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Albert Einstein (14 March 1879 – 18 April 1955) was a German-born theoretical physicist who 
developed the theory of general relativity, effecting a revolution in physics. For this achievement, 
Einstein is often regarded as the father of modern physics. He received the 1921 Nobel Prize in 
Physics "for his services to theoretical physics, and especially for his discovery of the law of the 
photoelectric effect". The latter was pivotal in establishing quantum theory within physics. 
 

 
http://en.wikipedia.org/wiki/Albert_Einstein 
_____________________________________________________________________________ 
Hermann Minkowski (June 22, 1864 – January 12, 1909) was a German mathematician of 
Lithuanian Jewish descent, who created and developed the geometry of numbers and who used 
geometrical methods to solve difficult problems in number theory, mathematical physics, and the 
theory of relativity. 
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http://en.wikipedia.org/wiki/Hermann_Minkowski 
 
_____________________________________________________________________________ 
1. Minkowski space-time diagram (or simply spacetime) 

The space time diagram was first introduced by Hermann Minkowski. He was one of 
Einstein's teacher at ETH, The Federal Institute of Technology at Zurich, in the late 1890's. The 
idea of the space diagram came from the paper of Minkowski at 1908. Roger Penrose says that 
the special relativity was not yet complete, despite the wonderful physical insight of Einstein and 
the profound contributions of Lorentz and Poincare until Minkowski provided his fundamental 
and revolutionary viewpoint; spacetime.  

A Minkowski spacetime diagram is a geometric representation of motions in spacetime. The 
vertical axis is usually plotted as the time axis. Any point in spacetime is called a world point, 
and a series of worldpoints representing the motion of some object is called a world line. If ct is 
used for the time axis, then light on a Minkowski diagram will always travel at 45° to the time 
axis (either right or left at 45° in a one spatial direction Minkowski diagram, along the surfaces 
of a 45° cone - called the light cone - in a dual spatial dimension Minkowski diagram. 

Any individual event is uniquely represented by some point P. The description of this event 
is described in the S frame by the coordinates (x, ct) and in the S' frame by the coordinates (x', 
ct'). If the origins of S and S' are chosen so as to coincide at ct = ct' = 0, then the relation between 
(x, ct) and (x', ct') is contained in the Lorentz transformations. The world line of a light signal 
starting out at x = 0, ct = 0, is a bisector of the angle between the axes. This holds good in both 
the S and S' frames.  
 
((Lorentz transformation)) 
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Note that 
 

222222 '' tcxtcx   (Lorentz invariant) 
 
When ct' = 0, we get 
 

xx
c

v
ct )(tan  

 
where 
 

c

v
tan  

 
is the slope of the line ct' = 0 (or the x'-line). 
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Fig.1 Lorentz transformation. 
c

v
tan . The dashed line (blue) denotes ct = x for the light. 
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Fig.2 The Lorentz transformation. 
c

v
tan , with v<0. 

 
2. Definition 
(a) Event 

A point defines a particular place at a particular instant in time. 
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Fig.3 The definition of event in the Minkowski spacetime 
 
(b) World line 

A path through the space-time diagram is called a world line. The world line for the 
acceleration motion is described by a curve, but not a straight line. The angle between the 
tangential line of the world line at the point (x, ct) and ct-axis is always smaller than 45º. 
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Fig.4 World lines. the blue line (world line of the acceleration motion). The red line 

(world line of constant motion). The green line (world line of light). We assume v 
= c/2, in this figure. 

 
(c) Time-like, space-like regions 

We consider a point at (x, ct). Under the Lorentz transformation, this point is described by (x', 
ct'). 
 

22222 )()'(' ctxctxs   (Lorentz invariant). 

 
Suppose that 
 

|| xct   (time-like) 

 
which leads to 
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Then we get 
 

0)(')'( 222  sxct , 

 
Then the inequality ct'>0 is still maintained. Even if this transformation repeated, the conclusion 
is the same.  
 

 
Fig.5 The past and future light cones of event P. |x|=ct (light-like).  
 
(d) Calibration of clocks 
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Fig.6 Calibration of clocks. The red line denotes the path of light. 
 

SSS DCODOB )()()(   

 
with 
 

xOB S )( ,  1)( ctOD S  ,    )()( 12 ttcDC S   

 
______________________________________________________________________________ 
3. Lorentz contraction 
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Fig.7 Lorentz contraction 
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Fig.8 Minkowski spacetime diagram for the Lorentz contraction 
 
Suppose that the rod (the length L0) is fixed in the frame S'. The points C and B are located at the 
edges of the rod. The world line of C (x1', ct' in the S' frame; x1, ct in the S frame) passes through 
the point A. The world line of B passes through the point D (x2, ct in the S frame). Note that the 
x' coordinates of these points C and B are x1' and x2', where  
 

012 '' Lxx  . 

 
The Lorentz transformation is given by 
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When t1 = t2 = t (the point C and D), the distance CD in the S frame is obtained as 
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Fig.9 Minkowski space dime diagram. (OA)S' = length of the rod in the S' frame. (OB)S 

= the length of the rod measured in the S frame. The length OB  in this figure 
corresponds to the length (OB)S', which is different from the length (OB)S 
measured in the S frame. (OB)S = k (OB)S' (see the scaling factor k will be 
discussed in detail later). 
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4. Time dilation from the Lorentz transformation 

 
 

 
Fig.10 Minkowski space-time diagram for the time dilation. The event C is located at (ct', 

x'=0) in the S' frame. (OC)S' = ct'. (OA)s = ct. The length OA  in this figure 
corresponds to the length (OA)S', which is different from the length (OA)S 
measured in the S frame. (OA)S = k (OA)S' (the scaling factor k will be discussed 
in detail later). 

 
We use the Lorentz transformation for the time dilation, 
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When x' = 0 (the point C) 
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where t' = . More generally, we have 
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where 't . The time  is called the proper time and is measured at the same x' in the S' frame. 

  

 
 
Fig.11 Simultaneity. From the definition, the clocks in the S' frame on the same ct' shows 

the same time even for different x'. When these clocks are seen from the S frame, 
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even at the same time ct, the time indication of the clocks is different for the 
different x. 

 
5. Hyperbola in the S and S' frames 

We discuss the unit of length in the Minkowski space-time diagram in the S (x, ct) and S' 
frames (x', ct'). 
 

 
 
Fig.12 Minkowski space-time diagram, showing two different coordinate systems and a 

series of hyperbola to define unit distance along x for each system. Plot of the 

hyperbola 22222 '' yxyx    and 22222 '' yxyx   , where  = 1, 2, 3, 

and 4. tan = v/c = 3/5. y = ct. y’ = ct’. 
 
We consider the equation 
 

22222 '' yxyx   , 
22222 '' yxyx    

 

where y = ct and y' = ct', and  is independent of the frames. We make a plot of this equation 

when  is changed as a parameter. The curve shows a hyperbola in the (x, y) plane. This curve 
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should intersect at x =  in the (x, y) plane and at x' =  in the (x', y') plane. However the unit 

distance () in the (x, y) plane is clearly different from the unit distance () in the (x', y') plane 
since the coordinate (x', y') is oblique and the coordinate (x, y) is normal. 
 
6. Light (null) cones 

This shows spacetime diagram in three dimensions (x, y, ct). The lightlines form a light cone. 
The circles centered at ct-axis define simultaneity planes  

 

 
 
Fig.13 Hyperbolic geometry. Space-time diagram of a two-dimensional world, showing 

the light cone. ContourPlot of 2222 )(  ctyx  and 2222 )(  ctyx , 

where is changed as a parameter. 
 

The world line of light pulses plat special roles in physics because of the equality of the 
speed of light foe all inertial observers. A light pulse that starts at the origin of the reference 
frame of S at t = 0 reaches the position (x, y, z) at time t where 
 

222 zyxct   
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Fig.14  
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Fig.15 Spacetime diagram of a 2D world, showing the light cone. This figure is a 2D 

representation (x, y, ct) of a 4D dimensional space. Null cone (light cone). The 
past null cone refers to light imploding on the event at the origin in same as that 
the future cone refers to light originating at the event at the origin. The future and 
the past inside the light cone are accessible. But outside the light cone they are not 
accessible by any object staring at the origin. 

Past:  2222 tcyx  ,  t<0 

Future  2222 tcyx  , t>0 

Light cone 2222 tcyx   

 

 
 
Fig.16 The pase light cone and the future light cone. 
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Fig.17 Minkowski space is flat, and its null cones (light cone) are uniformly arranged, 

depicted here as all being parallel. The curve in the spacetime is a smooth world 
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line, with tangent always future-time like. The world lines stay inside the light 
cones. At every origin a tangent line can be drawn; it will have an angle with the 
time direction less than that of the light cone with the time direction. 

 

 
Fig.18 World lines passing through the origin from the past-region to future region. The 

world lines should lie inside the light (null) cone. 
 
7. Scaling factor k (I) 
(a) Derivation of the scaling factor k 
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Fig.19    SS OCOB

1

 .    SS OCOD 
 

 
Let us take a look at the hyperbora,  

 
22222 '' yxyx    

 
This curve passes at the points C (x =  , y = 0) in the S frame and A (x'=  , y' = 0).  
 

  SOC ,   'SOA . 

 
This means that the unit length of the S' frame is different from that of the S frame.  

What is the scaling factor between the unit lengths of the S and S' frames? We now find the 
coordinate of the point A in the (x, y) plane, by solving two equations given by 
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Then the distance (OA )S is given by 
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(b) Ratio SS OCOB )/()(  

We consider the tangential line of 222  yx  at the point A. 
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The tangential line at the point A is given by 
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This line intersects at the point B in the x axis, 
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Then the distance (OB )S is given by 
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(c) Ratio SS OCOD )/()(  

We now consider the point E which is located just above the point C 
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which means that this hyperbola intersects at the point B in the x axis. We also consider the point 
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__________________________________________________________________ 

8. Scaling factork (II) 

(a) Derivation of the scaling factor k 

 

Fig.20    SS OCOB

1

 .    SS OCOD  .
 

 
We consider the equation of the hyperbola 
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where y = ct and y' = ct'. 
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The hyperbola passes through the points C (x = 0, y =  ) in the S frame and A (x'= 0, y' =  ) in 
the S' frame. This means that the unit length of the S' frame is different from that of the S frame. 
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This line intersects at the point B in the x axis, 
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_______________________________________________________________________ 
9. Lorentz contraction 

Let us turn to the visualization of Lorentz contraction using the Minkowski diagrams.  
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Fig.21 Lorentz contraction. 
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We note that 
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________________________________________________________________________ 
10. Time dilation 
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Fig.22 Time dilation 
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Here we note that the scaling factor k is defined as. 
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__________________________________________________________________________ 
11. Lorentz transformation and scaling factor k 
 

 
 
Fig.23 Lorentz transformation. A (x', ct' = 0). B(x', ct'; x, ct). C(x' = 0, ct').  
 
We consider the Minkowski space-time diagram (described above) 
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where we use the scaling factor k. Then we get the Lorentz transformation as 
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_________________________________________________________________________ 

12. Relativity of simultaneity 
In physics, the relativity of simultaneity is the concept that simultaneity–whether two events 

occur at the same time–is not absolute, but depends on the observer's reference frame. According 
to the special theory of relativity, it is impossible to say in an absolute sense whether two events 
occur at the same time if those events are separated in space. 
 
(1) Events that occur at two separate places at the same time (as seen in the S frame) do not 

happen at the same time as viewed in the S' frame. 
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Fig.24 Relativity of simultaneity-I 
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(2) Events that occur at two separate places at the same time in the S' frame do not happen at 

the same time, as viewed in the S frame. 
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Fig.25 Relativity of simultaneity-II 
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__________________________________________________________________________ 
13. Train and light 
 

 
 
Fig.26 
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Fig.27 
 
At t = 0 (t' = 0), a light is emitted from the midpoint (the point A) of the train which moves along 
the positive x axis at the constant velocity v. There are two mirrors at both the ends of train. The 
a light pulse is emitted in the backward direction and is reflected back by a mirror at one of the 
end (the event C). Simultaneously another light pulse is emitted in the forward direction and is 
reflected back by a mirror at the other end (the event D). We note that  
 

CD ctct   

 
in the S frame, while 
 

'.' CD ctct   

 
in the S' frame, After the reflection of the light pulses by the mirrors, two light pulses meet again 
at the point G. We note that the line CD is parallel to the x' axis. In other words the length CD 
(L0) is the length of train in the S' frame. The point J is the midpoint of the points C and D. 

We consider the triangle CHD. The length HD in the S' frame can be calculated as 
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Using the scaling factor k, we have 
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  (Lorentz contraction). 

 
We also get a time dilation from the triangle CHI. 
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Using the scaling factor k, we have 
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Fig.28 Repetition process. 
 
_____________________________________________________________________ 

14. Scaling factor  for the Doppler effect 
 
 

 
 
Fig.29  
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Fig.30 Doppler effect 
 

We consider a moving light source that flashes with frequency f0. The observer at rest in the 
S frame receives the light signal with a different frequency f (this is called the Doppler effect of 
light). First we calculate the distances in the S' frame; 
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Using the scaling factor 
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we have 
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The frequency of the light observed at the S frame is related to that of the light emitted in the S' 
frame is 
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((Formula of the Doppler effect)) 
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____________________________________________________________________ 

15. Derivation of Lorentz transformation using the scaling factor  
We consider the case when the laser on the Earth (at rest) emits a light pulse. The observer 

moves away from the light source on Earth (the S frame) at the velocity v, and receives the light 
signal. 
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Fig.31  
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Using the scaling factor k, we get 
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16. Derivation of the Lorentz transformation from  
 

 
Fig.32  
 

We consider two spaceships (A and B). The spaceship B moves at the velocity v away from 
the spaceship S (the S frame), forming the S' frame. Suppose that the spaceship A (in the S 
frame) emits the light pulse at the time tA. The spaceship B (in the S' frame) encounters the light 
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pulse at the point B (in the S' frame) at t' = tB'. The light pulse is reflected by a mirror at the point 
C, and returns back to the spaceship A at t = tA (in the S frame). Note that the spaceship B again 
encounters the light pulse at the point D (in the S' frame). 

From the simple geometry, it is found that 
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and 
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By using the Doppler factor , 
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In the S-frame; 
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In the S' frame 
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Solving these equations for x' and t', we get the Lorentz transformation 
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_________________________________________________________________________ 
17. Physical meaning of the time dilation 
 

 
 
Fig.33  
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Fig.34 tan = v/c= 1/2.       ''' SSS EFEBDE  In the S' frame. 

 
Here the inertial frame S', moving with constant speed v<c to the right, is represented as “seen” 
in the frame S. The initial conditions are (x, ct) = (0, 0) = (x’, ct'). A light source at the spatial 
origin (x = 0) in the S frame emits a light pulse towards the S' frame (t = tD). There exists a 
mirror that reflects it back. Your clock (in the S frame) says that the pulse is emitted at the event 
D (0, ctD) and is back at the event F (0, ctF). According to the postulate of constant speed of light, 
one can get that 
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((Discussion)) 

The event E (0,ctE) and the event B are simultaneous in the S frame. 
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Then we have 
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Using the scaling factor k, we have 
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Then we get the relation 
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Fig.35 Moving of the Fabry-Perot interferometer at the velocity v along the x axis. The 

light emits from the origin of the S frame (on the ground). 
______________________________________________________________________________ 
18. The relativity of simultaneity 
 

 
Fig.36 
 

x

x'

O

A

B

C

D

E

F

ct

q
q

ct'



49 
 

 
 

 
Fig.37  
 

Suppose that the train starts to move at the origin. It runs at the velocity v close to the speed 
of light c. There are an emitter of light at the end of the train and a mirror at the other end of train. 
Suppose that one sends a light signal to the mirror. The light is reflected by the mirror and is 
returned back to the position of emitter.  
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Fig.38 A light ray emitted at the common origin of both frames and reaches the right end 

of the train at the event B. Let a light source be places at the left of the train and a 
mirror at the right end.  

 
The event B: (x', ct') in the S' frame. The event B is on the world of the light: 
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The event F: 
 

  ]ˆ)cosˆ[sin'2]ˆ)cosˆ)[sin''(' jictjictxOF S    

 
The event G: 
 

  jctjctxOG S
ˆcos'2ˆcos)''('    

 

 
)ˆˆ)(cos(sin'

)ˆsinˆ(cos')ˆcosˆ(sin''

jict

jictjictAC S








 

 

 
)ˆˆ(cos'

)ˆsinˆ(cos'ˆ)cos(sin''

jict

jictjctAD S








 

 
Then we have 
 

   

   

   
2

2'

2

2'

2

2'

1

)1('
)cos(sin'

1

'
cos'

1

'2
cos'2

c

v
c

v
ct

kctODkOD

c

v

ct
kctOEkOE

c

v

ct
kctOGkOG

SS

SS

SS




















 

 
where k is the scaling factor. 
 
In conclusion, 
 
(a) 2t' is the time taken in the S' frame. A clock on the spaceship 1 measures how long the 

round trip takes. 
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(b)   )'2(
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c S 


  is the time measure by an observer on the S frame. A clock 

on the observer on the S frame measures how long the round trip takes. (time dilation). 
 

 
Fig.39           ''''' SSSSS CFCBOCABOA   (green lines). 

          ''''' SSSSS DKDBODJBOJ   (red lines). 
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or 
 

Dct
c

v
L )1(   

 
Using the Doppler effect, we get 
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Since '0 CctL  , the length L is expressed by 
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v
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 (Lorentz contraction) 
 
19. Application 
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Fig.41  

 
 
Fig.42  

 
___________________________________________________________________ 
20. Station master at the station and conductors in the train 

A station master with a watch stands at the station. Two conductors with watches are in the 
train. Suppose that the train passes through the station at the speed of v (close to the speed of 
light). How can we measure the length of the train by using watches? 
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Fig.43  
 

The station master (in the S frame) is located at the point G on the x axis. The length OA  is 
the length of the train measured in the S' frame. The station master starts to measure the time 
when the head of the train passes through the point G where the station master stands (t = tD). He 
finishes measuring the time when the tail of the train passes through the point G (t = tE). On the 
other hand, one conductor is at the head of the train and the other conductor is at the tail of the 
train. The clock of one conductor is simultaneous to that of the other conductor. The two 
conductors measure the time when the train passes through the station. The conductors start to 
measure the time when the conductor at the head of the train passes through the station master 
(tA' = 0). The conductor at the tail of the train measures the time elapsed when he passes through 
the station master.  
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 sincos')()()( 0''' LctODOEDE SSS  . 

 
Then we have 
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This is equivalent to the Lorentz transformation. When we know t and t', we can evaluate the 
length of L0. 
________________________________________________________________________ 
21. Space time interval 
 

 
 
Fig.44 The S' frame (x' - y'). 
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Fig.45 The S frame (x-y). 
 
 

Two spaceships are travelling together through the galaxy at close to the speed of light. 
Mounted on one ship is a laser that can fire the pulse of light, and the other mirror. The pilot of 
the first spaceship fires the pulse to the mirror, and watches as it is reflected back. A clock on 
board measures how long the round trip takes. But now suppose that he does this as the ships 
passing an observer nearby asteroid. According to relativity theory this observer sees the pulse 
moving through space at exactly the same speed that the pilot does, namely the speed of light. 
But he also sees the pulse travelling a longer distance because from his prospective he must add 
the forward motion of the ships to the motion of the pulse between them. So he measures a 
longer time interval for this round trip than the pilot does, because he's watching the pulse go 
farther without going any faster. This effect is called time dilation. If two observers are moving 
with respect to one another each perceives that the other's time is flowing more slowly. 
(http://www.youtube.com/watch?v=KHjpBjgIMVk) 

 
We assume that two spaceships moves along the x axis at the same velocity v relative to the 

ground (the S frame). The distance between two spaceships remain unchanged in the S' frame. At 
t = 0, the spaceship 1 emits the light signal to the spaceship 2. The spaceship 2 has a mirror. The 
light signal is reflected by the mirror and is sent back to the spaceship 1.  

In the S' frame,  
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In the S frame,  
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Fig.46 Space-time diagram for the two airplanes moving along the same direction. 
 
______________________________________________________________________________ 
22. World distance 

The world line is a line connecting two space-time coordinates in the Minkowski space-time 
diagram. We consider two space-time coordinates P (x1, y1, z1, ct1) and Q (x2, y2, z2, ct2). The 
world distance is defined by 
 

2
12

22
12

2
12

2
12

2
12 )()()()( ttczzyyxxs   



60 
 

 
This world distance is invariant under the Lorentz transformation; 
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where the space-time coordinates (x1', y1', z1', ct1') and (x2', y2', z2', ct2') are related to (x1, y1, z1, 
ct1) and (x2, y2, z2, ct2) through a Lorentz transformation, respectively. We use the (+++-) 
signature pseudometric form. 

When the light starts from the point P (x1, y1, z1, ct1) at time t1 and reaches the Q (x2, y2, z2, 
ct2) at time t2, we have 
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12  sttczzyyxx . 

 
In other words, the world distance between two space-time coordinates connecting by the light is 
zero.  
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Fig.47 Light cone (null cone) of the 2D space-time diagram for the element P. Time-like 
region (ds2<0) and null cone (ds2= 0). 

 

The world distance 2
12s  is time-like when 2

12s >0, space-like when 2
12s <0, and light-like when 

2
12s = 0. For an infinitresimal world distance, we have 

 
222222 dtcdzdydxds   

 
23. Proper time 

We consider the clock which stays at the same place in the S' frame. The space-time 
coordinates are expressed by (x1', y1', z1', ct1') and (x2', y2', z2', ct2') with x1' = x2', y1' = y2',, and z1' 
= z2', in the S' frame. The world distance between them is given by 
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This is invariant under the Lorentz transformation. The time (t2' - t1') is intrinsic to the clock itself 
and is called a proper time. 

 
 

Fig.48 Elements A and B lie on the world line (constant velocity v). 
c

v
tan . The 

proper time AB is defined by )''( 1212 ttc  . 
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Suppose that the coordinate of the event A is described by  
 

(x1, ct1) in the S frame and (x1'=0, ct1') in the S' frame, 
 
and the coordinate of the event B is described by 
 

(x2, ct2) in the S frame and (x2'=0, ct2') in the S' frame, 
 
Then we have 
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or 
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or 
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The time difference )( 12 tt   is called the coordinate time. We consider the special case when v = 

c.  
 

0)''(' 2
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2
12  ttcss . 

 
In other words, no time passes in the S' frame moving with the velocity of light (v = c). 
 
In general case 
 

22222222 dcdtcdzdydxds   [the (+++-)-signature pseudo-metric] 
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where 
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Then the total proper time can be calculated as 
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24. Triangle inequality 
 

 
 

Fig.49 The world lines P1P2, P2P3, P3P1 are all future-time like. 231213    for the 

proper times. The world lines P1P2' and P3P2' are light-like; 0'12   and 03'2  . 

The mirror is set up so that the world lines P1P2' and P3P2' are light-like. 
 
Suppose that there are three points P1, P2, and P3 which are all time-like. When t1<t2<t3, the 

proper times 12, 23, and 31 satisfies the inequality 
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In the above Fig. we put a mirror in the x axis. We choose a point P2' such that the light emitted 
from the point P1 is reflected by mirror and is reached the point P3. Since P1P2' and P2'P3 are the 
light world lines, we get 
 

0'' 2312   

 
which leads leading to  
 

0'' 231213    

 
The inequality indicates that the sum of the proper time along the straight line connecting 
between P1 and P3 is longer than that along any curve connecting between the points P1 and P3. 
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Fig.50 In Lorentz geometry, with P1P2, P2P3, P3P1 all future-time like, the inequality 

231213    holds for the proper times. The interpretation of this is the so-called 

clock paradox. 
____________________________________________________________________________ 
((Roger Penrose)) 

The space traveler's world line is the broken path P1P2P3, whereas the inhabitant of Earth 
have the world line P1P3. We see that, according to the inequality, the space travel's clock indeed 
registers a shorter total elapsed time than those on Earth. Some people worry that the 
acceleration of the rocket ship is not properly accounted for in this description, and indeed I have 
idealized things so that the astronaut appears to be subjected to an impulsive (i.e. infinite) 
acceleration at the event P3 (which ought to be fatal!). However, this issue is easily dealt with by 
simply smoothing over the corners of the triangle. The time difference is no greatly affected, as 
is obvious in the corresponding situation for the Euclidean smoothed-off triangle depicted in the 
above figure. It used to be frequently argued that it would be necessary to pass to Einstein's 
general relativity in order to handle acceleration, but this is completely wrong. The answer for 

the clock times is obtained using the formula ds  (with ds>0) in both theories. The astronaut is 

allowed to accelerate in special relativity, just in general relativity. The distinction simply lies in 
what actual metric is being used in order to evaluate the quantity ds; i.e., it depends on the actual 
gij. We are working in special relativity provided that this metric is the flat metric of Minkowski 
geometry. Physically, this means that the gravitational fields can be neglected. When we need to 
take the gravitational fields into account, we must introduce the curved metric of Einstein's 
general relativity. 
 
______________________________________________________________________________ 
25. Twin paradox 

Tom and Jim are two identical twins. Jim goes on a space trip, moving through a galaxy at 
great velocity v, to return home after a long journey. Tom stays at home. At a certain time Jim 
comes back. Because Jim has been moving, his clock has been running more slowly and 
therefore for his less time has elapsed since he left. He will find his brother (Tom) much more 
aged than himself. 
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Fig.51  
 
Jim gets on the rocket moving at the velocity v. In the above figure, the x, axis (with the same ct') 
is parallel to the AD line (x' axis). At the event A, Jim jumps from his rocket to the other rocket 
which moves back to the Earth at the velocity of -v. The x" axis (the same ct") is parallel to the 
line AE. The rocket moves along the AC line and returns back to the Earth.  
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Since 
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The above conclusion is also consistent with the results obtained from the triangle inequality for 
the proper time: 
 

FHOFOC    

 

 
Fig.52  
 
When the traveler returns home, he has aged by the total proper times for the traveler 
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while the twin that stayed home has aged by 
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   

______________________________________________________________________________ 
26. Pole and barn 
 

In this figure, there is the black rest frame. The light green area is the barn, being at rest (S 
frame). The two black arrows (G and H) pointing up correspond to the world lines of the front 
and back doors of the barn. The pole (green line) is moving with a constant velocity (v) in the 
positive x axis. It is at rest with respect to the red frame (S' frame). The two red arrows pointing 
diagonally upward on the right represent the world lines of the endpoints of the pole. 

In the S frame, the length is measured along horizontal equal time line, and we see that the 
pole fits exactly in the barn (B). Both endpoints are inside the barn. For the S' frame, the story is 
very different. At B, the front end of the pole reaches the black door, while the other endpoint of 
the pole has not yet entered the barn. The moving observer concludes correctly that the pole does 
not fit in the barn. The clue is thus that length measurements by definition involves the notion of 
simultaneity. Both observers spoke the truth, or at least, they spoke their own truth. 
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Fig.53 Barn and pole 
 
___________________________________________________________________________ 
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