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1 One dimensional bound state 

As a simple example of the calculation of discrete energy levels of a particle (with 
mass m) in quantum mechanics, we consider the one dimensional motion of a particle in 
the presence of a square-well potential barrier (width 2a and a depth V0) as shown below.  
 

V(x) = 0 for |x|>a, and -V0 for -a<x<a. 
 

If the energy of the particle E is negative, the particle is confined and in a bound state. 
Here we discuss the energy eigenvalues and the eigenfunctions for the bound states from 
the solution of the Schrödinger equation. 
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Fig.8 One dimensional square well potential of width 2a and depth V0. 
 
(a) The parity of the wave function 

When potential is an even function (symmetric with respect to x), the wave function 
should have even parity or odd parity. 
 
((Proof)) 
 

0]ˆ,ˆ[ H . 
 
̂  is the parity operator.  
 

1ˆ 2    1ˆˆˆ    . 
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Ĥ  is the Hamiltonian. 
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since )ˆ()ˆ( xVxV  . Then we have a simultaneous eigenket: 
 

 EH ˆ , and  ˆ . 

 
Since 1ˆ 2  ,  
 

  22 ˆˆ . 

 
Thus we have 1 . 
 
or 
 

 ˆ , 

 
 xx ˆ . 

 
Since 
 

xx ̂ , or xxx   ˆˆ  

 
we have 
 

 xx  , 
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or 
 

)()( xx   . 
 
(b) Wavefunctions 

In the Regions I, II, and III, the Schrödinger equation takes the form 
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 xx
dx

d   outside the well. 
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Here we define 
 

E
m
2

2 2


 ,  )(

2
02

2 EV
m

k 


. 

 
Here we introduce parameters ( and ) for convenience, 
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or 
 

222   , 
 
where ka =  and ka = . The energy  is given by 
 

2

2

2

2

1




  . 

 
The stationary solution of the three regions are given by 
 

x
I Aex  )( , 

 
ikxikx

II eBeBx  21)( , 
 

x
III Cex  )( . 

 
(i) The wave function with even parity 
 

CA  , 

221

B
BB  . 

 
The wavefunctions can be described by 
 

x
I Aex  )( , 

 
)cos()( kxBxII  , 

 
x

III Aex  )( . 
 
The derivatives are obtained by 
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
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At x = a, )(x  and 
dx

xd )(
are continuous. Then we have 

 
0)cos(  kaBAe a , 
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The condition detM=0 leads to  
 

)cos()sin( kaeekak aa     , 
 
or 
 

k
ka


)tan(  for the even parity, 

 
or 
 

)tan(kakaa   for the even parity. 
 
or 
 

 tan . 
 
The constants A, B, and C are given by 
 

)cos(kaBeCA a . 
 
The condition of the normalization leads to the value of B. 
 
(ii) The wave function with odd parity 
 

CA  , 
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The wavefunctions are given by 
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The condition detM=0 leads to  
 

)sin()cos( kaeekak aa     , 
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or 
 

)cot(kakaa   for the odd parity, 
 
or 
 

 cot . 
 
We solve this eigenvalue problem using the Mathematica. The result is as follows. 
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Fig.9 Graphical solution. One solution with even parity for 0<</2. One solution with 

even parity and one solution with odd parity for /2<<. Two solutions with 
even parity and one solution with odd parity for <<3/2. Two solutions with 
even parity and two solutions with odd parity for 3/2<<2.  tan  for the 
even parity (red lines).  cot  for the odd parity (blue lines). The circles are 

denoted by 222   . The parameter  is changed as  = 1, 2, 3, 4, and 5.  = 
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The normalized wavefunction for the even parity and odd parity are given by 
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eI 
x  Cos

1  Cos2


 Sin2 

2 

; eII 
Cosx 

1  Cos2


 Sin2 

2 

;

eIII 
x  Cos

1  Cos2


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2 
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Sin2
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;

oIII 
x  Sin

1 
Sin2




Sin2 
2 

;

 
 
for the regions I, II, and III, where e is the wavefunction with the even parity and o is 
the wavefunction with the odd parity. 
_______________________________________________________________________ 
 = 1 
 
11 = 0.739085  11 = 0.673612   11 = 0.453753  even 
 
_______________________________________________________________________ 
 = 2 
 
21= 1.02987   21 = 1.71446  21 = 0.734844  even 

22 = 1.89549  22 = 0.638045 22 = 0.101775  odd 
 
_______________________________________________________________________ 
 = 3 
 
31 = 1.17012  31 = 2.76239  31 = 0.847869  even 
32 = 2.27886  32 = 1.9511  32 = 0.422976  odd 
 
_______________________________________________________________________ 
 = 4 
 
41 = 1.25235  41 = 3.7989  41 = 0.901976  even 
42 = 2.47458 42 = 3.14269  42 = 0.617279  odd 
43 = 3.5953 43 = 1.75322  43 = 0.192111  even 
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_______________________________________________________________________ 
 = 5 
 
51 = 1.30644  51 = 4.8263,  51 = 0.931729  even 
52 =  2.59574 52 = 4.27342,  52 = 0.730486  odd 
53 = 3.83747 53 =  3.20528, 53 = 0.410954  even 
54 = = 4.9063 54 =.963467,  54 = 0.0371307 odd 
_______________________________________________________________________ 
 

VxV0, yx
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-e11

-1 1
b=1

I II III

 
 
Fig.10 Square well potential V(x) of width 2a and depth V0.  = 1 and the 

corresponding wavefunction (x) which is normalized. There is one 
bound state (even parity) (- 11 = -0.45735), where  = |E|/V0.  

_________________________________________________________________ 
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Fig.11  = 2. There are two bound states. (i) The bound state (denoted by red) 
with even parity (- 21 = -0.734844). (ii) The bound state (denoted by blue) 
with odd parity (-22 = -0.101775). 

_____________________________________________________________________ 
 

VxV0, yx
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b=3
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Fig.12  = 3. There are two bound states. (i) The bound state (denoted by red) 

with even parity (-31 = -0.847869). (ii) The bound state (denoted by blue) 
with odd parity (-32 = -0.422976). 

________________________________________________________________________ 
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Fig.13  = 4. There are three bound states. (i) The bound state (denoted by red) 

with even parity (-41 = -0.901976). (ii) The bound state (denoted by blue) 
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with odd parity (-42 = -0.617279). (iii) The bound state (denoted by red) 
with even parity (-43 = -0.192111). 

_______________________________________________________________________ 
 

VxV0, yx

xa

-1
-e51

-e52

-e53

-e54
-1 1

b=5

I II III

 
 
Fig.14  = 5. There are four bound states. (i) The bound state (denoted by red) 

with even parity (-51 = -0.931729). (ii) The bound state (denoted by blue) 
with odd parity (-52 = -0.730486). (iii) The bound state (denoted by red) 
with even parity (-53 = -0.410954). (iv) The bound state (denoted by blue) 
with odd parity (-54 = -0.0371307). 
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II. Bound states 
Bound state-II 
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O
x
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We suppose that the potential energy is given by 
 

xaxV )(   (a>0) 

 
The Schrödinger equation is given by 
 

0)(
2

22

2

 
xaE

m

dx

d


 

 
where E is the energy of a particle with a mass m. 
 
Since the potential is a even function of x. the wave function should be either an even 
function or a odd function of x. 
 
The boundary condition for the wave function with the odd parity; 
 

0)( x  at x = 0. 
 
The boundary condition for the wave function with even parity, 
 

0
dx

d
 at x = 0. 

 
n = 0:  even parity 
n = 1  odd parity 
n = 2  even parity 
n = 3  odd parity 
n = 4  even parity. 
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n=0
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We use the dimensionless parameters; 
 
 

3/122 )/( ma

E


 ,. 

 

3/12 )/( ma

x
z


 . 

 
We note that 
 

dz
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madz
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d 
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dz
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d 
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Then we get a differential equation 
 

0])/()/[()/(
2 3/123/1223/22

22

2

 
mazamama

m

dz

d



 

 
or 
 

0)(2
2

2

 
z

dz

d
 

 
Since the wave function either an even function or odd function, we consider the case of 
z>0. 
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0)(2
2

2

 
z

dz

d
 

 
Here we put  zy .  
 

0)(2
)(

2

2

 yy
dy

yd 
 

 
 
________________________________________________________________________ 
((Mathematica)) 
 

Clear"Global`";

g1  Dyx, x, 2  2 x yx  0;

eq1  DSolveg1, yx, x
yx  AiryAi213 x C1  AiryBi213 x C2

y1x_  yx . eq11 . C2  0, C1  1
AiryAi213 x  

 
______________________________________________________________________ 
The solution of this differential equation is obtained as 
 

)2()( 3/1 ycAy i  

 
where Ai is an Airy function and c is a constant to be determined from the normalization. 
Note that the second solution Bi is not a solution in this case since the function diverges 
when x →∞ 
 
(a) The case of even function (the even parity) 
 

The boundary condition: 
dz

zd )(
 at z = 0.  

 
which means that 
 

0)2('2
)()( 3/13/1  yA

dy

yd

dz

zd
i


  at y = -. 
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Even parity

-e0

-e2

-e4

-e6

-e8

-e10

-e12

-e14

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5
y

-1.0

-0.5

0.5

1.0

213Ai'213 y

 
______________________________________________________________________ 
From this we get an energy eigenvalue for the wave functions with the even parity. The 
points with Green are located at x = - 0, -2, -4, -6,..... 
 
 0 = 0.808617 
 

)(2(468.1)( 0
3/1

0   zAz i  

 
 2 = 2.5781 
 

)(2(0510.1)( 2
3/1

2   zAz i  

 
 4 = 3.82572 
 

)(2(0510.1)( 4
3/1

4   zAz i  

 
 6 = 4.89182 
 8 = 5.8513 
 10 = 6.73732 
 12 = 7.56829 
 14 = 8.35581 
 
 
 
 
(i) 
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0= 0.808617 (n = 0);  even parity 
 

-4 -2 2 4
z

0.2

0.4

0.6

0.8
y0z

 
The wave function is normalized. 
___________________________________________________________________ 
(ii) 

2 = 2.5781 (n = 2)   even parity 
 

-4 -2 2 4
z

-0.4

-0.2

0.2

0.4

y2z

 
 
_____________________________________________________________________ 
(b) The case of odd function: 
 

The boundary condition: )(z  at z = 0.  
 
which means that 
 

0)( y   at y = -. 
 
From this we get an energy eigenvalue for the wave functions with the odd parity. The 
points with Green are located at x = - 1, -3, - 5, - 7,..... 
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Odd parity

-e1
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-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5
y

-0.4

-0.2

0.2

0.4

Ai213 y

 
 
 1 = 1.85576 
 

)(2(1319.1)( 1
3/1

1   zAz i  

 
 3 = 3.24461 
 

)(2(988282.0)( 3
3/1

3   zAz i  

 
 5 = 4.38167 
 7 = 5.38661 
 9 = 6.30526 
 11 = 7.16128 
 13 = 7.96889 
 
(i) 

1 = 1.85576  (n = 1)  odd parity 
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-4 -2 2 4
z
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y1z

 
 
_________________________________________________________________ 
(ii) 
 

3 = 3.24461  (n = 3)  even parity 
 

-4 -2 2 4
z

-0.4

-0.2

0.2

0.4

y3z

 
 
In summary we have 
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n=0

n=1

n=2

n=3

-4 -2 2 4
z

1

2

3

ynz

 
 
The plot of wave functions (n = 0, 1, 2, 3). The blue lines show the energy levels. 
 


