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1 One dimensional bound state

As a simple example of the calculation of discrete energy levels of a particle (with
mass m) in quantum mechanics, we consider the one dimensional motion of a particle in
the presence of a square-well potential barrier (width 2a and a depth Vj) as shown below.

V(x) = 0 for |x|>a, and -V, for -a<x<a.

If the energy of the particle E is negative, the particle is confined and in a bound state.
Here we discuss the energy eigenvalues and the eigenfunctions for the bound states from
the solution of the Schrodinger equation.
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Fig.8 One dimensional square well potential of width 2a and depth V.
(a) The parity of the wave function

When potential is an even function (symmetric with respect to X), the wave function
should have even parity or odd parity.

((Proof))
[#,H]=0.

7 is the parity operator.
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H is the Hamiltonian.
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since V (—=X) =V (X). Then we have a simultaneous eigenket:
H |1//> = E|w> , and 7%|w> = /1|1//> .
Since #° =1,

#ly)=Adly)=Zlw) =lv).

Thus we have A =+1.
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we have



or
w(=X) =%y (X).

(b) Wavefunctions
In the Regions I, 11, and 111, the Schrodinger equation takes the form
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%z//(x) — k' (x)=0 outside the well.
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%z//(x) +Kw(x)=0 inside the well.

Here we define
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Here we introduce parameters (£ and o) for convenience,
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We note that
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where ka = £ and ka = 7. The energy ¢is given by
2 2
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The stationary solution of the three regions are given by
9, (X) = Ae”,
@y (X) = B1eikx + Bze_ikx ,
P (X)=Ce™.
(i) The wave function with even parity

A=C,
B

Bl 282 EE.

The wavefunctions can be described by
@, (X) = Ae™,
@, (X) = Bcos(kx),
@ (X) = Ae™™.

The derivatives are obtained by

d(DI (X) — AKeKX
dx ’
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Atx=a, ¢(X) and % are continuous. Then we have
X

Ae ™ —Bcos(ka)=0,

— Axe ™ + Bksin(ka) =0,
or

MX=0,

where

ra 3 A
M = e cos(ka) ’ X = .
—xe ™ ksin(ka) B
The condition detM=0 leads to

k sin(ka)e™ = ke ™™ cos(ka)

or
tan(ka) = E for the even parity,
or
xa = katan(ka) for the even parity.
or
n=<&tané.

The constants A, B, and C are given by
A=C =Be"cos(ka).
The condition of the normalization leads to the value of B.

(ii) The wave function with odd parity

A=-C,



The wavefunctions are given by
¢ (X) =—Ae”,
@, (X) = Bsin(kx),
@ (X) = Ae™™.

The derivatives are obtained as

d¢I (X) — _A
dx

KX

ke,

m = Bk cos(kx),
dx

dey, () —_A
dx

ke ™.
Atx=a, ¢(X) and % are continuous. Then we have
X

— Ae ™ +Bsin(ka) =0,

— Axe™ —Bkcos(ka) =0,
or

MX=0,

where

—e™ sin(ka) A

ka
-k —kcos(—) |’
cos(z)

The condition detM=0 leads to

kcos(ka)e™ = —xe*sin(ka),



or

xa = —kacot(ka) for the odd parity,
or
n=-&coté .

We solve this eigenvalue problem using the Mathematica. The result is as follows.
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Fig.9 Graphical solution. One solution with even parity for 0<f</2. One solution with
even parity and one solution with odd parity for 772<f<z. Two solutions with
even parity and one solution with odd parity for #7<f<3 /2. Two solutions with
even parity and two solutions with odd parity for 37/2<f<2z. n=_~Etané for the

even parity (red lines). 7 =—-&coté for the odd parity (blue lines). The circles are
denoted by &? +7° = #°. The parameter Sis changed as f=1,2, 3,4, and 5. &=
El_»_, &

= .£=kaand 7= xa.
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The normalized wavefunction for the even parity and odd parity are given by
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for the regions I, II, and III, where y. is the wavefunction with the even parity and y, is
the wavefunction with the odd parity.

Sin[2 €]
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p=1

&1 =0.739085 mi1=0.673612 &1 =0.453753 even
=2

&1=1.02987 n2 = 1.71446 &1 =0.734844 even
&n =1.89549 1722 =0.638045 &2 =0.101775 odd
p=3

&1 =1.17012 1131 =2.76239 &1 = 0.847869 even
gg32 =2.27886 2= 1.9511 &3 = 0.422976 odd
B=14

gg41 =1.25235 a1 = 3.7989 &y = 0.901976 cven
n =2.47458 iy = 3.14269 & =0.617279 odd
&3 =3.5953 a3 =1.75322 &3 =0.192111 even
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=5

&1 = 1.30644

1751 = 4.8263, &1=0.931729 even
&so = 2.59574 ns2 =4.27342, &2 =0.730486 odd
553 = 3.83747 153 = 320528, &53 = 0.410954 cven
&sa==4.9063 1754 =.963467, &4 =0.0371307 odd
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Fig.10 Square well potential V(X) of width 2a and depth V. f = 1 and the

corresponding wavefunction y(X) which is normalized. There is one
bound state (even parity) (- &1 = -0.45735), where &= |E|/V,.
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Fig.11 L = 2. There are two bound states. (i) The bound state (denoted by red)
with even parity (- & =-0.734844). (ii) The bound state (denoted by blue)
with odd parity (-&, =-0.101775).
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Fig.12 L = 3. There are two bound states. (i) The bound state (denoted by red)

with even parity (-&; = -0.847869). (i1) The bound state (denoted by blue)
with odd parity (-&, = -0.422976).

VX)/Vy, Y(X)
A
ﬂ::4
I W4 A\ o X/
—c4?
—e4]
=1
Fig.13 S = 4. There are three bound states. (i) The bound state (denoted by red)

with even parity (-&; =-0.901976). (ii) The bound state (denoted by blue)
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with odd parity (-& = -0.617279). (iii) The bound state (denoted by red)
with even parity (-&3 =-0.192111).
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Fig.14 f = 5. There are four bound states. (i) The bound state (denoted by red)
with even parity (-&; = -0.931729). (ii) The bound state (denoted by blue)
with odd parity (-&;, = -0.730486). (ii1) The bound state (denoted by red)
with even parity (-&s3 = -0.410954). (iv) The bound state (denoted by blue)
with odd parity (-&54 = -0.0371307).
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II. Bound states
Bound state-11
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V(X)

» X

We suppose that the potential energy is given by
V (x) = alX| (@>0)
The Schrodinger equation is given by

d’y  2m
—+—(E-aXx)y =0
where E is the energy of a particle with a mass m.

Since the potential is a even function of X. the wave function should be either an even
function or a odd function of X.

The boundary condition for the wave function with the odd parity;
w(x)=0 atx=0.

The boundary condition for the wave function with even parity,
—=0 atx=0.

n=0 even parity
n=1 odd parity
n=2 even parity
n=3 odd parity
n=4 even parity.
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ym(z)

}'_/3\
\/ 3 \/ n=2
n=1
2,
/"
/ 1t =0
4 2 2 4 ’
We use the dimensionless parameters;
oo E
(hZaZ/m)l/S >
X
L= s
(7” /ma)
We note that
dy _dzdy 1 dy
dx dx dz (A°/ma)'”’ dz
d’y _dz d dy _ 1 d’w

dx?  dxdz dx  (#*/ma)’”’ dz?
Then we get a differential equation

2
dl//+2m

i F(h2 /ma)’[(n*a’ /m)" ¢ —alz|(h* /ma) Ty =0

or

d2
dz‘/z’ +2(e—[2)y =0

Since the wave function either an even function or odd function, we consider the case of
>0.
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2

dy
dz*

+2(e-2)w =0

Here weput y=7-¢.

d’w(y)
dy*

~2yp(y)=0

((Mathematica))

Clear["Global "] ;
91 =D[y[x], {X, 2}]1-2Xx y[x] =0;

eql = DSolve[gl, y[x], X]

[{y[x] - AiryAi [2Y° x] C[1] + AiryBi [21° x] Cc[2]}]}

yl[x_ ] =y[X] /. eql[[1]] /- {C[2] -0, C[1] » 1}
AiryAi [21/3 x]

The solution of this differential equation is obtained as

w(y)=cA(2'"’y)

where A; is an Airy function and C is a constant to be determined from the normalization.
Note that the second solution B; is not a solution in this case since the function diverges
when X —o0

(a) The case of even function (the even parity)

The boundary condition: d ZEZ) atz=0.
which means that
dl/j(Z):dW(y):21/3A‘1'(21/3y):0 atyZ-é‘.

dz dy
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From this we get an energy eigenvalue for the wave functions with the even parity. The
points with Green are located at X = - €, -&, - &, - &,.....

£0=0.808617
w,(2)=1.468A(2"°(z-¢,)
£,=2.5781
w,(2) =1.0510A(2"°(z - ¢&,)
£4=3.82572
w,(2)=1.0510A(2"°(z~¢,)
£6=4.89182
£3=5.8513
£10=16.73732

&12=17.56829
E14 = 8.35581

(1)
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&=0.808617 (n=0); even parity

2 4
The wave function is normalized.
(i1)
&=25781 (n=2) even parity
Y 2Az)
0.4
0.2]
! z
-4 -2 2 4
o2
—04|

(b) The case of odd function:

The boundary condition: y(z) atz=0.
which means that
w(y)=0 aty=-e.

From this we get an energy eigenvalue for the wave functions with the odd parity. The
points with Green are located at X =- ¢y, -&,- €5, - €7,.....
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Odd parity

£1=1.85576
w,(2)=1.1319A(2"°(z- &)
&3 =13.24461
w,(2) =0.988282A (2" (z - &,)
£5=4.38167
£7=15.38661
£9=6.30526
£11=7.16128
13— 7.96889

(@)
& = 1.85576 (n=1) odd parity
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(i)
&g =3.24461 (n=3) even parity

¥3(2)

0.4

—02}

—04]

In summary we have
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Yn(z)

The plot of wave functions (n =0, 1, 2, 3). The blue lines show the energy levels.
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