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The confining circle is the 2D analog of the spherical box and is also the zero-height, 2D version
of the cylindrical box considered

1. Cylindrical co-ordinate system
The position of a point in the space having Cartesian coordinates X, Yy, and Z may be
expressed in terms of cylindrical co-ordinates
X=pcos¢g, Y=psing, ZI=1.

The position vector r is written as

r=pcosge, + psinge, +ze,
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dr=>e;h;dq, =e,dp+e,pdgp+e,dz
j=1

where
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The unit vectors are written as
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The above expression can be described using a matrix A as
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where V is a vector and /s a scalar.

2. Schrodinger equation in the Confining circle (the 2D plane)
We consider the Schrodinger equation
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where the wavefunction depends only on p and ¢,

v =y(p,9)
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The potential energy is defined by
V=0 for p<bh, V = for p>b,

Using the cylindrical co-ordinate, the differential equation for y can be written as

2 2

p P —
2u pop dp p’og’



The angular momentum I:Z is defined by
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I O¢

We note that under the rotation around the 7 axis,

H H

(W'[Hly")=(w[H]w),

where
v)=Rly)=-—3.6]y).

Then we have

A

[H,J,]1=0.
So the wavefunction is the simultaneous eigenket of both H and L, (orbital angular momentum)

v(p,0)=R(p)D(¢), (separation variable)
with
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where m is an integer; m = 0, +1, +2,... The radial wavefunction satisfies the differential
equation given by
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where the boundary condition is given by R(b)=0.

((Note)) We put x=kp. Then we get

d> 1d m?
— f—— +1-—)R(X) =0
(dszrxder xz) (x)

The solution of this differential equation is J,,(X), and N_(X).

Then the solution of the differential equation is given by
R(p)=C,J,(kp)+C,N_ (kp),
where J (X) is the Bessel function and N, (X) is the Neumann function. Note that Npy(X)

becomes infinite at X = 0. Thus we remove the Neumann function from the solution. Then we
have

R(p)=C,J, (ko).

This function satisfies the boundary condition such that

J.(k.p)=0,
where
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Table values of Z, =k b thatyield J (k b)=0

n’ )
Emk = Z—ﬂbzzmk
k m=0 m=1 m=2 m=3
1. 2.40483 3.83171 5.13562 6.3801¢
2. 5.52008 7.01559 8.41724 9.76102
3. 8.65373 10.1735 11.6198 13.0152
4. 11.7915 13.3237 14.7%¢6 16.2235
5. 14.9309 16.470¢6 17.9598 19.4094
6. 18.0711 19.6159 21.117 22.5827
7. 21.2116 22.7601 24.2701 25.7482
8. 24,3525 25.9037 27.4206 28.9084
9. 27.4935 29.0468 30.5692 32.0649
10. 30.634¢6 32.1897 33.7165 35.2187
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3. Bound states in the 2D square well
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It is shown that a 1D square well potential has a bound state for any positive V,a’, and that a
222

3D square well potential has a bound state only for V,a* > . What is the analogous situation

8u
for a 2D square well potential? What, if any, is the physical significance of these results?

We start with the Schrodinger equation
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where

V(p)=-V, for p<a,andOfor p>a.
(@a p<a
We have the differential equation
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The wavefunction is the simultaneous eigenket of both H and L,.
v(p,0)=R(p)D(¢), (separation variable)
with

E%@(m M), D)= J_ e

where m is integer; m = 0, =1, £2,... The radial wavefunction satisfies the differential equation
given by

2 2
4L MR =0. for 0< p<a
dp>  pdp

The solution of this differential equation is obtained as



R(p) =C, (ko). (1)
b p>a

We have the differential equation
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((Note)) We put x =kp . Then we get
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The solution of this differential equation is | ,(X), and K_(X), which are the modified Bessel
function of the first and second kind. Bessell[n,x]. BesselK[n,x].

The solution of this differential equation is obtained as the modified Bessel function
R(p) =A,l,(kp)+ B, K, (xp0) .

Note that only K, (xp) becomes zero for large xp . So our solution for p > a is given by
R(p) =B,K (xp) .

Using the boundary condition at p = a, we determine the energy eigenvalues. We note that
the wave function and its derivative should be continuous at p= a.

An‘]m(ka): Bme(Kp) 5
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or
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We solve the problem using the graphs. These graphs can be drawn in the (&, 77) plane by using
the Mathematica (ContourPlot), where the radius ry is changed as a parameter.

4. 2D square well with m =0
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The bound state of the 2D square well can be found

2V,

hZ

a’ =r,">(0.6)>=0.36, (2D case)

for m = 0. This is in contrast with the case of the bound state for the 3D square well with m = 0.
The bound state occurs when

2 2
2“;’;"" > [gj 24674, (3D case)

As shown in the APPENDIX, the bound state of the 1D square well can occur for any positive
value of Vy;

2NV,
hZ

>0. (1D case)

5. 2D square well with m =1 and 2
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APPENDIX-I

The bound state of 1D symmetric square well

Fig.
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Graphical solution. One solution with even parity for 0<f<z/2. One solution with even

parity and one solution with odd parity for 772<f<z. Two solutions with even parity and
one solution with odd parity for 7<f<37s/2. Two solutions with even parity and two
solutions with odd parity for 372<f<27z. n=~Etané for the even parity (red lines).

n=-Ecoté for the odd parity (blue lines). The circles are denoted by &° +7° = 8. The

parameter [ is changed as f =1, 2, 3,4, and 5. =

{=kaand = xa.

APPENDIX-II
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Vector analysis in the cylindrical co-ordinates
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Vector analysis

Angular momentum in the cylindrical coordinates
Here we use the angular momentum operatior in
the unit of A=1

Clear["Global "]1; r1="V z?+p?;

uy = { Sin[¢], Cos[¢], O}; uz= {0, O, 1};

- 1 =
r={o, 0, z}; ur = = {p, 0, 2};

Gra :=

Grad[#, {po, ¢, 2z}, "Cylindrical™] &;
Lap :=

Laplacian[#, {p, ¢, Z},

“"Cylindrical'] &;

Curla :=

Curl[#, {p, ¢, 2z}, "Cylindrical™] &;
Diva :=

Div[#, {p, ¢, 2}, "Cylindrical"] &;

Vector analysis in the cylindrical coordinate
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eql = Lap[¥[p, ¢, z]1]1 // Simplify

0,2,0)
002 (5 6 2] 4 W [ﬂ;, ¢, Z] .
o)

%0 (p, ¢, 2]
Jo)

Ly @005 0, z]

eq2 = Gral¥[p, ¢, z1] // Simplify
[y 10, 9, 21,

y 01016 ¢, 2]
o)

LY 0, 6, 21}

B={Bolo, ¢, z], Bolp, ¢, 2],

Bz[p, ¢, Z1};
eq3 = Curla[B] // Simplify

Bz(®-1.9 o, ¢, 2]

{-B0®% [0, 0, 2] +
&)

Bo %Y [p, ¢, 2] -BzHY [p, ¢, 2],

%(Bcb[p, 0, 2] -Bp O (p, ¢, 2] +

08600 o, ¢, 2])}

eqd4 = Diva[B] // Simplify

Bz %%V (p, ¢, z] +
Bolo, ¢, z] +Bp @10 (o, ¢, z] .

0

Bo %9 (p, ¢, z]

Angular momentum in the cylindrical coordinate
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L = (-1 Cross|[r, Gra[#]]) &;

Lx = (ux.L[#] &) // Simplify;
Ly = (uy.L[#] &) // Simplify;
Lz = (uz.L[#] &) // Simplify;

Ll¥lp, ¢, 211 // Simplify

0.1, 15, ¢, z]

{]iZl[/<
o)
i (o @™V (0, 0, 2] -2y 0, ¢, 2]),

-1y [0, 9, 2]}

LX[¥[p, ¢, z]1] // FullSimplify

i |-oSin[e] ¢y @Y, 0, z] +

zCos[¢] ¥ [p, ¢, 2] |
0

zSin[¢] ¢y 390 [0, ¢, z]
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Ly[¥[p, ¢, 211 // FullSimplify
i |pCos(¢] ¥ ®%Y(p, ¢, 2]+

zSin[¢] ¥ @50 [0, ¢, z]
0

zCos[o] ¢ 09 [p, ¢, z]

Lx[¥ o, ¢, z]1] +2 Ly[¥[po, ¢, 21] //
FullSimplify
%e“’ (0?2 u @OV o, ¢, 2] +

izy @00, 0,21 +z00"%V 10, ¢, 2])

Lx[¢¥[p, &, zZ]] -2 Ly[¥[po, &, 2]] //
FullSimplify

%e‘“’ (02 62V 10, 0, 2] +

izy @00, 0, 2] -zpy™%Y [p, ¢, 2])
Lz[¥[p, ¢, 211 // Simplify
~i g 000, ¢, 2]

The commutation of the angular momentum in the
cylindrical coordinate

eqgs =
LX[Ly[¥[p, ¢, z]1]1] - LY[LX[¥[p, ¢, Z]]] -
ilz[¥[p, ¢, 211 // Simplify
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0
L2 in the cylindrical coordinate

eq6 =
IX[LX[¥[p, &, Z]]] +
Ly[Ly[¥[po, ¢, 2111 +
Lz[ Lz[¥[p, ¢, z]11] // FullSimplify

2zy 0N p 0, 2] +

1
2 (0 P 0, 0, 2] -

(2% +0°%) @20 [0, ¢, 2] +
o ((-22+0%) "0, ¢, 2]+
zo (204 Y (p, ¢, 2] -
zy'2%%1p, ¢, 2])))
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