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((Adiabatic approximation))

If the Hamiltonian changes very slowly with the time, one can expect to be able to
approximate solutions of the Schrodinger equation by means of the stationary energy
eigenfunction of the instantaneous Hamiltonian. So that a particular eigenfunctions at one
time goes over continuously into the corresponding eigenfunction at a later time.

((Sudden approximation))

If the Hamiltonian changes from one steady form to another over very short time
interval, one expect that the wavefunction does not change much, although the expansion
of this function in eigenfunctions of the initial and final Hamiltonian may be quite
different.

1. Adiabatic and sudden change
Suppose that the Hamiltonian has the form

(I:I X ) —e"V (V= constant)

where 77 1s a small positive value.

The time evolution operator in the Dirac picture is given by
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where <k |I7| i> is the matrix of the perturbation in the Schrédinger picture. Here we note
that
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where the Bohr angular frequency is defined by
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We now consider the second term
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((Note))

When =0,
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In the limit of 7 — 0, we have
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On the other hand, this is the same as the co-efficient of the expansion in the time-
independent perturbation such that
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The derivative of ‘cfll)(t)‘ with respect to ¢ is given by
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Using the formula,
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which coincides with the Fermi’s golden rule.

Note that
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The third term is given by
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2 Relaxation
We now consider the case for n =i (i denotes the initial state, but not imaginary); in
other words, the final state # is the same as the initial state.
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Then we have

e (1) = exp(—%A,f)

w, () =c (1) exp(—%Eit)| iy +..= exp[—%(Ei + A1)

We note that
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The energy shift:
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Using the Fermi’s golden rule, we have
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We define the relaxation time,
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3. Sudden approximation

The wave function in the Schrodinger picture is related to that in the Dirac picture as
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We consider the wave function in the three time regions.
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where the index i denotes the time region (0<7<¢,).
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where the co-efficient by, is independent of time ¢. H, is the Hamiltonian of the system.

4. Continuity of the wavefunctions

(1) The continuity of the wave function at at =0
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5. Limit of t,—0
When ¢y —0, we get
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Then we have
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We now consider the special case (a pure state)
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6. Example
A particle of mass m is in lowest energy (ground) state of the infinite potential energy
well

V(x)=0 for 0<x<L and o elsewhere.

At time ¢ = 0, the wall located at x = L is suddenly pulled back to a position at x = 2 L.

This change occurs so rapidly that instantaneously the wave function does not change.

(a) Calculate the probability that a measurement of the energy will yield the ground-
state energy of the new well. What is the probability that a measurement of the
energy will yield the first excited energy of the new well?

(b) Describe the procedure you would use to determine the time development of the
system. Is the system in a stationary state?

((Solution))
The old wave function of the ground state is given by

@ (x)= 2 sin(ﬂ) only for 0<x<a (0 otherwise).
a a
The new wave function is given by
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(b)
The system is not stationary since |!//(t = 0)> is not an eigenstate of the new Hamiltonian
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Then we get
v (x,1) = > c, exp(é E,,ew(m)t)y/new(m)* ) e, exp(—% E "y, " (x)
=Y e oW el (B, < E, )
((Mathematica))

Weusem=h=1.a=1.Red (At ¢ =0). The Plot of |l//(x,t) * as a function of x (0<x<2a),

where ¢ is changed as parameter; t = 0 - 3 with A7 = 0.1. The summation overn (n=1 —
10).
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