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___________________________________________________________________________ 
John Bertrand "Bert" Johnson (October 2, 1887–November 27, 1970) was a Swedish-born 
American electrical engineer and physicist. He first explained in detail a fundamental source of 
random interference with information traveling on wires. In 1928, while at Bell Telephone 
Laboratories he published the journal paper "Thermal Agitation of Electricity in Conductors". In 
telecommunication or other systems, thermal noise (or Johnson noise) is the noise generated by thermal 
agitation of electrons in a conductor. Johnson's papers showed a statistical fluctuation of electric charge 
occur in all electrical conductors, producing random variation of potential between the conductor ends 
(such as in vacuum tube amplifiers and thermocouples). Thermal noise power, per hertz, is equal 
throughout the frequency spectrum. Johnson deduced that thermal noise is intrinsic to all resistors and is 
not a sign of poor design or manufacture, although resistors may also have excess noise. 

 
http://en.wikipedia.org/wiki/John_B._Johnson 
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____________________________________________________________________________ 
Harry Nyquist (February 7, 1889 – April 4, 1976) was an important contributor to information 
theory. 

 
http://en.wikipedia.org/wiki/Harry_Nyquist 
 
___________________________________________________________________________ 
10S.1 Histrory 

In 1926, experimental physicist John Johnson working in the physics division at Bell Labs 
was researching noise in electronic circuits. He discovered random fluctuations in the voltages 
across electrical resistors, whose power was proportional to temperature. Harry Nyquist, a 
theorist in that division, got interested in the phenomenon and developed an elegant explanation 
based on fundamental physics. hence this type of noise is called Johnson noise, Nyquist noise, or 
thermal noise. 
 
10S.2  Spectral density 

Suppose we measure a physical quantity x(t) as a function of time t. We define the Fourier 
transform of )(tx  as 
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since x(t) is real. The inverse Fourier transform is given by 
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(a) Parseval relation. 
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since 
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(b) We use a truncated signal. 

It is sometimes necessary, in order to avoid convergence problem, to approach the definition 
of the integral as a limiting process. Using the Parseval relation, we get 
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We define the spectral density as 
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which is the ensemble average of 
2

)(X . Then we have 
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((Note)) 
We assume that the average of process parameter over time and the average over the statistical 
ensemble are the same (ergodicity). 
 
10S.3  Correlation function 

The limiting process required to calculate G() is sometimes awkward to use in practice. 
Here we show that correlation function can be closely related to the spectral density. The 
correlation function associated with a stationary random function of time t, x(t), is defined by 
 

txtx ()( . (3) 

 
which means that Eq.(3) is independent of t. The Fourier transform of )( tx  is given by 
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Correspondingly, the inverse Fourier transform is given by 
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We need to calculate the product given by 
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It is sometimes necessary, in order to avoid convergence problem, to approach the definition of 
Eq.(3) as a limiting process. The integral of this product is 
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Then we have 
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The correlation function C() is obtained as the ensemble average of txtx ()( , 
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where we use the relation(Eq.(1)). The inverse Fourier transform of G() is given by 
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The corresponding Fourier transform is 
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Equation (5) is the Wiener-Khinchin (WK) theorem. G() and C() are a Fourier transform pair; 
 

G():  spectral density 

C():  correlation function 
 
10S.4  Properties of the correlation function 

The correlation function   txtxC ()()(  is an even function of .  
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We also have 
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10S.5  Johnson-Nyquist theorem 



7 
 

At any non-zero temperature we can think of the moving charges as a sort of electron gas 
trapped inside the resistor box. The electrons move about in a randomised way — similar to 
Brownian motion — bouncing and scattering off one another and the atoms. At any particular 
instant there may be more electrons near one end of the box than the other.  

We consider a resistance R which has a length l, a cross section A. The relaxation time of the 

carriers (electrons) is e. There are n electrons per unit volume (n is called the electron density). 
The total number of electrons is N; 
 

nAlN  . 
 
From the Ohm's law, the open circuit voltage is 
 

)( uneRARJAIRV  , 

 
where V is a voltage, I is a current, J is the current density, A is the conductor cross section area, 
e is the absolute value of the charge of electron (e>0), and u  is the average velocity of electrons. 
Since 
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Suppose that the correlation function is expressed by 
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The spectral density is given by 
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(Lorentz-type spectral density) 

 

In general, the spectral density G() has a Lorentz-type when the correlation function C() is 

described by a exponential decay; exp(-/t0). For the voltage signals, the spectral density G() is 
customary to use units of [V2 s] = [V2 Hz−1].  

We note that 
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where m is the mass of electron and kB is the Boltzmann constant. In metal at room temperature, 

e is very small; e<10-12 s. For the DC and microwave regions, 12 cf . Then we get 
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which is independent of . We get 
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Experimentally it is predicted that the plot of 2V  vs R may exhibits a straight line. The slope 

will give some estimation for the value of the Boltzmann constant kB. 
 

10S.6  Evaluation of 2V  

The Boltzmann constant is given by 
 

kB = 1.380650410 x 10-23 J/K. 
 

 fTRkV B  42 , 

 

where T is the temperature (K), R is the resistance, and f is the frequency range. 
 

(i) T = 293.15 K, f = 106 Hz, R = 1 M 
 

VV 238.1272  . 

 

(ii) T = 293.15 K, f = 1.9980 x 104 Hz,  R = 200 
 

VnVV 254.0349.2542  . 

 

(iii) T = 293.15 K, f = 1.0 x 104 Hz, R = 1000 
 

VnVV 402.0362.4022  . 

 
10S.7  Equivalent circuit (Thevinin theorem and Norton theorem) 
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Noise volatge source (the left of the above figure) and noise current source (the right of the 
above figure); 
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In Fig. we show the equivalent circuits for the noise voltage source and noise current source. 
These circuits are equivalent according to the Thevinin's theorem and Norton's theorem. 
 
________________________________________________________________________ 
10S.8  Measurement of Johnson noise 
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The above figure shows an equivalent circuit for the Johnson noise produced by a resistor. n 
is an invisible random voltage generator, connected in series with an ideal (noise free) resistor R. 
The voltage fluctuations are amplified and passed through a band-pass filter to a voltmeter. The 
filter only allows through frequencies in some range (the bandwidth), 
 

minmax fff  ,  (Hz) 

 
Rin is the input resistance of the amplifier.  The voltage due to the Johnson noise is 
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From the Ohm's law, the current flowing in the input resistance of the amplifier is 
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The maximum noise power is obtained as 
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when Rin = R (impedance matching). The unit of Pmax is Watt (J/s) 
 
10S.9  Shot noise 

Shot noise is distinct from current fluctuations in thermal equilibrium, which happen without 
any applied voltage and without any average current flowing. These thermal equilibrium current 
fluctuations are known as Johnson-Nyquist noise or thermal noise. Shot noise is a Poisson 
process and the charge carriers which make up the current will follow a Poisson distribution. 
We define the Fourier transform of the current, 
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We define the spectral density as 
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The correlation function of current is defined by 
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The Wiener-Khinchin (or Khintchine) states that the noise spectrum is the Fourier transform of 
the correlation function (the spectral density) 
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((Note)) 
 

S():  spectral density 

C():  correlation function 
 
The delta-function current pulses are given by 
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Then the correlation function is obtained as 
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and I  is the DC current. When the summation indices are k = k', it means that the arrival times 

are equal tk = tk'. Then we just have (). If there are N values of tk such that -T/2<tk<T/2, these 

terms will contribute N() to the correlation function. For tk ≠ tk' the delta functions will occur 

at randomly distributed, nonzero values of . The contributions from these delta functions to the 

C() will vanish.  
Taking the Fourier transform, we find  
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The spectrum is uniform and extends to all frequencies. Such a spectrum is called white. Then 
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The current fluctuations have a standard deviation of 

fIeI  22 , 

where e (>0) is the absolute value of the charge of electron, Δf is the bandwidth in hertz over 
which the noise is measured, and I  is the average current through the device. For a current of 
100 mA this gives a value of 
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nAI 179.02   

 

if the noise current is filtered with a filter having a bandwidth of f = 1 Hz. The plot of 2I  vs 

I  may exhibits a straight line. This slope will give some estimation for the value of charge e. 
 

e = 1.602176487 x 10-19 C  (from NIST Physics constant) 
 
((Note)) 
Derivation of the formula by van der Ziel (Poisson distribution) 

We define N as the number of carriers passing a point in a time T at a rate n(t). 
 


T

dttnN
0

)( ,  and TnN  . 

 
where N  and n  are ensemble averages and this result follows from that fact that time average 
equals ensemble average (the ergodicity). We assume that n follows the Poisson statistics. The 
average current is 
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The spectral density S is given by 
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where nn 2  for the Poisson distribution. Since S is independent of the frequency f (white 
noise), we have 
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10S.10` Flicker noise (1/f noise, pink noise): DC current related noise 

Flicker noise, also known as 1/f noise, is a signal or process with a frequency spectrum that 
falls off steadily into the higher frequencies, with a pink spectrum. It occurs in almost all 
electronic devices, and results from a variety of effects, though always related to a DC current. 
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Fig. Spectral density vs frequency. 1/f noise in the low frequency range (the flicker noise). 

White noise in the higher frequency range. 
______________________________________________________________________________ 
10S.11  Brownian motion 

Suppose that a force (t) is applied to a particle with a mass m along the x direction. 
According to the Newton's second law, The velocity )()( txtv   satisfies the following 

differential equation, 
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In a situation such that the particle moves randomly in the fluid at a constant temperature T, the 

parameters  and (t) no longer be regarded as independent ones. It is required that  and (t) are 
closely related to each other. This is the key point of the Brownian motion (Einstein's relation). 

Note that (t) is a force applied to the particle as a result of the collision of  molecules of fluid 
with the particle. This force is considered to be random force (fluctuating force). We assume that 

the time average of (t) is zero and exhibits a white random force (Gaussian); 
 

0)( t , and

 

)'(2)'()( tttt   , (2) 

 

where  is the magnitude of the random force. The first term of Eq.(1) is the effect of friction, 

where  is the coefficient of friction. We define the relaxation time  as 
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
 m
 . 

 
The solution of Eq.(1) is obtained as 
 

  
t

t

sttt sdse
m

tvetv
0

0 )(
1

)()( /)(
0

/)(  . 

 

When )( 0tv is fixed, 
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1

)()( 0
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0
/)( 0
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m

tvetv tt
t

t

sttt      , 

 

indicating that )(tv  decays with time (relaxation time ). For simplicity, we assume that v(t0) is 

finite. In the limit of t0 →-∞, we have 
 





t

st sdse
m

tv )(
1

)( /)(  . 

 
Then we get 
 

0)(
1

)( /)(  



t

st sdse
m

tv  , 

 

since 0)( s . The correlation function is given by 
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where t1 - s1 = u1 and t2 - s2 = u2. Using the Mathematica, we get 
 

 ||

221

21

)()(
tt

e
m

tvtv



 . (3) 

 
_____________________________________________________________________________ 
((Mathematica)) 

 
_____________________________________________________________________ 
When t = t', we have 
 

2
2 )(

m
tv


 . (4) 

 
Using the equipartition law in the classical limit,  
 

Tktvm B2

1
)(

2

1 2  , (5) 

 
we get the relation 
 

2
2 )(

mm

Tk
tv B 

 , (6) 

 
or 
 

eq1 

Integrate

IntegrateExpu1  u2




DiracDeltat1  t2  u1  u2,

u1, 0, , u2, 0,  
Simplify, t1  t2  Reals & ;

Simplifyeq1, t1  t2
1

2

t1t2
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Simplifyeq1, t1  t2
1

2
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
 TmkB . (7) 

 

This is the relation of dissipation-fluctuation. The parameter  is the magnitude of the fluctuating 
force and  /m  is the co-efficient of friction (dissipation). This relation is first derived by 

Einstein (1905). 
 
10S.12  Diffusion constant D 

The velocity correlation function is rewritten as 
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The displacement correlation function can be obtained as follows. 
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When t>>, we have 
 

  t
Tk

t
m

m

Tk
t

m

Tk
xtxx BBB


 222

)]0()([ 22  . (8) 

 
We define the Diffusion constant D as 
 


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t
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D B

t



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)]0()([
lim

2

. (9) 

 
((M athematica)) 
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10S.13  Langevin function 

We consider the case that the finite force F is further applied to the particle. We set up the 
Lagrange equation 
 

Fttv
dt

tdv
m  )()(

)(  . (10) 

 

Using the assumaption that 0)( t , we get 

 

Ftv
dt

tvd
m  )(

)(
 . (11) 

 
The solution of this equation is 
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In the limit of t→∞ (in thermal equilibrium), )(tv  becomes constant (steady state), 

 

F
m

F
tv 

)( , (12) 

 

where  is the mobility and is defined by 

Clear"Global`";

f1  Expt1  t2


 UnitStept1  t2 

Expt1  t2


 UnitStept2  t1;

eq1 

IntegrateIntegratef1, t1, 0, t,

t2, 0, t 
Simplify, t  0,   0 &

2  t  1  
t
 
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m

  . (13) 

 

There is a relation between D and  as 
 

Tk
m

Tk
D B

B   , (Einstein's relation), (14) 

 
10S.14  Fluctuation-dissipation (FD) theorem 
(i) First-type FD theorem 

The velocity correlation function is given by 
 


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 . 

 
Taking the integral over time, we have 
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B
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Then the mobility  can be rewritten as 
 





0

)0()(
1

dtvtv
TkB

 .  (Type-1 FD theorem) (16) 

 
The transport co-efficient (mobility, conductivity) can be described by the time correlation of the 
velocity (current density). 
 
(ii) Second-type FD theorem 

From the relation 
 

)(2)0()( tt   , 

 
We have 
 

Tkdttdtt B 22)(2)0()(  








, 
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or 
 

Tkdttdtt B 22)0()(2)0()(
0

 






, 

 
or 
 






 dtt
TkB

)0()(
1  . (17) 

 
The co-efficient of the friction can be described by the time correlation of the fluctuating force.  
 
10S.15  Langevin equation for electrical conductivity 

We consider the motion of the i-th particle with mass m and charge e in the presence of 

fluctuating electric field i(t); 
 

eEtetvtv
dt

d
m iii  )()](

1
)([ 


 

 
We define the current density as 
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i
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From the above equation, we have 
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d
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or 
 

EnetnetJtJ
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d
m 22 )()](

1
)([  


, 

 
where n is the particle density and the fluctuating electric field is given by 
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which is a average fluctuating electric field applied to the n charged particles.  
 

0)( t . 

 
and 
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Here we assume the independence of { )(ti }. In the steady state, we have 
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m

ne
tJ 


2

)( . 

 
The electrical resistance R is 
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The fluctuating electric field (t) can be described by 
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Using the relatrion V(t) = l (t), 
 

)'(2)'()( ttTRAlktVtV B   . 

 
or 
 

)(2)0()( tTRAlkVtV B   

 
or 
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10S.16  Fluctuation-dissipation theorem for Conductivity 

Suppose that E = 0. Then we have 
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The solution for this equation is given by 
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For simplicity, we assume that J(t0) is finite. In the limit of t0 →-∞, we have 
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Then we get 
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since 0)( s . The correlation function is given by 
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where t1 - s1 = u1 and t2 - s2 = u2. Using the Mathematica, we get 
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Then we get 
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The conductivity is expressed by the time correlation of the current dnsity; 
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APPENDIX 
A.1 Poisson distribution  
 
The Poisson ditribution function is given by 
 

!n

e
P

n

n

 

 , 

 
with the mean 
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and the variance 
 

  


0

2222 )(
n

nPnnn ,
 

 

since 
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Fig. The Poisson distribution function with  being changed as a parameter. 
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A.2 Gaussian distribution (normal distribution) 
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The full width at half maximum (FWHM); 
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((Mathematica)) 
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