Chapter 11S
 Poisson summation formula
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Bimghamton

(Date: January 08, 2011)

Poisson summation formula
Fourier series
Convolution
Random walk
Diffusion
Magnetization
Gaussian distribution function

11S. 1 Poisson summataion formula

For appropriate functions $f(x)$, the Poisson summation formula may be stated as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(x=n)=\sqrt{2 \pi} \sum_{m=-\infty}^{\infty} F(k=m), \tag{1}
\end{equation*}
$$

where m and n are integers, and $F(k)$ is the Fourier transform of $f(x)$ and is defined by

$$
F(k)=\mathbf{F}[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x
$$

Note that the inverse Fourier transform is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} F(k) d k
$$

The factor of the right hand side of Eq.(1) arises from the definition of the Fourier transform.
((Proof)) The proof of Eq.(1) is given as follows.

$$
\sum_{n=-\infty}^{\infty} f(x=n)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) d k \sum_{n=-\infty}^{\infty} e^{i k n}
$$

We evaluate the factor

$$
I=\sum_{n=-\infty}^{\infty} e^{i k n}
$$

It is evident that I is not equal to zero only when $k=2 \pi m$ (m; integer). Therefore I can be expressed by

$$
I=A \sum_{m=-\infty}^{\infty} \delta(k-2 \pi m)
$$

where A is the normalization factor. Then

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} f(x=n) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) d k\left[A \sum_{m=-\infty}^{\infty} \delta(k-2 \pi m)\right] \\
& =\frac{A}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} F(k) \delta(k-2 \pi m) d k \\
& =\frac{A}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} F(k=2 \pi m) \\
& =\frac{A}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} F(k=2 \pi n)
\end{aligned}
$$

The normalization factor, A, is readily shown to be 2π by considering the symmetrical case

$$
\begin{aligned}
& f(x=n)=e^{-\pi n^{2}}, \\
& F(k=2 \pi n)=\frac{1}{\sqrt{2 \pi}} e^{-m n^{2}}
\end{aligned}
$$

((Mathematica))

$$
f\left[x_{-}\right]=\operatorname{Exp}\left[-\pi x^{2}\right] ;
$$

FourierTransform[f[x], x, k,
FourierParameters $\rightarrow\{0,-1\}]$

$$
\frac{e^{-\frac{k^{2}}{4 \pi}}}{\sqrt{2 \pi}}
$$

Since

$$
A=\frac{\sqrt{2 \pi} f(x=n)}{F(k=2 \pi n)}=2 \pi .
$$

or

$$
\begin{equation*}
I=\sum_{n=-\infty}^{\infty} e^{i k n}=2 \pi \sum_{m=-\infty}^{\infty} \delta(k-2 \pi m) . \tag{2}
\end{equation*}
$$

Using this formula, we have

$$
\sum_{n=-\infty}^{\infty} f(x=n)=\sqrt{2 \pi} \sum_{n=-\infty}^{\infty} F(k=2 \pi n) .
$$

(Poisson sum formula)

11S. 2

Summary

When we put $k=2 \pi x$ in I of Eq.(2)

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} e^{2 \pi i x n} & =2 \pi \sum_{m=-\infty}^{\infty} \delta(2 \pi x-2 \pi m) \\
& =\frac{2 \pi}{2 \pi} \sum_{m=-\infty}^{\infty} \delta(x-m) \\
& =\sum_{m=-\infty}^{\infty} \delta(x-m)
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} e^{2 \pi i x n}=\sum_{m=-\infty}^{\infty} \delta(x-m) \tag{3}
\end{equation*}
$$

11S.3.

Convolution of Dirac comb: another method in the derivation of Poisson sum formula

The convolution of functions $f(x)$ and $g(x)$ is defined by

$$
f * g=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-\xi) g(\xi) d \xi=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\xi) g(x-\xi) d \xi
$$

The Fourier transform of the convolution is given by

$$
\mathbf{F}\left[f^{*} g\right]=\mathbf{F}[f] \mathbf{F}[g]
$$

Here we assume that

$$
g(x)=\sum_{n=-\infty}^{\infty} \delta(x-n a) . \quad(\text { Dirac comb) }
$$

The Fourier transform of $g(x)$ is

$$
G(k)=\mathbf{F}[g(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \sum_{n=-\infty}^{\infty} \delta(x-n a) d x=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} e^{-i k n a} .
$$

The convolution $f^{*} g$ is obtained as

$$
\begin{equation*}
f^{*} g=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-\xi) \sum_{n=-\infty}^{\infty} \delta(\xi-n a) d \xi=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} f(x-n a) . \tag{4}
\end{equation*}
$$

The Fourier transform of the convolution is

$$
\mathbf{F}[f * g]=F(k) G(k)=\frac{1}{\sqrt{2 \pi}} F(k) \sum_{n=-\infty}^{\infty} e^{-i k n a} .
$$

We use the Poisson summation formula;

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} e^{-i k n a} & =\sum_{n=-\infty}^{\infty} e^{i k n a}=\sum_{m=-\infty}^{\infty} \delta\left(\frac{k a}{2 \pi}-m\right) \\
& =\sum_{m=-\infty}^{\infty} \delta\left[\frac{a}{2 \pi}\left(k-\frac{2 \pi m}{a}\right)\right] \\
& =\frac{2 \pi}{a} \sum_{m=-\infty}^{\infty} \delta\left(k-\frac{2 \pi m}{a}\right)
\end{aligned}
$$

where

$$
\sum_{n=-\infty}^{\infty} e^{2 \pi x i x}=\sum_{m=-\infty}^{\infty} \delta(x-m)
$$

with $x=\frac{k a}{2 \pi}$. Then we get

$$
\begin{aligned}
\mathbf{F}[f * g] & =\frac{1}{\sqrt{2 \pi}} F(k) \sum_{n=-\infty}^{\infty} e^{-i k n a}=\frac{1}{\sqrt{2 \pi}} F(k) \sum_{n=-\infty}^{\infty} e^{i k n a} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{2 \pi}{a} \sum_{m=-\infty}^{\infty} \delta\left(k-\frac{2 \pi m}{a}\right) F(k) \\
& =\frac{1}{\sqrt{2 \pi}} \frac{2 \pi}{a} \sum_{m=-\infty}^{\infty} \delta\left(k-\frac{2 \pi m}{a}\right) F\left(k=\frac{2 \pi m}{a}\right)
\end{aligned}
$$

The inverse Fourier transform of $\mathbf{F}[f * g]$ is obtained as

$$
\begin{aligned}
f * g & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{F}\left[f^{*} g\right] e^{i k x} d k=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} d k \frac{1}{\sqrt{2 \pi}} \frac{2 \pi}{a} \sum_{m=-\infty}^{\infty} \delta\left(k-\frac{2 \pi m}{a}\right) F\left(k=\frac{2 \pi m}{a}\right) \\
& =\frac{1}{a} \sum_{m=-\infty}^{\infty} F\left(k=\frac{2 \pi}{a} m\right) \int_{-\infty}^{\infty} e^{i k x} d k \delta\left(k-\frac{2 \pi m}{a}\right) \\
& =\frac{1}{a} \sum_{m=-\infty}^{\infty} F\left(k=\frac{2 \pi}{a} m\right) e^{i \frac{2 \pi m}{a} x}
\end{aligned}
$$

where

$$
F\left(k=\frac{2 \pi}{a} m\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i \frac{2 \pi}{a} m x} f(x) d x .
$$

Finally we get

$$
\begin{equation*}
f^{*} g=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} f(x-n a)=\frac{1}{a} \sum_{m=-\infty}^{\infty} F\left(k=\frac{2 \pi m}{a}\right) e^{i \frac{2 \pi m}{a} x} . \tag{5}
\end{equation*}
$$

or

$$
\sum_{n=-\infty}^{\infty} f(x-n a)=\frac{\sqrt{2 \pi}}{a} \sum_{m=-\infty}^{\infty} F\left(k=\frac{2 \pi m}{a}\right) e^{i \frac{2 \pi m}{a} x} .
$$

When $a=1$, we get

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(x-n)=\sqrt{2 \pi} \sum_{m=-\infty}^{\infty} F(k=2 \pi m) e^{i 2 \pi m x} . \tag{6}
\end{equation*}
$$

When $x=0$,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(x=n)=\sqrt{2 \pi} \sum_{m=-\infty}^{\infty} F(k=2 \pi m) . \tag{7}
\end{equation*}
$$

This is the Poisson sum formula.

11S. 3
 Fourier transform of periodic function

We consider a periodic function $N(x)$;

$$
N(x+a)=N(x),
$$

where a is the periodicity. The function $N(x)$ can be described by

Note that $f(x)$ is defined only in the limited region (for example, $-a / 2 \leq x \leq a / 2$). G is the reciprocal lattice defined by

$$
G=\frac{2 \pi}{a} m
$$

The Fourier coefficient N_{G} is given by

$$
\begin{aligned}
N_{G} & =\frac{\sqrt{2 \pi}}{a} F(k=G) \\
& =\frac{1}{a} \int_{-\infty}^{\infty} e^{-i G x} f(x) d x=\frac{1}{a} \int_{-a / 2}^{a / 2} e^{-i G x} f(x) d x
\end{aligned}
$$

where $f(x)$ is just like a Gaussian distribution function around $x=0$.

Fig. Plot of $N(x)$ as a function of $x . a$ is the lattice constant of the one-dimensional chain.
((Example))
Suppose that $f(x)$ is given by a Gaussian distribution,

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
$$

Then we get

$$
N_{G}=\frac{1}{a} \int_{-a / 2}^{a / 2} e^{-i G x} f(x) d x=\frac{1}{2} \exp \left(-\frac{1}{2} G^{2} \sigma^{2}\right)\left[\operatorname{erf}\left(\frac{1-2 i G \sigma^{2}}{2 \sqrt{2} \sigma}\right)+\operatorname{erf}\left(\frac{1+2 i G \sigma^{2}}{2 \sqrt{2} \sigma}\right)\right]
$$

where $\operatorname{erf}(x)$ is the error function and is defined by

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t
$$

Figure shows the intensity $\left|N_{G}\right|^{2}$ vs n, where $G=\frac{2 \pi}{a} n$.

Fig. $\quad a=1 . \sigma=0.1 . G=\frac{2 \pi}{a} n$. The intensity $\left|N_{G}\right|^{2}$ vs n (= integer).

11S. 10 Fourier series

Suppose that the function $N(x)$ is a periodic function of x with the periodicity a. Then we have

$$
\begin{aligned}
N(x) & =\sum_{n=-\infty}^{\infty} f(x-n a)=\frac{\sqrt{2 \pi}}{a} \sum_{m=-\infty}^{\infty} F\left(k=\frac{2 \pi m}{a}\right) e^{i \frac{2 \pi m}{a} x} \\
& =\sum_{G} N_{G} e^{i G x}
\end{aligned}
$$

where $G=\frac{2 \pi}{a} m$ (m : integer).

((Example-1))

$$
\begin{array}{ll}
f(x)=x \text { for }|x|<a / 2, & \text { with } \quad a=2 \\
F(k=G=\pi n)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} x \exp (-i \pi n x) d x=\frac{2 i(-1)^{n}}{n \pi \sqrt{2 \pi}} & \text { for } n \neq 0 . \\
F(k=G=0)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} x d x=0 & \text { for } n=0 . \\
N(x)=\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{i(-1)^{n}}{n} e^{i \pi m x}=\frac{1}{\pi} \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{i(-1)^{n}}{n} e^{i m m x} &
\end{array}
$$

We make a plot of $N(x)$ as a function of x for the summation for $n=-n_{\max }$ and $n_{\max }$ with $n_{\max }=50$.

Fig. $\quad n_{\max }=50$. The Gibbs phenomenon is clearly seen.

((Example-2))

$f(x)=0$ for $-1<x<0$ and 1 for $0<x<1 . a=2$
$F(k=G=\pi n)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} \exp (-i \pi n x) d x=-\frac{i(-1)^{n}\left[-1+(-1)^{n}\right]}{n \pi \sqrt{2 \pi}} \quad$ for $n \neq 0$.
$F(k=G=0)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} d x=\frac{1}{\sqrt{2 \pi}}$,
for $n=0$.
$N(x)=\frac{1}{2}-\frac{1}{\pi} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{i(-1)^{n}\left[-1+(-1)^{n}\right]}{2 n} e^{i \pi n x}$

Fig. $\quad n_{\max }=100$. The Gibbs phenomenon is clearly seen.

11S.11 Fourier transform of function having values at inetger x-value
We consider a function defined by

$$
\begin{equation*}
f(x)=\sum_{m=-\infty}^{\infty} f(m) \delta(x-m) . \tag{8}
\end{equation*}
$$

Fig. Plot of $f(x)$ which is described by a combination of the Dirac delta function with $f(m)$ at $x=m$.

The Fourier transform of $f(x)$ is given by

$$
\begin{aligned}
F(k) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f(m) \delta(x-m) e^{-i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} f(m) \int_{-\infty}^{\infty} \delta(x-m) e^{-i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} f(m)
\end{aligned}
$$

We note that

$$
F(k+2 \pi)=\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i(k+2 \pi) m} f(m)=\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} f(m)=F(k),
$$

In other words, $F(k)$ is a periodic function of k with a periodicity 2π. We can also show that

$$
\begin{equation*}
f(m)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} F(k) e^{i k m} d k, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i k\left(m-m^{\prime}\right)} d k=2 \pi \delta_{m, m^{\prime}}, \tag{10}
\end{equation*}
$$

since

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} F(k) e^{i k m} d k & =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi}} \sum_{m^{\prime}=-\infty}^{\infty} f\left(m^{\prime}\right) \int_{-\pi}^{\pi} e^{i k\left(m-m^{\prime}\right)} d k \\
& =\frac{1}{2 \pi} \sum_{m^{\prime}=-\infty}^{\infty} f\left(m^{\prime}\right) 2 \pi \delta_{m, m^{\prime}} \\
& =f(m)
\end{aligned}
$$

Note that the inverse Fourier transform of $F(k)$ is obtained as

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k e^{i k x} \frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} f(m) \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} f(m) \int_{-\infty}^{\infty} d k e^{i k(x-m)} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} f(m) 2 \pi \delta(x-m) \\
& =\sum_{m=-\infty}^{\infty} f(m) \delta(x-m)
\end{aligned}
$$

((Note)) The proof where the Poisson summation formula is used.
We have another method for the derivation of Eq.(9):

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \int_{(2 n-1) \pi}^{(2 n+1) \pi} F(k) e^{i k x} d k
$$

We put

$$
k^{\prime}=k-2 n \pi
$$

Then we have

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} F\left(k^{\prime}+2 n \pi\right) e^{i\left(k^{\prime}+2 n \pi\right) x} d k^{\prime} \\
& =\sum_{n=-\infty}^{\infty} e^{i 2 m x} \frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} F\left(k^{\prime}\right) e^{i k^{\prime} x} d k^{\prime} \\
& =\sum_{m=-\infty}^{\infty} \delta(x-m) \frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} F(k) e^{i k x} d k \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} \delta(x-m) \int_{-\pi}^{\pi} F(k) e^{i k m} d k \\
& =\sum_{m=-\infty}^{\infty} \delta(x-m) f(m)
\end{aligned}
$$

Here we use the Poisson summation formula

$$
\sum_{n=-\infty}^{\infty} e^{i 2 \pi x n}=\sum_{m=-\infty}^{\infty} \delta(x-m)
$$

11S. 11 Random walk in the one-dimensional chain

We consider the case when a particle moves on the one dimensional chain. The particle can be located only on a discrete position $[x=m$ (m; integer)]. the particle starts from the origin $x=0$. The particle can move from $\mathrm{x}=\mathrm{m}$ to $x=m+1$, or from $x=m$ to $\mathrm{x}=m-1$ for each jump. We assume that the probability $W(m, N)$ such that the particle reaches at the position $x=m$ after jumps with N times. The probability $W(m, N+1)$ can be described by

Fig. Random walk model.

$$
W(m, N+1)=\frac{1}{2} W(m-1, N)+\frac{1}{2} W(m+1, N),
$$

where one is a jump from $\boldsymbol{x}=m-1$ to $x=m$ for the $(N+1)$-th jump, and the another is a jump from $x=m+1$ to $x=m$ for the $(N+1)$-th jump. The probability for these jumps is $1 / 2$.

In order to find the expression of $W(m, N)$ we define the Fourier transform

$$
\Phi(k, N)=\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} W(m, N)
$$

Note that $\Phi(k, N)$ is a periodic function of k with a periodicity 2π, and

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} W(m-1, N) & =\frac{1}{\sqrt{2 \pi}} e^{-i k} \sum_{m=-\infty}^{\infty} e^{-i k(m-1)} W(m-1, N) \\
& =e^{-i k} \Phi(k, N)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} W(m+1, N) & =\frac{1}{\sqrt{2 \pi}} e^{i k} \sum_{m=-\infty}^{\infty} e^{-i k(m+1)} W(m+1, N) \\
& =e^{i k} \Phi(k, N)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\Phi(k, N+1) & =\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} W(m, N+1) \\
& =\frac{1}{2}\left(e^{-i k}+e^{-i k}\right) \Phi(k, N) \\
& =(\cos k) \Phi(k, N)
\end{aligned}
$$

or

$$
\Phi(k, N)=(\cos k)^{N} \Phi(k, N=0)
$$

We use the initial condition that the particle is located at $x=0$ at the probability of 1 ;

$$
W(m, N=0)=\delta_{m, 0} .
$$

or

$$
\Phi(k, N=0)=\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} W(m, N=0)=\frac{1}{\sqrt{2 \pi}} \sum_{m=-\infty}^{\infty} e^{-i k m} \delta_{m, 0}=\frac{1}{\sqrt{2 \pi}} .
$$

So we get

$$
\Phi(k, N)=\frac{1}{\sqrt{2 \pi}}(\cos k)^{N}
$$

Fig. Plot of $\Phi(k, N)$ vs k, where $N=200,400,600,800$, and 1000. In the large limit of $\mathrm{N}, \Phi(k, N)$ approaches a Gaussian distribution.

The inverse Fourier transform of $\Phi(k, N)$ is

$$
\begin{aligned}
W(m, N) & =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \Phi(k, N) e^{i k m} d k=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} d k e^{i k m} \frac{1}{\sqrt{2 \pi}}(\cos k)^{N} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k e^{i k m}(\cos k)^{N}
\end{aligned}
$$

Here we use the binomial theorem to get

$$
\begin{aligned}
(\cos k)^{N} & =\left(\frac{1}{2}\right)^{N}\left(e^{i k}+e^{-i k}\right)^{N} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} e^{i k(2 l-N)}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
W(m, N) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k e^{i k m}\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} e^{i k(2 l-N)} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} \frac{1}{2 \pi} \int_{-\pi}^{\pi} d k e^{i k(m+2 l-N)} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} \frac{1}{2 \pi}(2 \pi) \delta_{m+2 l-N, 0} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} \delta_{m+2 l-N, 0} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{l=0}^{N} \frac{N!}{(N-l)!!!} \delta_{m+2 l-N, 0} \\
& =\frac{1}{2^{N}} \frac{N!}{\left(\frac{N+m}{2}\right)!\left(\frac{N-m}{2}\right)!}
\end{aligned}
$$

where

$$
m=N-2 l, \quad \text { or } \quad l=\frac{N-m}{2} .
$$

This implies that for $N=$ even, m should be even. In other words, $W(N=$ even, $m=o d d)=0$. For $N=$ odd, m should be odd. In other words, $W(N=$ odd, $m=$ even $)=0$.

11S.13 Numerical calculation of $W(m, N)$

Using the Mathematica, we calculate numerically the value of $W(m, N)$ given by

$$
W(m, N)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k e^{i k m}(\cos k)^{N}=\frac{1}{\pi} \int_{0}^{\pi} d k \cos (k m)(\cos k)^{N},
$$

for the cases with $N=12$ (even) and $N=13$ (odd).
(i) $\quad N=12$.

This figure clearly shows that $W(m, N=12)=0$ for $m=-11,-9,-7,-5,-3,-1,1,3,5,7,9$, and 11 ($m=$ odd).
(ii) $\quad N=13$.

This figure clearly shows that $W(m, N=13)=0$ for $m=-12,-10,-8,-6,-4,-2,0,2,4,6,8$, 10 , and $12(m=$ even $)$.
((Mathematica))

```
Clear["Gobal`"];
J1[m_N1_]:=\frac{1}{\pi}}\mp@subsup{\int}{0}{\pi}\operatorname{Cos}[km]\operatorname{Cos}[k\mp@subsup{]}{}{N1}d\textrm{dk
d12 = Table[{m, J1[m, 12]}, {m, -12, 12, 1}];
f1 = ListPlot[d12, PlotStyle }->\mathrm{ {Red, PointSize[0.02]}, AxesLabel }->{"m", "W(m,N)"}]
f2 = Graphics[{Text[Style["N=12", Black, 15], {6, 0.18}]}];
Show[f1, f2]
```


d13 = Table [\{m, J1[m, 13]\}, \{m, -13, 13, 1\}];
g1 = ListPlot[d13, PlotStyle \rightarrow \{Red, PointSize[0.02]\}, AxesLabel \rightarrow \{"m", "W(m,N)"\}];
g2 = Graphics[\{Text[Style["N=13", Black, 15], \{6, 0.18\}]\}];
Show[g1, g2]

11S. 14

Limit of long distance and long time
Using the Stirling's formula,

$$
\ln (x!)=\frac{1}{2} \ln (2 \pi)+\left(x+\frac{1}{2}\right) \ln (x)-x \quad \text { for large } x
$$

and the Mathematica, we have the series expansion to the order of $(\mathrm{m} / \mathrm{N})^{8}$,

$$
\begin{aligned}
\ln W(m, N) & =-N \ln (2)+\ln (N!)-\ln \left(\frac{N+m}{2}\right)!-\ln \left(\frac{N-m}{2}\right)! \\
& \approx-\frac{1}{2} \ln \left(\frac{\pi N}{2}\right)+\frac{1}{2}(1-N)\left(\frac{m}{N}\right)^{2}+\frac{1}{12}(3-N)\left(\frac{m}{N}\right)^{4} \\
& +\frac{1}{30}(5-N)\left(\frac{m}{N}\right)^{6}+\frac{1}{56}(7-N)\left(\frac{m}{N}\right)^{8}+\ldots \\
& \approx-\frac{1}{2} \ln \left(\frac{\pi N}{2}\right)-\frac{1}{2} \frac{m^{2}}{N}
\end{aligned}
$$

or

$$
\begin{aligned}
W(m, N) & =\exp \left[-\frac{1}{2} \ln \left(\frac{\pi N}{2}\right)-\frac{1}{2} \frac{m^{2}}{N}\right] \\
& =\exp \left[\ln \left(\frac{\pi N}{2}\right)^{-\frac{1}{2}}-\frac{1}{2} \frac{m^{2}}{N}\right] \\
& =\left(\frac{\pi N}{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \frac{m^{2}}{N}\right) \\
& =\left(\frac{2}{\pi N}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2} \frac{m^{2}}{N}\right)
\end{aligned}
$$

((Mathematica))

```
Clear["Gobal`"];
f1[x-]:= 直 Log[2\pi] + (x+\frac{1}{2})\operatorname{Log}[x]-x;
g1 = -N Log[2] + f1[N]-f1[\frac{N+m}{2}]-f1[\frac{N-m}{2}];
rule1 = {m > N x};
g11 = g1 /. rule1; Series[g11, {x, 0, 8}] // Simplify //
    Normal
```

$$
\begin{aligned}
& \frac{1}{2}(1-N) x^{2}+\frac{1}{12}(3-N) x^{4}+ \\
& \frac{1}{30}(5-N) x^{6}+\frac{1}{56}(7-N) x^{8}-\frac{1}{2} \log \left[\frac{N \pi}{2}\right]
\end{aligned}
$$

11S. 15 Diffusion

We assume that the distance between the nearest neighbor lattices is Δx and the time taken for each jump is Δt. Then we have

$$
t=N \Delta t, \quad x=m \Delta x .
$$

The probability of finding particle between x and $x+\mathrm{d} x$ is

$$
\begin{aligned}
P(x, t) d x & =W\left(\frac{x}{\Delta x}, \frac{t}{\Delta t}\right) \frac{d x}{2 \Delta x}=d x\left(\frac{1}{4 \frac{(\Delta x)^{2}}{2 \Delta t} \pi t}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{4 t} \frac{x^{2}}{\frac{(\Delta x)^{2}}{2 \Delta t}}\right) \\
& =d x \frac{1}{\sqrt{4 D \pi t}} \exp \left(-\frac{x^{2}}{4 D t}\right)
\end{aligned}
$$

where D is the diffusion constant and is defined by

$$
D=\frac{(\Delta x)^{2}}{2 \Delta t} .
$$

Here we note that the factor $2 \Delta x$ of the $W\left(\frac{x}{\Delta x}, \frac{t}{\Delta t}\right) \frac{d x}{2 \Delta x}$ arises from the fact that (i) for every jump ($N=$ even), the probability of finding the particle at the sites with even m is zero, and that (ii) for every jump ($N=$ odd), the probability of finding the particle at the sites with odd m is zero. The distance for the jump is $2 \Delta x$, but not Δx.

The final form of $P(x, t)$ is obtained as

$$
P(x, t)=\frac{1}{\sqrt{4 D \pi t}} \exp \left(-\frac{x^{2}}{4 D t}\right) .
$$

We note that $P(x, t)$ satisfies the diffusion equation given by

$$
\frac{\partial P(x, t)}{\partial t}=D \frac{\partial^{2} P(x, t)}{\partial x^{2}}
$$

with the initial condition

$$
P(x, t=0)=\delta(x)
$$

11.S16 Gaussian distribution in magnetization; analogy of random walk

We consider a system consisting of N independent spins. Each spin has a magnetic moment μ. In the absence of an external magnetic field, each spin has the magnetic moment $(\pm \mu)$ along the z axis. We assume that the number of spins having the z component magnetic moment $(+\mu)$ is N_{\uparrow} and the number of spins having the z-component magnetic moment $(-\mu)$:

$$
N_{\uparrow}=\frac{1}{2}(N+n), \quad N_{\downarrow}=\frac{1}{2}(N-n)
$$

where

$$
N=N_{\uparrow}+N_{\downarrow} .
$$

Here we discuss the probability distribution of total magnetic moment, M, which is given by

$$
M=\mu\left(N_{\uparrow}-N_{\downarrow}\right)=n \mu .
$$

The probability that the total magnetization has $M=n \mu$ is obtained as

$$
W(M)=\frac{1}{2^{N}} \frac{N!}{N_{\uparrow}!N_{\downarrow}!}=\frac{1}{2^{N}} \frac{N!}{\left[\frac{1}{2}(N+n)\right]!\left[\left(\frac{1}{2}(N-n)\right]!\right.}
$$

Using the Stirling's formula, we have

$$
\ln W(M)=-\frac{1}{2} \ln \left(\frac{\pi N}{2}\right)-\frac{n^{2}}{2 N}
$$

for $n \ll N$. Then we get the probability as

$$
W(M)=\left(\frac{2}{\pi N}\right)^{1 / 2} \exp \left(-\frac{n^{2}}{2 N}\right)
$$

where $M=\mu \mathrm{m}$. The average of magnetization is equal to zero.

$$
\langle M\rangle=\mu\langle n\rangle=\mu \int_{-\infty}^{\infty} n W(M) d n=0 .
$$

Since

$$
<M^{2}>=\mu^{2}<n>=\mu^{2} \int_{-\infty}^{\infty} n^{2} W(M) d n=2 \mu^{2} N
$$

the standard deviation is obtained as

$$
\Delta M=\sqrt{\left\langle M^{2}>-<M>^{2}\right.}=\sqrt{2 N} \mu
$$

Since

$$
\frac{\Delta M}{2 N \mu}=\frac{\sqrt{2 N}}{2 N}=\frac{1}{\sqrt{2 N}}
$$

the relative width of the Gaussian distribution becomes sharp as N increases. We make a plot of $W(M=n \mu)$ as a function of N, where $N=100$.

Fig. \quad Plot of $W(M)$ vs $n . M=2 \mu n . N=100$.

REFERENCES

C. Kittel, Elementary Statistical Physics (Dover Publications, Inc, Mineola, NY, 2004).
K. Kitahara, Nonequilibrium Statistical Physics, 2nd edition (Iwanami, Tokyo, 1998). [in Japanese].
R. Reif, Statistical Thermal Physics, McGraw-Hill, New York, 1965).
C. Kittel and H. Kroemer, Thermal Physics, 2nd edition (W.H. Freeman and Company, New York, 1980).

