
Attractive delta-function type potential 
Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 
(Date: November 26, 2013) 

 
We discuss the 1D barrier problem in the presence of an attractive Dirac-delta function-type 

potential. This provides a simple model system for the bound state and transmission and 
reflection. When the energy of the particle is negative, we have a bound state. When the energy 
of the ;particle is positive, there occurs the transmission and reflection for the incident particle. 
For the bound state (the energy of the particle is negative), the wave function should be either an 
even function or an odd function, since the delta function potential is an even function. This 
property is discussed in terms of the parity operator. 
 
1. Bound state (E<0) in a delta function potential 
 

 
 
Fig. Bound state of the system (having the negative energy E<0) in the presence of an 

attractive delta-function type potential. 
 
We now consider a attractive potential of the form of Dirac delta function, 
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We find a bound state for the particle energy E (<0). The Schrödinger equation of this system is 
given by 
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Note that the unit of V0 is [erg cm], but not [erg]. Integrating this equation between - and +. 
Letting  approach 0, we show that the derivative of the eigenfucntion )(x  presents a 

discontinuity at x = 0.  
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We use the parameter  as 
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The unit of  is [cm-1]. Then the boundary condition is given by 
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We assume that the energy E is negatrive (bound state). The Schrödinger equation is given by 
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For x<0, the solution for )(x  is given by 
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For x>0, 
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Since the potential energy V(x) is an even function, the wave function should be either even or 
odd function. When the wave function is an odd function, the wave function should take a zero at 
the origin.  
 
(i) The case when the wave function is an even function of x 
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The unit of a is [cm-2]. 
From the normalization condition, we have 
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(ii) The case when the wave function is an odd function of x 
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So there is no trivial solution. 
 
((Note)) Probability current density 
The probability current density is defined by 
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Suppose that the wave function is a real function of x. Then xj  should be equal to zero as shown 

above for the case of bound state case). In fact, the wave function is given by a real function.  
 
2. Green's function: modified Helmholtz equation 

We solve the problem (the bound state) using the Green function (see the APPENDIX). We 
start with the Schrodinger equation for the bound state 
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Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given 
by 
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At x = 0, we get 
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Then we have 
 

  ,  
m

E
2

22
  

 
The normalized wave function is 
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3. Transmission of a "delta function" potential barrie for E>0 
 



 
 
Fig. The transmission and reflection of free particle (with the positive energy E) in the 

presence of an attractive delta-function type potential. 
 
For x<0, we assume that 
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The probability current density is 
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For x>0, we assume that 
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The probability current density is 
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From the continuity of the wave function at x = 0; 
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The transmissivity is 
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The reflectivity is 
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The wave functions are obtained as 
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((Mathematica)) 
We make a plot of the wave function in the regions I and II, where k and a are chosen 
appropriately. 
 



 
 

Fig. k = 5. a = 5. 32 a . Transmission and reflection of the free particle under the influence 

of a Diract delta function type attractive potential (denoted by black). ]Re[ 1
ikx
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4. Bound state under attractive double-delta potential 
We discuss the eigenvalue (the bound state) problem for the Schrodinger equation for the 
attractive double-delta potential, 

x

Reyx



 
 

)(
2

)()()]()([)(
2

22

02

22

x
m

xExaxaxVx
dx

d

m
 

  

 
where the potential energy is an even function of x, 
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for the bound state. Then we get 
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Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given 
by 
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At x = a 
 

])()([)( 2 aeaaa 

   

 
At x = -a 
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We note that the wave function )(x  is either an even function or an odd function of x. 

 
(i) Even parity for the wave function 
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Fig. Even parity solution. Plot of 
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a 2 . aq  . The two curves intersect at a non-zero finite value of . When q = 1, 

we have  = 2.21772. y = 1.10886. 
 
The wave function (even parity) is given by 
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When aq   = 1, we have ax 2  =2.21772. For a = 1 and = 1.10886, we make a plot of 

this function as a function of x. Clearly this function is an even function of x. 
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(ii) Odd parity for the wave function 
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with a 2  and aq   (parameter). 

 

 
 

Fig. Odd parity solution. Plot of 
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a 2 . aq  .When q>0.5, there are two solutions including  = 0. When q<0.5, 

there is only one solution  = 0. When q = 1, we have = 1.59362. y = 0.796812. 
 
 
The wave function (odd parity) is given by 
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When aq   = 1, we have a 2  =1.59362. For a = 1 and = 0.796812, we make a plot of 

this function as a function of x. Clearly this function is an odd function of x. 
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APPENDIX  Green’s function: modified Helholtz equation 

We construct the 1D Green's function for the modified Helmholtz equation 
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We consider the case at  = 0 
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(i) For x > 0 
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where C1 is in the lower-half plane (counter-clock wise). There is a simple pole of z = i k inside 
the contour C1. We use the Residue theorem.  
 

 
 
(ii) For x < 0 
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where C2 is in the lower-half plane (clock-wise). There is a simple pole of z = -i k inside the 
contour C2. We use the residue theorem. 
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In summary we have the Green's function 
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