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((Adiabatic approximation)) 

If the Hamiltonian changes very slowly with the time, one can expect to be able to 
approximate solutions of the Schrödinger equation by means of the stationary energy 
eigenfunction of the instantaneous Hamiltonian. So that a particular eigenfunctions at one 
time goes over continuously into the corresponding eigenfunction at a later time. 
 
((Sudden approximation)) 

If the Hamiltonian changes from one steady form to another over very short time 
interval, one expect that the wavefunction does not change much, although the expansion 
of this function in eigenfunctions of the initial and final Hamiltonian may be quite 
different. 
 
1. Adiabatic and sudden change 

Suppose that the Hamiltonian has the form 
 

  VeH t ˆˆ
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  (V = constant) 
 
where  is a small positive value. 
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The time evolution operator in the Dirac picture is given by 
 



 

2 
 
















 







 













/"ˆ"/"ˆ/'ˆ'/'ˆ
'2

/'ˆ'/'ˆ

0000

00

ˆˆ"'

'ˆ1̂),(ˆ

tHittHitHittHi
tt

t
tHittHi

I

eeVeeeVedtdt
i

dteeVe
i

tU





 

and 
 



















 








 







 







 





 













"'"'
'2

/""/"/''/'
'2

''

"'ˆˆ

ˆ

ˆˆ"'

'ˆ

),(ˆ)(

tttiti
tt

k

ni

tit

ni

k

tiEttiEtiEttiE
tt

t
tit

ni

In

eeeedtdtiVkkVn
i

i

e
iVn

i

eeiVkeeekVnedtdt
i

dteeiVn
i

itUntc

kink

ni

ikkn

ni














 

 

where iVk ˆ  is the matrix of the perturbation in the Schrödinger picture. Here we note 

that 
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where the Bohr angular frequency is defined by 
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We now consider the second term 
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((Note)) 
 
When t = 0, 
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In the limit of 0 , we have 
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On the other hand, this is the same as the co-efficient of the expansion in the time-
independent perturbation such that 
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The derivative of 
2)1( )(tcn  with respect to t is given by 
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which coincides with the Fermi’s golden rule.  
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The third term is given by 
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2. Relaxation 

We now consider the case for n = i (i denotes the initial state, but not imaginary); in 
other words, the final state n is the same as the initial state. 
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Then we have 
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The energy shift: 
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Using the Fermi’s golden rule, we have 
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We define the relaxation time, 
 

ii
i 


)Im(
2


. 

 



 

7 
 

t

C1t2

0

e-t ti

 
 
________________________________________________________________________ 
3. Sudden approximation 
 
The wave function in the Schrodinger picture is related to that in the Dirac picture as 
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We consider the wave function in the three time regions. 
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where the index i denotes the time region )0( 0tt  . 
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(a) t<0, 
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where the co-efficient an is independent of time t. 0Ĥ  is the Hamiltonian of the system.  
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where the co-efficient ck is independent of time t. iĤ  is the Hamiltonian of the system.  
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where the co-efficient bm is independent of time t. 1Ĥ  is the Hamiltonian of the system.  
 
4. Continuity of the wavefunctions 
 
(i) The continuity of the wave function at at t = 0 
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5. Limit of t0→0 

When t0 →0, we get 
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Then we have 
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The inner product of the two wavefunctions is given by 
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We now consider the special case (a pure state) 
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6. Example 

A particle of mass m is in lowest energy (ground) state of the infinite potential energy 
well 
 

0)( xV  for 0<x<L and ∞ elsewhere. 
 
At time t = 0, the wall located at x = L is suddenly pulled back to a position at x = 2 L. 
This change occurs so rapidly that instantaneously the wave function does not change. 
(a) Calculate the probability that a measurement of the energy will yield the ground-

state energy of the new well. What is the probability that a measurement of the 
energy will yield the first excited energy of the new well? 

(b) Describe the procedure you would use to determine the time development of the 
system. Is the system in a stationary state? 

 
((Solution)) 
The old wave function of the ground state is given by 
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(a) From the continuity of the wave function at t = 0, we have 
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Note that 
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(b) 
The system is not stationary since )0( t  is not an eigenstate of the new Hamiltonian 

newĤ , but is a superposition of the eigenstates )(n
new  with various kinds of n. 
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((Mathematica)) 
 

We use m = ħ = 1. a = 1. Red (At t = 0). The Plot of 
2

),( tx  as a function of x (0<x<2a), 

where t is changed as parameter; t = 0 - 3 with t = 0.1. The summation over n (n = 1 – 
10). 
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