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11S.1 Poisson summataion formula
For appropriate functions f(x), the Poisson summation formula may be stated as

S f(x=n)=+2z 3 F(k=m). (1)

where m and n are integers, and F(K) is the Fourier transform of f(x) and is defined by

F(k)=F[f(x)]= R (x)dX .

1 0
— [e
N2 7,
Note that the inverse Fourier transform is given by

f(X) =ﬁ Ie"‘XF(k)dk.

The factor of the right hand side of Eq.(1) arises from the definition of the Fourier
transform.
((Proof)) The proof of Eq.(1) is given as follows.

i f(x= n)=% [Faodk ieik“



We evaluate the factor
I=>e".
n:z—oo

It is evident that | is not equal to zero only when k = 2zm (m; integer). Therefore | can be
expressed by

I=A 25(k 27m),

m=—oo

where A is the normalization factor. Then

Zf(x n) =

(k)dK[ AZ&(k 272m)]

Tor  FOMAT
:fi T; )5k — 2zm)dk
:% iF(k 27m)

>
II

The normalization factor, A, is readily shown to be 27 by considering the symmetrical case
f(x=n)=e™

2

F(k =27n) = —_;ﬂ e

((Mathematica))



f[x_] =Exp[-x x2] ;
FourierTransform[f[x], X, k,
FourierParameters -» {0, -1}]

Since

or

A:\/ﬂf(x=n):2ﬁ

F(k =2m)

| = ie‘k” =27 ié(k —27m).

Using this formula, we have

11S.2

if(x:n):ﬂf‘f(kﬂﬂn).

Summary

When we put k =27x in | of Eq.(2)

or

iez”‘x" =2r i&(an —27m)

n=—o m=—c0

2 &
=— ) o(X—m
Zﬂm;( )

= i&(x— m)

(Poisson sum formula)
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0

D e = ia(x -m). (3)

n=—o0

11S.3. Convolution of Dirac comb: another method in the derivation of
Poisson sum formula
The convolution of functions f(x) and g(X) is defined by

s L Teoe_ _ L _
f g—ﬂ_jmf(x £)g(&)dé ﬂ_jwf@)g(x &)dée

The Fourier transform of the convolution is given by
FLf*g]l=FfIF[g].

Here we assume that
g(x) = Zé‘(x —-na). (Dirac comb)

The Fourier transform of g(X) is

Gk)=F[g(x)] = ﬁ J p ik ié‘(x —na)dx = ﬁ Zﬁo:efikna '

N=-—o0

The convolution f*g is obtained as

U B FPVRIAS P R S S P
frg= ﬂjw f(x g)nzzj(g na)d& mﬂ;ﬁf(x na). (4

The Fourier transform of the convolution is

FLf *g]= F(K)G(K) :ﬁp(k) e

=—00

We use the Poisson summation formula;



Z —ikna __ zelkna — i 5(5_2._“')

N=—o0 m=-—o0

- i 5[—(k—2ﬂ>]

Z&(k ——)

where

Z 27z|xn — 25(X m)

N=—w

with x = E. Then we get
2

F[f*g]= %F(k) ie“kna :ﬁF(k) ie‘k”a
Z 5(k——)F(k)

=—?” Z §(k——)F(k _—)

@

The inverse Fourier transform of F[ f *g] is obtained as

1 0

*g :—\/2_:[F[f *gle™dk =
1 - ikx
=—ZF(k_—m)je dks(k — 2 )
A
1 < 2 T
=— > F(k=""m)e @
a

where

27 27m 27m
— e'kxdk—— Sk—"5)F (k=222
el ﬂj Z (k-="Fk==2)



27 1 i
Flk="Sm)=—— |e 2 f(x)dx.
k=M le T

Finally we get

I & 2zam ==
f(x—na)=— F(k=—)e & . 5
*g= F Z ( ) 2 m;w ( a ) (5)
or
0 0 |2ﬂx
S f(x-na)=Y2T 3 Fk=2"M)e" s
N=—c0 = R — a
When a =1, we get
D> f(x—n)=~2x > F(k =2mm)e*™. (6)
When x =0,
D> f(x=n)=~27 > F(k=2am). (7)
This is the Poisson sum formula.
11S.3 Fourier transform of periodic function

We consider a periodic function N(X);
N(x+a)=N(X),
where a is the periodicity. The function N(X) can be described by

X

N(x) = Zf(x na)—£ i F(k=2ﬂ)e‘27”m

a
—_ z N eIGX



Note that f(X) is defined only in the limited region (for example, -a/2<x<a/2). G is the
reciprocal lattice defined by

G:2_7Z-m.
a

The Fourier coefficient Ng is given by

2z

Ng =2 F(k =G)
a

0 al/2 :
1 je‘iGX f(x)dx = 1 J.e“GX f (x)dx
a a

-0 -a/2
where f(X) is just like a Gaussian distribution function around x = 0.

N(x)
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Fig.  Plot of N(X) as a function of X. a is the lattice constant of the one-dimensional chain.

((Example))
Suppose that f(X) is given by a Gaussian distribution,



f(x)= \/%G exp(— 2);_2 ).

Then we get
12 1 1 1-2iGo? 1+2iGo?
N, =— |e " f(x)dx = —exp(——G?c?)[erf (—=——) +erf (———)],
¢ I (0dk = S exp(— G [erf (— =) +erf (— =]

where erf(X) is the error function and is defined by
2 ¢ e
erf (z) =—=|e ™" dt
72. .([

. . . 2r
Figure shows the intensity |NG|2 vs n, where G ===n.
a
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Figg a=1.0=0.1.G= 2—”n . The intensity |NG|2 vs N (= integer).
a

11S.10 Fourier series



Suppose that the function N(X) is a periodic function of X with the periodicity a. Then

we have

N(X)= if(X-n&):g i F(kzzTﬂm)eime

:::E:PdGeKh
G
2 .
where G =—m (m: integer).
a

((Example-1))

f(x) = x for |x|<a/2, with a=2
1 . 2i(=1)"
F(k =G =7n) = — | xexp(—=imx)dx = ——=— for n #0.
( ) \/27le p( ) nz~2m
1 1
Flk=G=0)=—[xdx=0 forn=0.
( )= = j

1 < I(_l)n iZmx I < I(_l)n iZmx
N(X)=— E e = — E -8
*) T n T N
n=0

N=—o0

We make a plot of N(X) as a function of x for the summation for N = -Np,, and Npax With
Nmax = 50.



N(x)

Nimax = 50
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-0.5+

,]'0,

Fig.  npa = 50. The Gibbs phenomenon is clearly seen.
((Example-2))

f(x) = 0 for -1<x<0 and 1 for 0<x<1. a=2

F(k=G=sm)= ﬁjexp(—iﬂnX)dX =— i(—l):][;j/;r_;—l)”] forn+#0.
forn=0.

1 1
F(k:GZO):EI‘;dX:E,

N -1 - L Z LD g

n=0
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Fig.  npa = 100. The Gibbs phenomenon is clearly seen.

11S.11 Fourier transform of function having values at inetger x-value
We consider a function defined by

f(x) = i f(M)S(x—m). (8)

<

Fig.  Plot of f(x) which is described by a combination of the Dirac delta function with
f(m) atx =m.

The Fourier transform of f(X) is given by
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F(k) = ﬁ T f (x)e dx

j z f (M)&(x —m)e " dx

_Oom

We note that

F(k+27)= \/_Ze"“‘””)mf(m) J_Ze-'kmf(m) F(k),

In other words, F(K) is a periodic function of k with a periodicity 27z We can also show that

1 T ikm
f(m):E_j”F(k)ek dk )
where
Tei“mm“dk =270 s (10)
since
b T F(k)e*"dk = Z f(m' )je'“m ™ dk
= Z f(m")2zs, ,,
- f(m)ﬁ

Note that the inverse Fourier transform of F(K) is obtained as
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1 7 . 1 | _
f - F k |kxdk:_ dk Ikx_ —|kmf
(9= 757 [FQ0emdk = o Jdke o Ble™tm)
1 c T ik(x—m
:gmzwf(m):[odkek( )
1 o0
= m;@f (M)275(x—m)

= i f(m)o(x—m)

((Note)) The proof where the Poisson summation formula is used.
We have another method for the derivation of Eq.(9):

1 © _ o @n+hrz
f(X)=—— [ F(k)e™dk = F(k)e™dk
N2 '[o V2 ;O(anl)n'
We put
kK'=k-2nx

Then we have

o0

1 4
f(x)= E:{ F(k)e™dk = \/_ nzao_J' F(k+2n7)e/ €2 gi:
— i eime% ][' F(kv)eik'xdk.

- Z&(x m)\/_jF(k)e'kXdk
_T i 5(x—m)j|:(k)e‘kmdk
g — el

= i5(x—m)f(m)

Here we use the Poisson summation formula
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Z |27zxn _ 25()( m)

N=—

11S.11 Random walk in the one-dimensional chain

We consider the case when a particle moves on the one dimensional chain. The particle
can be located only on a discrete position [Xx = m (m; integer)]. the particle starts from the
origin X = 0. The particle can move from x = m to X = m+1, or from X =m to x = m-1 for
each jump. We assume that the probability W(m, N) such that the particle reaches at the
position X = m after jumps with N times. The probability W(m, N+1) can be described by

m—1 m m+1
N N+1 N

Fig. Random walk model.
1 1
W(m,N +1) =EW(m—1,N)+EW(m+1,N),

where one is a jump from X = m-1 to x = m for the (N+1)-th jump, and the another is a jump
from X = m+1 to X = m for the (N+1)-th jump. The probability for these jumps is 1/2.
In order to find the expression of W (m, N ) we define the Fourier transform

d(k,N) i KW (m, N).

Note that ®(k,N) is a periodic function of k with a periodicity 27, and

o0

%Z e ™W (m—1,N)= \/_ e Ze-'k““ W(n-1.N)

=e *d(k,N)
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% i W (m+1,N) = J_ ¢ Ze*'k<m“>\/v(m+1 N)

=e*d(k,N)

Then we have

®d(k,N +1)= F Ze"k"W(m N +1)

= %(e‘"‘ +e " )d(k,N)
= (cosk)D(k,N)

or
®(k,N) = (cosk)" D(k,N =0).

We use the initial condition that the particle is located at X = 0 at the probability of 1;
W(m,N =0)=0,,

or

1 & 1 & 1
OKN=0)=— Y e "™ WmN=0)=—— Ye™*s = )
( ) N2 m;w ( ) N2 m;w mo 27

So we get

®(k,N) = (cosk)".

1
N2
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—6.3 -0.2 —0.1‘ o B 0.1 0.2 0.‘3
Fig.  Plot of ®(k,N) vs k, where N = 200, 400, 600, 800, and 1000. In the large limit of
N, ®(k,N) approaches a Gaussian distribution.

The inverse Fourier transform of ®(k,N) is

-’fdkeikm

V4 . 1
d(k,N efdk = ——
fo,N) el

1
N2z S,

= i:[tdke"‘m (cosk)"

W(m,N) = (cosk)"

1
N2

Here we use the binomial theorem to get
IR
(cosk)M = (5] e* +e )N

_ - |k(2I—N)
‘( ] Z —|)v|v

Then we have
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N

W(m N)_ngk |km( j z _|)||| |k(2|—N)

0
N T

1 N 1 ik(m+21-N
| Y [dke*
2) 1= (N —I)'I'27z

N 1
=|— o
2 ;( —I)'I'Zﬂ' ) m+21-N,0

N

1 N
=5 Z—§m+zl N,0
2) = (N=DI
1"
= A 245m+2| N,0
2) = (N=DI!
U

2 ( )'(N mj

where

m=N-2l, or | =

This implies that for N = even, m should be even. In other words, W(N = even, m = odd) = 0.
For N = odd, m should be odd. In other words, W(N = odd, m = even) = 0.

11S.13 Numerical calculation of W(m, N)
Using the Mathematica, we calculate numerically the value of W(m, N) given by

W (m.N) = j dke™™ (cosk)" = - j dk cos(km)(cos k)"
2w <. Ty

for the cases with N = 12 (even) and N = 13 (odd).

() N=12.

17



W(m,N)

®
00X o
N=12
0.15"
° I °
0.10 -
° 0.05 - ®
° i °
oo %e o o o o6 o o o 626 m
-10 -5 5 10

This figure clearly shows that W(m, N =12) =0 form=-11, -9, -7, -5, -3, -1, 1, 3,5, 7, 9,
and 11 (m = odd).

(11) N=13.
W(m,N)
U
0.20
® ois) ¢
0.10]
° [ [
0.05 |
° I °
° : °
090900 -0 -0 ¢ 0 0 0 o 0000
-10 -5 5 10 "

This figure clearly shows that W(m, N = 13) = 0 for m=-12, -10, -8, -6, -4, -2, 0,2, 4, 6, 8,
10, and 12 (m = even).

((Mathematica))
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Clear["Gobal ""];

I N1
Jl[m , N1_] := ; J; Cos[k m] Cos[k]" ak
dl2 = Table[{m, J1[m, 12]}, {m, -12, 12, 1}];

fl = ListPlot[d12, PlotStyle » {Red, PointSize[0.02]}, AxesLabel -» {"m", "W(m,N)"}];
T2 = Graphics[{Text[Style["N=12", Black, 15], {6, 0.18}]1}1;

Show[fl, 2]

W(m,N)

¢
000 o
N=12
0.15
° °
0.10 -
® 0.05 - ®
° °
ee@®as & & & e&|e & & & &@ase n
-10 -5 5 10

d13 = Table[{m, J1[m, 13]}, {m, -13, 13, 1}];

gl = ListPlot[d13, PlotStyle » {Red, PointSize[0.02]}, AxesLabel -» {"m", "W(m,N)"}];
g2 = Graphics[{Text[Style["N=13", Black, 15], {6, 0.18}1}1;

Show[gl, g2]

W(m,\N)
(] [ J
0.20 +
N=13
® st i
0.10 -
(] (]
0.05 -
[ ] [ ]
[ J [ J
-10 -5 5 10 "
11S.14 Limit of long distance and long time

Using the Stirling's formula,
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In(x!) = %111(272’) +(X+ %) In(X) — x for large X,

and the Mathematica, we have the series expansion to the order of (m/ N)?,

an(m,N):—Nln(2)+ln(N!)—ln(N;m)!—ln(N;m)!
1N, 1 mY 1 mY'

x _EIH(T) +5(1 - N)(Wj +E(3 - N)(W)
1 m)® 1 m\*
+5(5_N)(Wj +%(7_N)(Wj +...
1N 1m
=N

or

1. N 1m?
W (m,N) = exp[——In(—) - ———
(m,N) exp[zn(z) 2N]
AN -~ 1m?

= In(Z>) 2 - =
exp[n(z) 2N]

Im?

N
ot

((Mathematica))

- (?)3 exp(-
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Clear["Gobal """];

1
fl[x ] :=—Log[2x] + (x+ 5) Log[x] - x;

1
2

1=-NLog[2] + FL[N] f1[N+m] fl[N_m]
gl = -NLog[2] + -fl|— | - ;

2 2
rulel = {m > NX};

gl1l =91 /. rulel; Series[gll, {x, O, 8}] // Simplify //
Normal

L Lo aon xts

2 12

1 1 1 N 7t
2 5 N X8 (7oN) x®- T Log[ S
30 PNV X g (1N 29{2]

11S.15 Diffusion
We assume that the distance between the nearest neighbor lattices is AX and the time

taken for each jump is At. Then we have

t = NAt X =MAX

The probability of finding particle between X and X + dX is

1 1 X

P(x,t)dx =W (=, —) dx exp(—— )
AXC A 2AX 4(Ax)2 + 4t (Ax)’
2At 2At

i exp-
4D T 4Dt

where D is the diffusion constant and is defined by

_(Ax)y?
2At
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L,L)ﬂ arises from the fact that (i) for
AX At” 2AX

every jump (N = even), the probability of finding the particle at the sites with even m is
zero, and that (i1) for every jump (N = odd), the probability of finding the particle at the

Here we note that the factor 24x of the W (

sites with odd m is zero. The distance for the jump is 24X, but not AX.
The final form of P(X, t) is obtained as

1 NG
P(x,t) = \/4D7zt exp(—4Dt).

We note that P(X, t) satisfies the diffusion equation given by

oP(x,t) O*P(X,t)
=D 4
ot OX

5

with the initial condition
P(x,t=0)=0(X).

11.516 Gaussian distribution in magnetization; analogy of random walk

We consider a system consisting of N independent spins. Each spin has a magnetic
moment . In the absence of an external magnetic field, each spin has the magnetic moment
(x1) along the z axis. We assume that the number of spins having the z component
magnetic moment (+x) is N, and the number of spins having the z-component magnetic

moment (-L):

1 1
N,=—(N+n), N =—(N-n
N 2( ) ' 2( )
where

Here we discuss the probability distribution of total magnetic moment, M, which is given
by
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The probability that the total magnetization has M = nu is obtained as

N! 1 N!

1
W(M): N = N
27 NN 2 [;(N +n)]![(;(N—n)]!

Using the Stirling's formula, we have

2
an(M):—%ln(g)—;—N

for n<<N. Then we get the probability as

2

2 n
W(M) = (—)"? exp(——).
(M) (ﬂN) p( 2N)
where M = un. The average of magnetization is equal to zero.
<M >=g<n>=u[nW(M)dn=0.

Since

<M?2>= % <n>= 4’ jnZW(M)dn:ZyzN :

the standard deviation is obtained as

AM =V<M?>-<M >? =V2Nu

Since
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the relative width of the Gaussian distribution becomes sharp as N increases. We make a
plot of W(M = ny) as a function of N, where N = 100.

-40 -20 40

Fig.  Plot of W(M) vs n. M =2un. N =100.
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