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The problem of a quantum box (a particle in a one-dimensional infinite square-well potential
with stationary wall) is one of the examples in elementary quantum mechanics. Here we consider
a slightly more complicated situation where one of the walls is allowed to move slowly with a
constant velocity provides an instructive example for the adiabatic change in the perturbation.
Doescher and Rice found an exact solution for the time dependent Schrodinger equation for the
infinite square-well potential with a moving wall. I found this problem in a book of Griffiths
(Introduction to quantum mechanics). I solve this problem using the Mathematica.

1. Review of one-dimensional quantum box.

V(X)
A

V():OO

I I1 II1




h? d? h’k?
Ho(x) = —%W(P(X) =Ep(x)= o

@(X)

The solution of this equation is

@(X) = Asin(kx) + B cos(kx)

where

Using the boundary condition:

p(x=0)=p(x=2)=0

we have
B = 0 and A#0.
sin(ka) =0

ka=nz (n=1,2,..))

Note that n = 0 is not included in our solution because the corresponding wave function becomes
zero. The wave function is given by



with
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((Normalization))
1= [AZsin? (") =2 A2
!Asm(a) oA

Griffiths Problem 10-1

2. Adiabatic change (prediction)
We suppose that we prepare a particle in the ground state of the infinite square well:

o () = \E sin(™%)
a a

Suppose that the right wall of the infinite square moves at the constant velocity. The width of the
wall is

w(t)=a+vt.

If the wall moves slowly, it is expected that the system remains in the ground state as

D(x)= |—2— sin(->-
P 0= 05 S G
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Fig. The initial state: the ground state. The right wall of the infinite square potential moves
adiabatically at the constant velocity. The probability as a function of x is plotted where
the time is changed constantly.

3. Adiabatic perturbation: Griffiths Problem 10-1

D.J. Griffiths, Introduction to Quantum Mechanics, second edition (Cambridge, 2017).
S.W. Doescher and M.H. Rice, “Infinite Square-Well Potential with a Moving Wall,” Am. J.
Phys. 37, 1246 (1969).



* % *Problem 10.1 The case of an infinite square well whose right wall expands at a
constant velocity (v) can be solved exactlv.” A complete set of solutions is

P, (x. 1) = ‘/zsin (Er) gl mva”=2E,an/2hw [10.3]
w w

where w(t) = a + vt is the (instantaneous) width of the well and Ef, =
n*m2h?/2ma? is the nth allowed energy of the original well (width a). The general
solution is a linear combination of the @’s:

o0
WX =) cn®y(x.1): [10.4]
n=lI
the coefficients ¢, are independent of 1.

(a) Check that Equation 10.3 satisfies the time-dependent Schridinger equation,
with the appropriate boundary conditions.



(b)

(c)

(d)

Suppose a particle starts out ( = 0) in the ground state of the initial well:

PY(x.0) = \/gsin (E\) .

Show that the expansion coefficients can be written in the form

2 [T .
Uy = ;f e”'" sin(nz) sin(z) dz. [10.5]
0

where @ = mva/2x2h is a dimensionless measure of the speed with which
the well expands. (Unfortunately, this integral cannot be evaluated in terms
of elementary functions.)

Suppose we allow the well to expand to twice its original width, so the
“external” time is given by w(7,) = 2a. The “internal™ time is the period of
the time-dependent exponential factor in the (initial) ground state. Deterimine
T, and T;, and show that the adiabatic regime corresponds to o < I, so that
exp(—iaz?) = 1 over the domain of integration. Use this to determine the
expansion coefficients, ¢,. Construct ¥(x. 1), and confirm that it is consistent
with the adiabatic theorem.

Show that the phase factor in W(x. t) can be written in the form
l f
a(r) = —*f Ei(t"Ydrt'. [10.6]
A Jo

where E,(t) = n?w2h*/2mw? is the instantaneous eigenvalue, at time f.
Comunent on this result.

((Solution))

w(t)=a+ vt

where

2 . nz . (mvx® - 2E!at)
v, (Xt)= WD) Sm[w(t) X]expl[i 27w(t)

I,
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((Mathematica)) This equation satisfies the Schrédinger equation.

((Proof))

Clear["Global "];
w[tl ] :=a + vitl;

n1? n? n?
El[nl ] 1= ——;
2 m a2
vix_, t_, n]:=
2 mvx?-2E1l[n] at
Sin[ i x] Exp[i ( )],
w[t] wlt] 2hw[t]

sl=1AD[¢¥[x, t, n], t] // Simplify;

-5
S2 = P D[¥[x, t, n], {x, 2}] // Simplify;
m

sl-s2// Simplify
0

Att=0,

w(xt=0)=3 Cop, (6t =0)

n=l1

0 2
->'c, \E sin[27 x]exp(i 2y
a a 2ha

n=l1




where Cn is independent of t,

2
vt =0) = | = sin(22 ) exp( T
a a 2ha
Then we get the expression of Cn as
C - \Eidx (.t = 0)sin(") exp(—i M
" Vay Vs a P o
where
[ ax sin(“%)sin 1) 2 85
o a a 2 "
When
w(xt=0)=|sin®)
a a
q can be evaluated as
25 X, . NaX . mvx’
C, = —de sin(—) sin(——) exp(—i )
ary a a 2ha

For simplicity we use z = ——. C, can be rewritten as
a

C, = gJ.dz sin(z)sin(nz)exp(—iaz®)
4 0

where

mva
27°h



The value of Cn can be evaluated using Mathematica numerically. The solution of the

Schrédinger equation (in general case) is

&n [2 oz - (mvx® —2E;at)
t//(x,t)—%:Cn WO sm[W(t)x]exp[l 27 (D)

3. Condition for the adiabatic change

We define the two characteristic times Te and Ti . The time Te is defined as

a
T, =2
V

at which w(T,) =2a.

The phase factor of the wave function in the ground state is

. Et

expHi——
pE—")
The time Ti is defined as

ﬂ:27z
h

at the phase is on the order of 2n. Then we have

T _ 27 _4ma’
' E h

The adiabatic perturbation is valid when
T<,
leading to

dama a
<<=, or 4mva
7h \; h

<< 1.




This condition implies that

mva
a= > <<1
27°h

Suppose that a =0, then we have
2% .. .
C, = —fdz sin(z)sin(nz) =45,
4 0

So the wave function is approximated as

2 sin( ) expli mvx’® - 2E,at
wt) S wy P T 2w

y (X0 = ]

which is the ground state of the instantaneous well, of width w(t) . Note that

mvx> mva’ mva

2wty 2ha | 2k

So w(X,t) can be rewritten as

2 . . Elat
X,t) ~ [ ——sin(—— —-i——
w(X,t) w(t)sm(w(t))eXp[ ()
where
Elat at 7°n° 'Rt
Aw(t)  Aw(t) 2ma’  2maw(t)
Note that
2 232
2ma

4. Phase factor



o(t) = —%jEl(t')dt'

1 j- °h?
g 2miw(t')]’

24 t
:_ﬂ'hj' l'zdt'
2m ¢ (a+vt')
o~n 11

:2mv a+vt_g
2
7°h t
S—

2m a(a+vt)
3 ’ht
2maw(t)

)

where

n’z’h’

En(t):W(t)]z

Using this phase factor, we have

wxt) ~ | —2— sin(-2 Y expli6(t)]

w(t)  w(t)
2
It adiabatically expands well with the width w(t) replaced by a. We note that (1) = — 7t
2maw(t)
is equal to
Et) 7h _ 7h

o 2mw)] 2mawt)’
where
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S. Probability

(mvx® —2E at)
w(xt) = ZCW/ (t) [(t)] xpli 27w(t) I

with
27 . . .,
C, = —Idz sin( z)sin(nz)exp(—iaz”).
4 0

We use new variables and parameters to simplify the form of wave function.

and

w(xt) & 1 X, X,  n'zt ot
=>»C sin e —
J2/a an "\ 1+t (1+ ) p[( t 2p 1+t0)]

Note that the parameter p is related to the ratio T, /T,
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Fig. p=0.2.Plot of as a function of x. t=0, 0.1, 0.2, 0.3, ..., 1.9, and 2.0.

w (b

Fig. p=0.2.Plotof

as a function of X. t=0, 0.5, 1, 1.5, ..., 9.5, 10.

J2/a
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