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11S.1  Poisson summataion formula 

For appropriate functions f(x),  the Poisson summation formula may be stated as 
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where m and n are integers, and F(k) is the Fourier transform of f(x) and is defined by 
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Note that the inverse Fourier transform is given by 
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The factor of the right hand side of Eq.(1) arises from the definition of the Fourier 
transform.  
((Proof)) The proof of Eq.(1) is given as follows. 
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We evaluate the factor 
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It is evident that I is not equal to zero only when k = 2m (m; integer). Therefore I can be 
expressed by 
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where A is the normalization factor. Then 
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The normalization factor, A, is readily shown to be 2 by considering the symmetrical case 
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((Mathematica)) 
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Since 
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Using this formula, we have 
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11S.2  Summary 

When we put xk 2  in I of Eq.(2) 
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or 
 

fx_  Exp x2;

FourierTransformfx, x, k,

FourierParameters  0, 1
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11S.3. Convolution of Dirac comb: another method in the derivation of 

Poisson sum formula 
The convolution of functions f(x) and g(x) is defined by 
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The Fourier transform of the convolution is given by 
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Here we assume that 
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The Fourier transform of g(x) is 
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The convolution f*g is obtained as 
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The Fourier transform of the convolution is 
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We use the Poisson summation formula; 
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where 
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The inverse Fourier transform of ]*[ gfF  is obtained as 
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Finally we get 
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When a = 1, we get 
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When x = 0, 
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This is the Poisson sum formula. 
 
11S.3  Fourier transform of periodic function 

We consider a periodic function N(x); 
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where a is the periodicity. The function N(x) can be described by 
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Note that f(x) is defined only in the limited region (for example, -a/2≤x≤a/2). G is the 
reciprocal lattice defined by 
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The Fourier coefficient NG is given by 
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where f(x) is just like a Gaussian distribution function around x = 0. 
 

 
Fig. Plot of N(x) as a function of x. a is the lattice constant of the one-dimensional chain. 
 
((Example)) 

Suppose that f(x) is given by a Gaussian distribution, 
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where erf(x) is the error function and is defined by 
 

 
z

t dtezerf
0

22
)(


 

 

Figure shows the intensity 
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Fig. a = 1.  = 0.1. n
a

G
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 . The intensity 
2

GN  vs n (= integer). 

 
11S.10  Fourier series 
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Suppose that the function N(x) is a periodic function of x with the periodicity a. Then 
we have 
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where m
a

G
2

  (m: integer). 

 
((Example-1)) 
 

f(x) = x for |x|<a/2,  with a = 2 
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We make a plot of N(x) as a function of x for the summation for n = -nmax and nmax with 
nmax = 50. 
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Fig. nmax = 50. The Gibbs phenomenon is clearly seen. 
 
((Example-2)) 
 

f(x) = 0 for -1<x<0 and 1 for 0<x<1.  a = 2 
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Fig. nmax = 100. The Gibbs phenomenon is clearly seen. 
_________________________________________________________________________ 
11S.11  Fourier transform of function having values at inetger x-value 

We consider a function defined by 
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Fig. Plot of f(x) which is described by a combination of the Dirac delta function with 

f(m) at x = m. 
 
The Fourier transform of f(x) is given by 
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In other words, F(k) is a periodic function of k with a periodicity 2. We can also show that 
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Note that the inverse Fourier transform of F(k) is obtained as 
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((Note)) The proof where the Poisson summation formula is used. 

We have another method for the derivation of Eq.(9):  
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We put 
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Here we use the Poisson summation formula 
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11S.11  Random walk in the one-dimensional chain 

We consider the case when a particle moves on the one dimensional chain. The particle 
can be located only on a discrete position [x = m (m; integer)]. the particle starts from the 
origin x = 0. The particle can move from x = m to x = m+1, or  from x = m to x = m-1 for 
each jump. We assume that the probability W(m, N) such that the particle reaches at the 
position x = m after jumps with N times. The probability W(m, N+1) can be described by 
 

 
Fig. Random walk model. 
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where one is a jump from x = m-1 to x = m for the (N+1)-th jump, and the another is a jump 
from x = m+1 to x = m for the (N+1)-th jump. The probability for these jumps is 1/2.  

In order to find the expression of ),( NmW we define the Fourier transform 
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We use the initial condition that the particle is located at x = 0 at the probability of 1; 
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Fig. Plot of ),( Nk  vs k, where N = 200, 400, 600, 800, and 1000. In the large limit of 

N, ),( Nk  approaches a Gaussian distribution. 

 
The inverse Fourier transform of ),( Nk  is 
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Here we use the binomial theorem to get 
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where 
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This implies that for N = even, m should be even. In other words, W(N = even, m = odd) = 0. 
For N = odd, m should be odd. In other words, W(N = odd, m = even) = 0. 
 
11S.13  Numerical calculation of W(m, N) 

Using the Mathematica, we calculate numerically the value of ),( NmW  given by 
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for the cases with N = 12 (even) and N = 13 (odd). 
 
(i) N = 12. 
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This figure clearly shows that W(m, N = 12) = 0 for m = -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 
and 11 (m = odd). 
 
(ii) N = 13. 

 
 
This figure clearly shows that W(m, N = 13) = 0 for m = -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 
10, and 12 (m = even).  
 
((Mathematica)) 
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11S.14  Limit of long distance and long time 

Using the Stirling's formula, 
 

Clear"Gobal`";

J1m_, N1_ :
1




0


Cosk m CoskN1 k

d12  Tablem, J1m, 12, m, 12, 12, 1;

f1  ListPlotd12, PlotStyle  Red, PointSize0.02, AxesLabel  "m", "Wm,N";

f2  GraphicsTextStyle"N12", Black, 15, 6, 0.18;

Showf1, f2
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d13  Tablem, J1m, 13, m, 13, 13, 1;

g1  ListPlotd13, PlotStyle  Red, PointSize0.02, AxesLabel  "m", "Wm,N";

g2  GraphicsTextStyle"N13", Black, 15, 6, 0.18;

Showg1, g2
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and the Mathematica, we have the series expansion to the order of (m/N)8, 
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11S.15  Diffusion 

We assume that the distance between the nearest neighbor lattices is x  and the time 

taken for each jump is t. Then we have 
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The probability of finding particle between x and x + dx is 
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where D is the diffusion constant and is defined by 
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Clear"Gobal`";

f1x_ :
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g1  N Log2  f1N  f1 N  m

2
  f1 N  m
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rule1  m  N x;

g11  g1 . rule1; Seriesg11, x, 0, 8  Simplify 
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Here we note that the factor 2x of the 
x

dx

t

t

x
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 2
),(  arises from the fact that (i) for 

every jump (N = even), the probability of finding the particle at the sites with even m is 
zero, and that (ii) for every jump (N = odd), the probability of finding the particle at the 

sites with odd m is zero. The distance for the jump is 2x, but not x.  
The final form of P(x, t) is obtained as 
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We note that P(x, t) satisfies the diffusion equation given by 
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11.S16  Gaussian distribution in magnetization; analogy of random walk 

We consider a system consisting of N independent spins. Each spin has a magnetic 

moment . In the absence of an external magnetic field, each spin has the magnetic moment 

(±) along the z axis. We assume that the number of spins having the z component 

magnetic moment (+) is N  and the number of spins having the z-component magnetic 

moment (-): 
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Here we discuss the probability distribution of total magnetic moment, M, which is given 
by 
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The probability that the total magnetization has M = n is obtained as 
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Using the Stirling's formula, we have 
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where M = n. The average of magnetization is equal to zero.  
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the standard deviation is obtained as 
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the relative width of the Gaussian distribution becomes sharp as N increases. We make a 

plot of W(M = n) as a function of N, where N = 100. 
 

 
 

Fig. Plot of W(M) vs n. M = 2n. N = 100. 
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