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We discuss the 1D barrier problem in the presence of an attractive Dirac-delta function-type
potential. This provides a simple model system for the bound state and transmission and
reflection. When the energy of the particle is negative, we have a bound state. When the energy
of the ;particle is positive, there occurs the transmission and reflection for the incident particle.
For the bound state (the energy of the particle is negative), the wave function should be either an
even function or an odd function, since the delta function potential is an even function. This
property is discussed in terms of the parity operator.

1. Bound state (E<0) in a delta function potential
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Fig. Bound state of the system (having the negative energy E<0) in the presence of an
attractive delta-function type potential.

We now consider a attractive potential of the form of Dirac delta function,

V(X) = -V,8(X)

We find a bound state for the particle energy E (<0). The Schrédinger equation of this system is
given by



_j_d_Z w(X)=Voo (X (X)=Ew(X).
m dx

Note that the unit of V is [erg cm], but not [erg]. Integrating this equation between -£ and +e&.
Letting & approach 0, we show that the derivative of the eigenfucntion w/(X) presents a

discontinuity at X = 0.

—j—mg%yx(x)dx— j V,8(X)p (x)dx = E j w(X)dx
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d l/(;(X))H _ i_rzn Vo (0) = —2a(0) (boundary condition)
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We use the parameter « as
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The unit of ¢ is [cm™']. Then the boundary condition is given by
O wEe)=y(-¢)

Gy A0 ) ey
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We assume that the energy E is negatrive (bound state). The Schrodinger equation is given by
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GV 0=""5 y(X) = p'w(x)

where
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For x<0, the solution for y(x) is given by
w(X)= Ae”™

For x>0,
w(X)=Be™

Since the potential energy V(X) is an even function, the wave function should be either even or
odd function. When the wave function is an odd function, the wave function should take a zero at
the origin.

(1) The case when the wave function is an even function of X

/ 2mE
A=B, p=0=,— Pe

or
n mv,’
E=——0a’=——"2 (bound state).
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The unit of a is [em™].
From the normalization condition, we have

w(x)=Jae
(11) The case when the wave function is an odd function of x

A=-B=0.



So there is no trivial solution.

((Note)) Probability current density
The probability current density is defined by

1 NN e,
S = Rely (07— y(X)]

Suppose that the wave function is a real function of X. Then j, should be equal to zero as shown

above for the case of bound state case). In fact, the wave function is given by a real function.

2. Green's function: modified Helmholtz equation
We solve the problem (the bound state) using the Green function (see the APPENDIX). We
start with the Schrodinger equation for the bound state
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V0 VoS 0p (0 = Ey(x) = =Ly (x)
where
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(G~ P v =Ly () =-"3V 0y (x)=~f(x)
where

F(00 = 23V, 8000 (X) = 20800 ()

and
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Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given
by



(0 =[G(x.)f (&)de
_ jLe-ﬂ'x-ﬁ'zas(f)w@)df
2K

=Zy (0"
P
where
G(x,&)= %e’p X<l (Green’s function: modified Helmholtz equation).
P
Atx =0, we get
a
w(0)=—y(0)
Yo,

Then we have
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The normalized wave function is
w(x)=ae

3. Transmission of a ""delta function' potential barrie for E>0
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Fig. The transmission and reflection of free particle (with the positive energy E) in the
presence of an attractive delta-function type potential.

For x<0, we assume that

ikx

v, =a,e"” +be”

ikx

where K is defined by
21,2
E_ h°k >0)
2m

The probability current density is
/] 2 2
J| :Ek(|al| _|b1| )
For x>0, we assume that
Y =azeikx

The probability current density is



h
‘]u = Ek|a2|2

From the continuity of the wave function at X = 0;
a+h —a, (1)

From the condition

GO0 -, ey
X dx

we get
ika, —ik(a, —b,) =-2/a,

or
a, —b :(l—izTa)az, (2)
Then we have
aI:(l—i%)az, blziﬁa2
The transmissivity is
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Ek|al|2 B |a1|2 _1+a722_a2+k2
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The reflectivity is
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where
T+R=1.
The wave functions are obtained as

ikx

v, =a,e” +be

—ikx
O ik X ik
=[(1-1—)e —e a, R.
[(1-1 k) e la,
=[e™ +2705sin(kx)]a2

ikx
¥, =a,¢

where
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((Mathematica))
We make a plot of the wave function in the regions I and II, where k and a are chosen
appropriately.
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Fig. k=5.a=>5. |a | = 3. Transmission and reflection of the free particle under the influence

incident — Re[a eikx]
(red, x<0), and

of a Diract delta function type attractive potential (denoted by black). f,
reflected =Re[ble_lkx] (bluea X<0)a f - f
. = Re[a,e™] (red, x>0)

(green, x<0), f
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4. Bound state under attractive double-delta potential
We discuss the eigenvalue (the bound state) problem for the Schrodinger equation for the
attractive double-delta potential,



V(x)
A
Boynd state

—2h— d Sy (X) -V [S(x—a)+5(x+a)ly(x) = E,/,(x):_h P
m dx om

w(X)

where the potential energy is an even function of x,
V(x)=V, [d(x—a)+o(x+a)]

and the energy is given by

2

e__rp
2m

(<0)

for the bound state. Then we get

2

o P (X) =Ly (x)=-2a[6(x~a) + S(x+a)ly (x) =~ (x)

where



mV,

o= h2 .

Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given
by

w(x) = [G(x.&)F(&)dé
= j le*ﬂ'*f‘za[é(x —a)+o(x+a)w(H)ds
2p

= g[l//(a)e—pIX—a\ + l//(_a)e—p\ma\]
1%

where

LG(x,&) =-6(x-2)

o P G(x,§)=-d(x=2)
X
U
G(x, &)= %e_p Xl (Green’s function: modified Helmholtz equation).
P
Atx=a
_ a -2pa

y(@)= ;['//(a) +y(-aje "]

Atx=-a

w(-a)= %[w(a)e'“a +y(-a)]

We note that the wave function y(X) is either an even function or an odd function of X.
(1) Even parity for the wave function

Ve (_a) =Y, (a)



or

1=Z@e> +1)

or

P _1te2m
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For simplicity we put
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Fig. Even parity solution. Plot of y = 50 and y =1+e° where q is changed as a parameter.
q

&=2pa. q=aa. The two curves intersect at a non-zero finite value of & When q = 1,
we have £=2.21772.y = 1.10886.

The wave function (even parity) is given by



W (X) :ﬂ[ “pleal y goplialy
y.(a) p

When g=aa =1, we have x=2pa =2.21772. Fora= 1 and p = 1.10886, we make a plot of

this function as a function of X. Clearly this function is an even function of X.

YyX/p(a=1)

Fig. Plotof —7e™ _ aga function of x. @ =1.a=1and p=1.10886.
y.(a=1)

(11) Odd parity for the wave function
¥, (_a) =V, (a)
or

1= (—e +1)

or

-2 pa

+1

P,
a

The value of p is obtained from the intersection of two curves



with £ =2pa and q=aa (parameter).
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Fig. Odd parity solution. Plot of y =g and y=1-¢e"° where  is changed as a parameter.
q

E=2pa. g=aa .When ¢>0.5, there are two solutions including & = 0. When (<0.5,
there is only one solution £= 0. When q = 1, we have &= 1.59362.y = 0.796812.

The wave function (odd parity) is given by

¥, (X) _ Z[efplea\ _efpma\]

y.(a) p

When g=aa =1, we have £ =2pa =1.59362. Fora=1 and p = 0.796812, we make a plot of

this function as a function of X. Clearly this function is an odd function of x.
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Fig. Ploto
y(a=1)

as a function of X. « =1.a=1and p=1.10886.
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APPENDIX Green’s function: modified Helholtz equation
We construct the 1D Green's function for the modified Helmholtz equation

2
Ly =|——k*|w.
ve{as
Suppose that
Lxlr// =—f (X)

Using the Green’s function we get

v =[G(x.&) f(£)dé



Ly = [LG(x.& T (§)dé =—[5(x- &) (£)dé = (x)
Thus we need G(x,&) which satisfies

LG(X,6) =-0(x~¢&)

(d —ksz(x,@:—&(x—f)

dx?

y
G(x &)= e

We consider the case at £=0
d 2
(—— k2]G(x) =-5(X)

dx?
G(q) = 1 G(x)e "™ dx

N

1 igx
G(x) =ﬁj6(q)e“ dg

1 T igx
5(x)=Equdq
1 d? . 1 ..
- __k2 G |qxd - |qxd
el proeraa=—fev

or

1 2 2 igx 1 igx
—|l-q* -k ¥dg=—-— e ™dq.
m](q (e dg =~ [edg

Then we have



(O -KB@=-p o GO

eiqx
G(X)=— d
() jq SRR
(1) For x>0
|qx 1
G(X)=— dg=—e™
) -[q +k2 2k

where C; is in the lower-half plane (counter-clock wise). There is a simple pole of z =1 K inside
the contour C;. We use the Residue theorem.

(i)  Forx<o0

|qx

—e™

1
G(X)=— =
()2J +k2q2k

where C, is in the lower-half plane (clock-wise). There is a simple pole of z = -i k inside the
contour C,. We use the residue theorem.



In summary we have the Green's function

1
G(x)=——e ¥
)=

or

G(x8) = e



