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1 One dimensional bound state 

As a simple example of the calculation of discrete energy levels of a particle (with 
mass m) in quantum mechanics, we consider the one dimensional motion of a particle in 
the presence of a square-well potential barrier (width 2a and a depth V0) as shown below.  
 

V(x) = 0 for |x|>a, and -V0 for -a<x<a. 
 

If the energy of the particle E is negative, the particle is confined and in a bound state. 
Here we discuss the energy eigenvalues and the eigenfunctions for the bound states from 
the solution of the Schrödinger equation. 
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Fig.8 One dimensional square well potential of width 2a and depth V0. 
 
(a) The parity of the wave function 

When potential is an even function (symmetric with respect to x), the wave function 
should have even parity or odd parity. 
 
((Proof)) 
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since )ˆ()ˆ( xVxV  . Then we have a simultaneous eigenket: 
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(b) Wavefunctions 

In the Regions I, II, and III, the Schrödinger equation takes the form 
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Here we introduce parameters ( and ) for convenience, 
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where ka =  and ka = . The energy  is given by 
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The stationary solution of the three regions are given by 
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(i) The wave function with even parity 
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The wavefunctions can be described by 
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At x = a, )(x  and 
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are continuous. Then we have 
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The condition detM=0 leads to  
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The constants A, B, and C are given by 
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The condition of the normalization leads to the value of B. 
 
(ii) The wave function with odd parity 
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The wavefunctions are given by 
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The condition detM=0 leads to  
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or 
 

)cot(kakaa   for the odd parity, 
 
or 
 

 cot . 
 
We solve this eigenvalue problem using the Mathematica. The result is as follows. 
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Fig.9 Graphical solution. One solution with even parity for 0<</2. One solution with 

even parity and one solution with odd parity for /2<<. Two solutions with 
even parity and one solution with odd parity for <<3/2. Two solutions with 
even parity and two solutions with odd parity for 3/2<<2.  tan  for the 
even parity (red lines).  cot  for the odd parity (blue lines). The circles are 

denoted by 222   . The parameter  is changed as  = 1, 2, 3, 4, and 5.  = 
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The normalized wavefunction for the even parity and odd parity are given by 
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for the regions I, II, and III, where e is the wavefunction with the even parity and o is 
the wavefunction with the odd parity. 
_______________________________________________________________________ 
 = 1 
 
11 = 0.739085  11 = 0.673612   11 = 0.453753  even 
 
_______________________________________________________________________ 
 = 2 
 
21= 1.02987   21 = 1.71446  21 = 0.734844  even 

22 = 1.89549  22 = 0.638045 22 = 0.101775  odd 
 
_______________________________________________________________________ 
 = 3 
 
31 = 1.17012  31 = 2.76239  31 = 0.847869  even 
32 = 2.27886  32 = 1.9511  32 = 0.422976  odd 
 
_______________________________________________________________________ 
 = 4 
 
41 = 1.25235  41 = 3.7989  41 = 0.901976  even 
42 = 2.47458 42 = 3.14269  42 = 0.617279  odd 
43 = 3.5953 43 = 1.75322  43 = 0.192111  even 
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_______________________________________________________________________ 
 = 5 
 
51 = 1.30644  51 = 4.8263,  51 = 0.931729  even 
52 =  2.59574 52 = 4.27342,  52 = 0.730486  odd 
53 = 3.83747 53 =  3.20528, 53 = 0.410954  even 
54 = = 4.9063 54 =.963467,  54 = 0.0371307 odd 
_______________________________________________________________________ 
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Fig.10 Square well potential V(x) of width 2a and depth V0.  = 1 and the 

corresponding wavefunction (x) which is normalized. There is one 
bound state (even parity) (- 11 = -0.45735), where  = |E|/V0.  
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Fig.11  = 2. There are two bound states. (i) The bound state (denoted by red) 
with even parity (- 21 = -0.734844). (ii) The bound state (denoted by blue) 
with odd parity (-22 = -0.101775). 

_____________________________________________________________________ 
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Fig.12  = 3. There are two bound states. (i) The bound state (denoted by red) 

with even parity (-31 = -0.847869). (ii) The bound state (denoted by blue) 
with odd parity (-32 = -0.422976). 

________________________________________________________________________ 
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Fig.13  = 4. There are three bound states. (i) The bound state (denoted by red) 

with even parity (-41 = -0.901976). (ii) The bound state (denoted by blue) 
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with odd parity (-42 = -0.617279). (iii) The bound state (denoted by red) 
with even parity (-43 = -0.192111). 

_______________________________________________________________________ 
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Fig.14  = 5. There are four bound states. (i) The bound state (denoted by red) 

with even parity (-51 = -0.931729). (ii) The bound state (denoted by blue) 
with odd parity (-52 = -0.730486). (iii) The bound state (denoted by red) 
with even parity (-53 = -0.410954). (iv) The bound state (denoted by blue) 
with odd parity (-54 = -0.0371307). 
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II. Bound states 
Bound state-II 
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We suppose that the potential energy is given by 
 

xaxV )(   (a>0) 

 
The Schrödinger equation is given by 
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where E is the energy of a particle with a mass m. 
 
Since the potential is a even function of x. the wave function should be either an even 
function or a odd function of x. 
 
The boundary condition for the wave function with the odd parity; 
 

0)( x  at x = 0. 
 
The boundary condition for the wave function with even parity, 
 

0
dx

d
 at x = 0. 

 
n = 0:  even parity 
n = 1  odd parity 
n = 2  even parity 
n = 3  odd parity 
n = 4  even parity. 
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We use the dimensionless parameters; 
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Then we get a differential equation 
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Since the wave function either an even function or odd function, we consider the case of 
z>0. 
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________________________________________________________________________ 
((Mathematica)) 
 

Clear"Global`";

g1  Dyx, x, 2  2 x yx  0;

eq1  DSolveg1, yx, x
yx  AiryAi213 x C1  AiryBi213 x C2

y1x_  yx . eq11 . C2  0, C1  1
AiryAi213 x  

 
______________________________________________________________________ 
The solution of this differential equation is obtained as 
 

)2()( 3/1 ycAy i  

 
where Ai is an Airy function and c is a constant to be determined from the normalization. 
Note that the second solution Bi is not a solution in this case since the function diverges 
when x →∞ 
 
(a) The case of even function (the even parity) 
 

The boundary condition: 
dz
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Even parity
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______________________________________________________________________ 
From this we get an energy eigenvalue for the wave functions with the even parity. The 
points with Green are located at x = - 0, -2, -4, -6,..... 
 
 0 = 0.808617 
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 6 = 4.89182 
 8 = 5.8513 
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0= 0.808617 (n = 0);  even parity 
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The wave function is normalized. 
___________________________________________________________________ 
(ii) 

2 = 2.5781 (n = 2)   even parity 
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_____________________________________________________________________ 
(b) The case of odd function: 
 

The boundary condition: )(z  at z = 0.  
 
which means that 
 

0)( y   at y = -. 
 
From this we get an energy eigenvalue for the wave functions with the odd parity. The 
points with Green are located at x = - 1, -3, - 5, - 7,..... 
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Odd parity
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 1 = 1.85576 
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 3 = 3.24461 
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 13 = 7.96889 
 
(i) 

1 = 1.85576  (n = 1)  odd parity 
 



 

18 
 

-4 -2 2 4
z

-0.6

-0.4

-0.2

0.2

0.4

0.6

y1z

 
 
_________________________________________________________________ 
(ii) 
 

3 = 3.24461  (n = 3)  even parity 
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In summary we have 
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The plot of wave functions (n = 0, 1, 2, 3). The blue lines show the energy levels. 
 


