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The confining circle is the 2D analog of the spherical box and is also the zero-height, 2D version 
of the cylindrical box considered  
 
1. Cylindrical co-ordinate system 

The position of a point in the space having Cartesian coordinates x, y, and z may be 
expressed in terms of cylindrical co-ordinates 
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The position vector r is written as 
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The unit vectors are written as 
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The above expression can be described using a matrix A as 
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where V is a vector and  is a scalar. 
 
2. Schrödinger equation in the Confining circle (the 2D plane) 

We consider the Schrödinger equation 
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where the wavefunction depends only on  and , 
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The potential energy is defined by 
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Using the cylindrical co-ordinate, the differential equation for  can be written as 
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The angular momentum zL̂ is defined by 
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We note that under the rotation around the z axis, 
 

 HH ˆ'ˆ'  , 
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Then we have 
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So the wavefunction is the simultaneous eigenket of both H and Lz (orbital angular momentum) 
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where m is an integer; m = 0, ±1, ±2,… The radial wavefunction satisfies the differential 
equation given by 
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where the boundary condition is given by 0)( bR . 
______________________________________________________________________________ 
((Note)) We put kx  . Then we get 
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The solution of this differential equation is )(xJm , and )(xNm . 

_____________________________________________________________________________ 
Then the solution of the differential equation is given by 
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where )(xJ m  is the Bessel function and )(xNm  is the Neumann function. Note that Nm(x) 

becomes infinite at x = 0. Thus we remove the Neumann function from the solution. Then we 
have 
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This function satisfies the boundary condition such that 
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Table values of bkZ mkmk   that yield 0)( bkJ mkm  
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Fig. Plot of the normalized energy 
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3. Bound states in the 2D square well 
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It is shown that a 1D square well potential has a bound state for any positive 2
0aV , and that a 

3D square well potential has a bound state only for 
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aV . What is the analogous situation 

for a 2D square well potential? What, if any, is the physical significance of these results? 
 
We start with the Schrodinger equation 
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The wavefunction is the simultaneous eigenket of both H and Lz. 
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where m is integer; m = 0, ±1, ±2,… The radial wavefunction satisfies the differential equation 
given by 
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The solution of this differential equation is obtained as 
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((Note)) We put kx  . Then we get 
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The solution of this differential equation is )(xIm , and )(xKm , which are the modified Bessel 

function of the first and second kind. BesselI[n,x]. BesselK[n,x]. 
_____________________________________________________________________________ 
 
The solution of this differential equation is obtained as the modified Bessel function 
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Note that only )(mK  becomes zero for large  . So our solution for a  is given by 
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Using the boundary condition at  = a, we determine the energy eigenvalues. We note that 

the wave function and its derivative should be continuous at  = a. 
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We solve the problem using the graphs. These graphs can be drawn in the (, ) plane by using 
the Mathematica (ContourPlot), where the radius r0 is changed as a parameter. 
 
4. 2D square well with m = 0 
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The bound state of the 2D square well can be found 
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for m = 0. This is in contrast with the case of the bound state for the 3D square well with m = 0. 
The bound state occurs when  
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As shown in the APPENDIX, the bound state of the 1D square well can occur for any positive 
value of V0; 
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5. 2D square well with m = 1 and 2 
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(b) m = 2 
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APPENDIX-I 
The bound state of 1D symmetric square well 

 
 
Fig. Graphical solution. One solution with even parity for 0<</2. One solution with even 

parity and one solution with odd parity for /2<<. Two solutions with even parity and 
one solution with odd parity for <<3/2. Two solutions with even parity and two 
solutions with odd parity for 3/2<<2.  tan  for the even parity (red lines). 

 cot  for the odd parity (blue lines). The circles are denoted by 222   . The 

parameter  is changed as  = 1, 2, 3, 4, and 5. 
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APPENDIX-II Vector analysis in the cylindrical co-ordinates 
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((Mathematica)) Cylindrical co-ordinates 
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Vector analysis
Angular momentum in the cylindrical coordinates
Here we use the angular momentum operatior in 
the unit of =1

Clear "Global`" ; r1 z2 2 ;

ux Cos , Sin , 0 ;

uy Sin , Cos , 0 ; uz 0, 0, 1 ;

r , 0, z ; ur
1

r1
, 0, z ;

Gra :

Grad , , , z , "Cylindrical" &;

Lap :

Laplacian , , , z ,

"Cylindrical" &;

Curla :

Curl , , , z , "Cylindrical" &;

Diva :

Div , , , z , "Cylindrical" &;

Vector analysis in the cylindrical coordinate
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eq1 Lap , , z Simplify

0,0,2 , , z
0,2,0 , , z

2

1,0,0 , , z 2,0,0 , , z

eq2 Gra , , z Simplify

1,0,0 , , z ,

0,1,0 , , z
, 0,0,1 , , z

B B , , z , B , , z ,

Bz , , z ;
eq3 Curla B Simplify

B 0,0,1 , , z
Bz 0,1,0 , , z

,

B 0,0,1 , , z Bz 1,0,0 , , z ,
1

B , , z B 0,1,0 , , z

B 1,0,0 , , z

eq4 Diva B Simplify

Bz 0,0,1 , , z

B , , z B 0,1,0 , , z

B 1,0,0 , , z

Angular momentum in  the cylindrical coordinate
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L : Cross r, Gra &;

Lx : ux.L & Simplify;

Ly : uy.L & Simplify;

Lz : uz.L & Simplify;

L , , z Simplify

z 0,1,0 , , z
,

0,0,1 , , z z 1,0,0 , , z ,

0,1,0 , , z

Lx , , z FullSimplify

Sin 0,0,1 , , z

z Cos 0,1,0 , , z

z Sin 1,0,0 , , z



 

18 
 

 

 

Ly , , z FullSimplify

Cos 0,0,1 , , z

z Sin 0,1,0 , , z

z Cos 1,0,0 , , z

Lx , , z Ly , , z

FullSimplify

1 2 0,0,1 , , z

z 0,1,0 , , z z 1,0,0 , , z

Lx , , z Ly , , z

FullSimplify
1 2 0,0,1 , , z

z 0,1,0 , , z z 1,0,0 , , z

Lz , , z Simplify

0,1,0 , , z

The commutation of the angular momentum in  the 
cylindrical coordinate

eq5

Lx Ly , , z Ly Lx , , z

Lz , , z Simplify
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0

L2 in the cylindrical coordinate

eq6

Lx Lx , , z

Ly Ly , , z

Lz Lz , , z FullSimplify

2 z 0,0,1 , , z
1

2
4 0,0,2 , , z

z2 2 0,2,0 , , z

z2 2 1,0,0 , , z

z 2 1,0,1 , , z

z 2,0,0 , , z


