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The problem of a quantum box (a particle in a one-dimensional infinite square-well potential 

with stationary wall) is one of the examples in elementary quantum mechanics. Here we consider 
a slightly more complicated situation where one of the walls is allowed to move slowly with a 
constant velocity provides an instructive example for the adiabatic change in the perturbation. 
Doescher and Rice found an exact solution for the time dependent Schrödinger equation for the 
infinite square-well potential with a moving wall. I found this problem in a book of Griffiths 
(Introduction to quantum mechanics). I solve this problem using the Mathematica. 
 
1. Review of one-dimensional quantum box. 
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The solution of this equation is 
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Using the boundary condition: 
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we have  

 

B = 0 and A≠0. 
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nka   (n = 1, 2, …) 

 

Note that n = 0 is not included in our solution because the corresponding wave function becomes 
zero. The wave function is given by 
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((Normalization)) 

 

2

0

22

2
)(sin1 n

a

n A
a

dx
a

xn
A  


 

 
Griffiths Problem 10-1 
 
2. Adiabatic change (prediction) 

We suppose that we prepare a particle in the ground state of the infinite square well: 
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Suppose that the right wall of the infinite square moves at the constant velocity. The width of the 
wall is 
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If the wall moves slowly, it is expected that the system remains in the ground state as 
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Fig. The initial state: the ground state. The right wall of the infinite square potential moves 

adiabatically at the constant velocity. The probability as a function of x is plotted where 
the time is changed constantly. 

 
3. Adiabatic perturbation: Griffiths Problem 10-1 
 
D.J. Griffiths, Introduction to Quantum Mechanics, second edition (Cambridge, 2017). 
S.W. Doescher and M.H. Rice, “Infinite Square-Well Potential with a Moving Wall,” Am. J. 

Phys. 37, 1246 (1969). 
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_____________________________________________________________________________ 
((Solution)) 
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where 
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((Mathematica)) This equation satisfies the Schrődinger equation. 
((Proof)) 
 

 
 
____________________________________________________________________________ 
At t = 0, 
 
















1

2

1

)
2

exp(]sin[
2

)0,()0,(

n
n

n
nn

a

mvx
ix

a

n

a
C

txCtx






 

 

Clear "Global`" ;

w t1 : a v t1;

E1 n1 :
n12 2 2

2 m a2
;

x , t , n :
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w t
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x Exp

m v x2 2 E1 n a t

2 w t
;

s1 D x, t, n , t Simplify;

s2
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D x, t, n , x, 2 Simplify;

s1 s2 Simplify
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where nC  is independent of t,  
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Then we get the expression of nC  as 
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When  
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nC  can be evaluated as 
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For simplicity we use  
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 . nC  can be rewritten as 
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The value of nC  can be evaluated using Mathematica numerically. The solution of the 

Schrődinger equation (in general case) is  
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3. Condition for the adiabatic change 

We define the two characteristic times eT  and iT . The time eT  is defined as 
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The phase factor of the wave function in the ground state is 
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The time iT  is defined as 
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at the phase is on the order of 2. Then we have 
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The adiabatic perturbation is valid when 
 

ei TT   

 
leading to 
 

v

ama




24
,  or 1

4



mva . 



 
This condition implies that 
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Suppose that 0 , then we have 
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So the wave function is approximated as 
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which is the ground state of the instantaneous well, of width )(tw . Note that 
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So ),( tx  can be rewritten as 
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Note that 
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4. Phase factor 
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where 
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Using this phase factor, we have 
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It adiabatically expands well with the width )(tw  replaced by a. We note that 
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5. Probability 
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We use new variables and parameters to simplify the form of wave function. 
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Note that the parameter p is related to the ratio ei TT /  
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Fig. p = 0.2. Plot of 
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Fig. p = 0.2. Plot of 
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as a function of x. t = 0, 0.5, 1, 1.5, …, 9.5, 10. 
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