, 0, 10
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 Oz11

SeriesCoshz, z, 0, 10
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SeriesSecz
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9.11.2 Example-2 
 

Clear"Global`"

Series 1

1  z
, z, 0, 10

1  z  z2  z3  z4  z5  z6  z7  z8  z9  z10  Oz11

SeriesLog1  z, z, 0, 10
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Series 1

z z  23
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SeriesExp z
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, z, , 10  Normal
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4    z2
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48 
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213 359    z9

23 654 400 


38 020 573   z10

7 664 025 600 
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a, 5  Normal 
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 5 

16
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2
 z
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2
 z3

2 a7
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2

 z4

128 a8

 15
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  1 a

2
 z5

2 a9
 



Series1  z , z, 0, 5  Normal  Simplify

1

12
12  12  z  6  6  z2  6  2  z3  5 z4  4   z5

Series z4

z2  c24
, z, c, 5  Normal

3
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1
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1

8 c c  z3


1

32 c2 c  z2
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Series z4
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9.11.3 Example-3 



Clear"Global`"
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9.12 Calculation of residue 
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Using Cauchy’s theorem, 
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The problem is reduced to finding the value of b1. 
 
(i) f(z) has a simple pole. 
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(ii) A pole of order n 
 



   

   

1
0

1

01

11
0

1

2
02

1
0101000

0
2

0

2

0

1
010

)]()[(

)!1(

1
lim][Re

)!1(
)()(

......])([)()()(

......)()(

0































n

nn

zz

n

nn

n
nnnn

n
n

dz

zfzzd

n
zzsb

nb
dz

zfzzd

bzzbzzbzzaazzzfzz

zz

b

zz

b

zz

b
zzaazf

 

 
((Note))  Mathematica 
 
Residue[expr, {x, x0}]; 
 

to find the residue of expression when x equals x0. 
 

The residue is defined as the coefficient of 1/(z-z0) in the Laurent expansion of 
expr. 

 
NResidue[expr, {x, x0}]; 
 

to find numerically the residue of expression when x equals x0. 
 
Series[f, {x, x0, n}]; 
 

to generate a power series expansion for f about the point  x=x0 to order  (x - x0)
n. 

 
 
________________________________________________________________________ 
9.13 Mathematica 
9.13.1 Example-1 
 
(a) Find the poles of  
 

1

1
)(

8 


z
zf  



Clear"Global`";

hz_ 
1

1  z8
;

eq1  NSolveDenominatorhz  0, z;

list1  TableRez . eq1i, Imz . eq1i,

i, Lengtheq1
1., 0, 0.707107, 0.707107,
0.707107, 0.707107, 0., 1., 0., 1.,
0.707107, 0.707107, 0.707107, 0.707107, 1., 0

ListPlotlist1, PlotStyle  Red, Thick, PointSize0.02,

AspectRatio  1, Background  LightGray,

AxesLabel  "x", "y"

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

 
 
(b) Find the poles of  
 

1

1
)( 8 


z
zf  

 



Clear"Global`";

hz_ 
1

1  z8
;

eq1  NSolveDenominatorhz  0, z;

list1  TableRez . eq1i, Imz . eq1i,

i, Lengtheq1
0.92388, 0.382683, 0.92388, 0.382683,

0.382683, 0.92388, 0.382683, 0.92388,

0.382683, 0.92388, 0.382683, 0.92388,
0.92388, 0.382683, 0.92388, 0.382683

ListPlotlist1, PlotStyle  Blue, Thick, PointSize0.02,

AspectRatio  1, Background  LightGray,

AxesLabel  "x", "y"

-0.5 0.5
x

-0.5

0.5

y

 
 
_______________________________________________________________________ 
9.13.2  Example-2 
((Mathematica)) 

The residue is the coefficient of the term z- z0-1  in the Laurent expansion of a 
function about the point z0. (For a very detailed survey of applications of residues, In 
Mathematica, we get the residue of a function at a given point via Residue.  
 
Find the residue of the function 
 



1

11
)(




zn ez
zf  

 
at z = 0. (a) n = 4. (b) n = 0, 1, ..., 10. 
 

Residue[expr, {x, x0}] the residue of expr when x equals x0 

Clear"Global`";

Fz_, n_ :
1

zn

1

z  1
;

SeriesFz, 4, z, 0, 10  Normal

1

z5


1

2 z4


1

12 z3


1

720 z


z

30 240


z3

1 209 600


z5

47 900 160


691 z7

1 307 674 368 000


z9

74 724 249 600

ResidueFz, 4, z, 0


1

720

Tablen, ResidueFz, n, z, 0, n, 0, 10  TableForm

0 1

1  1
2

2 1
12

3 0

4  1
720

5 0

6 1
30 240

7 0

8  1
1 209 600

9 0

10 1
47 900 160  
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9.13.3  Example-3 
 

Find the residues of the function given by 
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z

e

ez
zf

2

2

1
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Clear"Global`";

f1 
z2 z

1  2 z
;

eq1  SolveDenominatorf1  0, z;

z1  z . eq11

 

2

z2  z . eq12
 

2

Seriesf1, z, z1, 3  Normal



2


 2

8   
2

 z 
1

48
 24  2   

2
 z 

1

12
   

2
 z2


 240  7 2   

2
 z3

2880

Seriesf1, z, z2, 3  Normal



2


 2

8   
2

 z 
1

48
 24  2   

2
 z 

1

12
   

2
 z2


 240  7 2   

2
 z3

2880

Residuef1, z, z1


 2

8

Residuef1, z, z2
 2

8  
 



9.13.4  Examples 4  

Find the residue of  fz   Cot z
z2 at z0  0.  

Clear"Global`";

fz_ 
 Cot z

z2
;

Seriesfz, z, 0, 10
1

z3


2

3 z

4 z

45


2 6 z3

945

8 z5

4725


2 10 z7

93 555


1382 12 z9

638 512 875
 Oz11

Residuefz, z, 0


2

3  
 
9.13.5  Example 5  



 Show that  C 2 z
z2  2

z  4  ,  where C is the circle  C : z  2  taken with positive 

orientation.

fz_ 
2 z

2  z2
;

eq1  SolveDenominatorfz  0, z
z   2 , z   2 

data1  TableRez, Imz . eq1, i, 1, Lengtheq1
0,  2 , 0, 2 , 0,  2 , 0, 2 

f1  ListPlotdata1, PlotStyle   PointSize0.02, Red,

AspectRatio  Automatic;

g1  GraphicsBlue, Thick, Circle0, 0, 2;

Showf1, g1

-2 -1 1 2

-2

-1

1

2

r1  Residuefz, z, 2 
1

r2  Residuefz, z,  2 
1

sol  2   r1  2   r2

4    



 
9.13.6 Example 6 
 

Use residues to integrate  C 1
z4  z3  2 z2 z  around the circle  C : z  3.  

fz_ 
1

2 z2  z3  z4
;

eq1  SolveDenominatorfz  0, z
z  2, z  0, z  0, z  1

Lengtheq1
4

data1  TableRez, Imz . eq1, i, 1, Lengtheq1
2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0,
2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0

f1  ListPlotdata1, PlotStyle   PointSize0.04, Red,

AspectRatio  Automatic; g1  GraphicsBlue, Thick, Circle0, 0, 3;

Showf1, g1

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Tablez . eq1i, ResiduefZ, Z, z . eq1i, i, 1, Lengtheq1
2, 

1

12
, 0, 

1

4
, 0, 

1

4
, 1,

1

3


Sum2   ResiduefZ, Z, z . eq2i, i, 1, Lengtheq2
0  

 
________________________________________________________________________
9.14 Calculus of residue 
 



9.4.1 Jordan’s lemma 
Jordan's lemma is a result frequently used in conjunction with the residue theorem to 

evaluate contour integrals and improper integrals. The theorem is named after the French 
mathematician Camille Jordan. 

We want to calculate the integral given by 
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In order to do that, we consider the path integral around the contour C1 for a>0 (the upper 
half plane) and the contour C2 for a<0 (the lower half plane) in the complex plane. 
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If the integral reduces to zero in the upper semi-circle (1, R→∞) 
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Note:  iaaiiaiaz  )( . When >0, the integral on the large semi-circle 
becomes zero. Then we have 
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where f(z) has poles inside the contour C1. 
 
(ii) a<0 
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((Note)) 
 

 iaaiiaiaz  )( . When <0, the integral on the large semi-circle becomes 
zero. Then we have 
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In summary, 
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For a<0, 
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(2)  Integral along the contour of half-circle  

Suppose that f(z) has a simple pole on the real axis. We now consider the contour 
integral along the half circle centered at the pole (z = z0), 
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For simplicity we suppose that f(z) has a single pole at z = z0. 
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where a-1 = b1, g(z) is analytic.  

Now we have the integral around the contour C1 (upper-half circle with the radius  
located at the point z = z0) 
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Next we have the integral around the contour C2 (lower-half circle with the radius  
located at the point z = z0) 
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____________________________________________________________________ 
9.15 Calculation of residue 
 
Residue theorem 
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A set of isolated singularities; 
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(a) As long as one of the b’s are non zero, z0 is a singular point. 
 
(b) If bn does not vanish, but all bj with j>n does vanish, then f(z) has a pole of order n. 
 
(c) If b1≠0, and all other bj’s = 0, then the pole is a simple pole. 
 
(d) If f(z) has a pole of order n, 1/f(z) has a zero of order n. 
 
(e) A function that is analytic in a region except for isolated singular points is  
 
(f) Isolated essential singularity (all the bj’s) normally does not occur in physics. 
 
_____________________________________________________________________ 
9.16 Mathematica 
 
9.16.1 Application I 
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For a<0, 
 





2

)(
C

iaz zfdzeI  

 
since iaz = ia ( + i ) = ia - a). We need to choose the path (upper half plane) for a>0 
and the path (lower half plane) for a<0 (Jordan's lemma). There are poles on the real axis 
at z = ± b. We must specify how to go around. We consider the four cases (Cases I - IV). 
________________________________________________________________ 
((Case I)) 
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The second term of the right-hand side   clock-wise 
The third term of the right hand side   counter clock-wise 
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For a<0 (lower half-plane), 
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____________________________________________________________________ 
((Case II)) 
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The second term of the right-hand side   counter clock-wise 
The third term of the right hand side   clock-wise 
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For a<0 (lower half-plane) 
 

)(Re2

)(Re)(Re22
2

22

bzsi

bzsibzsidx
bx

e
Pdz

bz

e iax

C

iaz







 








 

 
or 
 

)sin()](Re)([Re
22

ab
b

bzsbzsidx
bx

e
P

iax  






 

 
________________________________________________________________ 
((Case-III)) 
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since there are two poles inside the contour. Then we have 
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(b) For a<0 (lower half-plane), we have 
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since there is no pole in the contour. 
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((Case-IV)) 
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For a<0 (lower half plane) 
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9.16.2  Application II 
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The last equality holds because of 
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since there is one single pole at z = ib and the contour integral around the path C1 is zero 
(Jordan's lemma). 
 
For a<0 (lower half-plane), 
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since there is one single pole at z = -ib and the contour integral around the path C2 is zero 
(Jordan's lemma). 
 
9.16.3 Application III 

We consider the derivation of familiar integral 
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((Case-I)) 

It can be found by integrating  
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around the contour of Fig. The integrand has a simple pole at z = 0. This pole is avoided 
by placing a semicircular path C2 (the radius r →0) around it. There are no poles inside 
the contour. So I = 0. 
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The first term is equal to zero (the radius of C1 R→∞, Jordan's lemma). Then we have 
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((Case-II)) 

For the calculation of the integral, we can choose the different contour shown in Fig. 
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The integrand has a simple pole at z = 0 in this contour. Using the Jordan's lemma for the 
contour integral around the contour C1, we have 
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9.16.4  Application IV Unit step function 
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since there is no pole inside the contour. From the Jordan's lemma, the first term (the 
contour integral around C1) is equal to zero. Then we have 
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For s<0 
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since there is no pole inside the contour. From the Jordan's lemma, the first term (the 
contour integral around C2) is equal to zero. Then we have 
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u(s) = 1/2 at s = 0. 
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9.16.5  The i prescription  

We derive the formula 
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where  (0) is a positive infinitesimally small quantity. 
 
(1) Case-I 
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Since the only singularity near the real axis is z = i, we make the following deformation 
of the contour without changing the value of I. The contour runs along the real axis (the 
path ) and goes around counterclockwise, below the origin in a semicircle (C1), and 
resumes along the real axis (the path ). 
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(2) Case-II 
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Since the only singularity near the real axis is z = -i, we make the following 
deformation of the contour without changing the value of I2 The contour runs along the 
real axis (the path 1) and goes around clockwise, above the origin in a semicircle (C2), 
and resumes along the real axis (the path 2). 
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9.16.7  Fresnel integral 
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as R→∞. Note that we use the inequality 
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9.16.8 Arfken 7-1-15 
Use the large square contour with R0 to prove that 
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9.17 Cut line for the multivalued function 



 
Single valued function: a function which is mostly analytical with some singularities 
 
We can generalize discussion to multi-valued functions using a geometrical construction 
known as Riemann surfaces. 
 
We consider logarithmic functions 
 

zizz arglnln   

 
Argz is uniquely defined only up to multiple of 2. 
 

nArgz  2  
 
(i) To see what this means, we consider a closed path C enclosing z = 0. Start at z = 

z0 and follow the value of lnz as it changes continuously as we go along the 
contour C. Whatever we had for argz0 initially we find that argz0 has increased by 
2 when we return to z0. 

 
izz initialfinal 2)(ln)(ln 00  . 

 

 
 
 
((Branch point)) 

A point in complex plane that has this property, i.e., 
 

initialfinal zfzf ))()( 00   

 
for any loop around it, is called a “branch point,” of the function. 
 

lnz has a branch point at z = 0. 
 
(ii) Let z = 1/z’, then we have 
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It is easy to see that lnz’ has a branch point at z’ = 0 and z = ∞. 
 
In summary, lnz has two branch points at |z| = 0 and |z| = ∞. 
 
(iii) If we draw line or curve joining the two branch points, this line is referred to as a 

branch cut. So the complex plane is cut from branch point to another. 
 
((Example)) 
 

 
 

zzf ln)(   
 
We cut the plane along the positive half of the real axis. 
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where  
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where r>0 and  20  . 
This is really a single valued function. Similarly we can define 
 

)2(ln)(1   irzf  
 
where r>0 and  20  . 
 
and 
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where r>0 and  20  . 
 



and a whole inifinite sequence for functions 
 

f0, f±1, f±2, f±2,……………….., f±n, 
 
which are single value and can be used to replace the multivalued function lnz. 
 
(iv) Each fn(z) suffers a discontinuity across the cut – i.e., 2i- but the values of fn(z) 

above cut is the same as fn+1(z) below cut. 
 Thus it is suggestive to say that we have an infinite series of cut planes on top 

of one another. 
 The plane that fn+1(z) is defined on, lied right above the fn(z). 
 The adjacent planes are connected across the cut. 
 The lower lip pf the n+1 plane is connected to the upper lip of the n-th plane. 
 
So when we cross a cut, we are going from one-cut-plane to another cut-plane. 
 
Each plane is called a Rieman sheet. Supposition of all planes in the helix array is 
called Rieman surface. 

 
(v) What has all of this achieved? 
 

 Started with lnz. We have one single valued function defined on Rieman surface 
instead of multivalued function. 

 Branch points: when we go around them, we go to the different sheet. 
 We can define the order of branch points. We have an n-th order branch point if 

we have to go around it n+1 times to some back to a function original value 
[minimum n]. 

 
 
So z = 0 is a branch point of infinite order for lnz. 
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9.19 Cut-line 

The cut line runs along some curve from the z = 0 out to infinity. 
We consider  
 

(a) z  
 
Cut along the negative real axis 
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The angle  is restricted so as not to cross the cut line. 
 



(i) Cut along the negative real axis as the cut line 
 

2/ierz    for    
 
 

 
 

point a ( i
a rez  ) → rier i 2/  

point b ( i
b rez  ) → rier i  2/  

 
There is thus a discontinuity across the cut. The function is not analytic on the cut 
 
(ii) Cut along the positive real axis as the cut line 
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point a ( 0i
a rez  )→  rer i 0  

point b ( 2i
b rez  ) → rer i   



 
There is thus a discontinuity across the cut. The function is not analytic on the cut line 
 

(b) 'zaz   
 

azz '  
 
z’=0 (or z = a) and infinity (z = ∞) are branch points.  
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Check on the possibility of taking the line segment joining z+1 and z-1 as a cut line 
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   (+)/2 
1 0 0 0 
2 0   
3 0   
4    
5 2   
6 2   
7 2   

 
(i) The phase at points 5 and 6 is not the same as the points 2 and 3. This behavior 

can be expected at a branch point cut line. 
(ii) The phase at point 7 exceeds that at 1 by 2. So the function f(z) is therefore 

single valued for the contour shown encircling both branch points. 
 

(d) ))()(( czbzaz   

 
There are three branch points. So there are two cut lines. 
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There are four branch points. So there are two cut lines. 
 

 
 
((Note)) 
(i) A function with a branch point and a required cut line will not be a continuous 

across the cut line. 
(ii) In general, there will be a phase difference on opposite sides of this cut line. 
(iii) Thus the line integrals on opposite sides of the cut line will not generally cancel 

each other. 
 
9.20 Examples of cut line (Mathematica) 
 

9.20.1 z  

Plot3D of Im[ z ]there is a cut line on the negative x axis (x<0).  
 

 
 

9.20.2 )1)(1(  zz  



Plot3D of Im[ )1)(1(  zz ]there is a cut line between z = 1 and z = -1.  
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Plot3D of Im[ )1()1(  zzz ]A cut line between z = 1 and z = 0, and a cut line 

between z = -1 and the negative x axis (x<-1).  
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Plot3D of Im[ )2)(1()1(  zzzz ]A cut line between z = -1 and z = 0, and a cut line 

between z = 1 and z = 2.  
 

 
 
 
9.20.5 ln(z) 
Plot3D of Im[ln(z)]there is a cut line on the negative x axis.  
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9.21 Applications 
9.21.1 Arfken 7-1-18 

Show that 
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where |a|<1. We note that z = 0 is a branch point and the positive x axis is a cut line. 
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9.21.2 Application II 
 
Evaluate 
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f(z) has a pole at z = -a. We note that z = 0 is a branch point and the positive x axis is a 
cut line. 
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Then we have 
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Note that the residue is equal to the coefficient of 1/(z + a). 
 
9.22 Kronig-Kramers relation 

We consider the motion of a particle (mass m and charge q) in the presence of electric 
field. 
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where  is the angular frequency, x is the total displacement and F is the applied electric 
field. 
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Here () is called response function and is defined by 
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We need not to assume this form of (), but we make use of three properties of the 
response function viewed as a function of the complex variables. Now we regard  () as 
a function of complex variable . 
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Thus we have the following features. 
 
(1) The poles of () are all below the real axis. 
(2) The integral of ()/ vanishes when taken around an infinite semicircle in the 

upper half of the complex plane. It suffices that ()/0 uniformly as || ∞. 
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where )('   is even and )("   is odd with respect to real . Now we calculate 
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We note that Integrant has a simple pole at the real axis. 
 



x

y

C

C1

O z=w

GR

-¶ ¶

 
 

0)(Re
)()()(








 















zsidx

x

x
Pdz

z

z
dz

z

z

RC

 

 
Since  
 


 

R

dz
z

z


 )(

, 

 

)()(Re
)( 



izsidx

x

x
P 






, 

 
or 
 




 
 dx

x

x
P

i 



 )(1

)( . 

 
Now we have 
 

]
)(")('

[
1

)(")(')(




 






dx
x

xix
P

i

i







, 

 



]
)(")("

[
1

)("1
)('

0

0





















dx
x

x
dx

x

x
P

dx
x

x
P















. 

 
Since , )(")(" xx    (odd function), we have 
 

















0
22

00

)("2

]
)(")("

[
1

)('

dx
x

xx
P

dx
x

x
dx

x

x
P















. 

 
Similarly 
 

















0
22

00

)('2

]
)(")("

[
1

)("

dx
x

x
P

dx
x

x
dx

x

x
P
















. 

 
 
________________________________________________________________________ 
 
APPENDIX 
A.1 Mathematica 
 
Residue[expr, {x, x0}]; 
 

to find the residue of expression when x equals x0. 
 

The residue is defined as the coefficient of 1/(z-z0) in the Laurent expansion of 
expr. 

 
NResidue[expr, {x, x0}]; 
 

to find numerically the residue of expression when x equals x0. 
 
Series[f, {x, x0, n}]; 
 

to generate a power series expansion for f about the point  x=x0 to order  (x - x0)
n. 

 
_____________________________________________________________________ 
A.2 Principal part of an integral 



We consider a real function f(x) that blows up at x = a. The principal part of the 
integral is defined as 
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