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We already discussed the physics of NH3; Maser. Here we use this as a typical example of
the time-independent perturbation problem.

1. Introduction
For the energy splitting scheme of NHj3 in the presence of an electric field, we apply
the perturbation theory for solving the problems.
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We consider the parity operator 7, such that
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These two states are the eigenkets of 7.

We now consider the Hamiltonain H .
The symmetry of two physical configuration suggests that
(IH[1) = (2H]2)= E,

What about the off-diagonal elements? The vanishing of <2|I:| | 1> would mean that a

molecule initially in the state |1) would remain in that state. If <2|I:I |1> #0,thereisa

small amplitude for the system to mix between the two states.
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This Hamiltonian commutates with the parity operator: [H,7]= 0.
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When the electric filed is applied along the X axis (the axis of the electric dipole
moment), the Hamiltonian is changed into
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The new Hamiltonian H does not commutate with the parity operator 7.
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Thus we have
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In a weak electric field
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3. Perturbation-1

Suppose that

where
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under the basis of |1> and |2> . Here H, is the unperturbed Hamiltonian and H, is the

perturbing Hamiltonian. |l> and |2> are the eigenket of I:|0.

Ho[1) = (E, + ue)|1), Ho|2) = (E, - e)|2)



with
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Thus the unperturbed system is a non-degenerate system with |1> and |2> . So we can use

the non-degenerate perturbation theory for this problem.

The first order perturbation:
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The second order perturbation
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Then we have
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4. Perturbation under the new basis
First we start to find new eigenket of the I-AI0 defined by
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under the basis of {|1> and |2> }, where
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The perturbation Hamiltonian is given by
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Then we have
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Eigenvalue: E /" =E,—A

Eigenvector:
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Eigenvalue: E,” =E, +A
Eigenvector: ‘Wa(0)> = |—>x = %d 1> - | 2>)

We note that the unitary operator is defined as

1//s(°)>:U|l>, Wa(0)>=0|2>

where
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We now consider the perturbation I-AI1 defined by
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under the basis of {|1> and |2> }, where | ,ug| << A. The Hamiltonians can be rewritten as
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1//a(°)> }. We now use the non-degenerate perturbation

theory.
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(i1))  The second order perturbation
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5. Eigenvalue problem (exact solution)

We solve the eigenvalue problem using the Mathamtica.
(1) Eigenvalue: E, ++A*+&’u’ (higher energy)

su++N +& 1’
In-12)

Eigenket: |l,//a> ~( y

(i)  Eigenvalue: E,—+A*+¢&°u’ (lower energy)
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Eigenket: |l//s> =—(

where the eigenkets are not nortmalized.

6. Application
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Let us consider NH3 in a region where ¢ is weak but where & has a strong gradient in the
X-direction (i.e., along the axis of molecules).
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The molecules in the state |(/)5> are subjected to a force parallel to the X axis:

Similarly, the molecules in the state |g/)a> are subjected to an opposite force:
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This is the basis of the method which is used in the ammonia maser to sort the molecules
and select those in the higher energy state.

Maser cavity (frequency mg)

L] all

electric field —y |¢5>

\ 16.) :¢¢¢¢

NHj3

In the ammonia maser, the beam with molecules in the state (p;">> and with the higher

energy is sent through a resonant cavity.
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