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1. Angular momentum
The orbital angular momentum is defined as

We consider the commutation relation:
Lx =il
[L,,L.]=ikL,, [L.,L]=ihL,, [L,.L,]=ihL,
[L..2]=[%p, - 7p,.2]=0,
[L..X]=[%p, — $p,. %] =~ 3p,, ] = I p,. %] = ihp
[L..91=[3p, - 3p,. )1 =[5p,, p]=—ihs

or
[L.,%+ip]=[L.x]+i[L,, P] = ihp +i(=ih%) = A(ZX +ip)
[L..%—§]=[L&]—i[L., ] =ihp —i(~ih%) = —h(% - ip)

We also note that



[2,[%, %]] = 2R%{%, %}
where
{A,B}= AB + BA
((Mathematica)) Proof
Clear["Global "];

ux = {1, 0, O}; uy = {0, 1, 0}; uz = {0, O, 1};
r={X,VY, Z};

LX := (Aux. (-1 Cross[r, Grad[#, {X, V¥, z}1]) &) // Simplify;
Ly := (Auy. (-1 Cross[r, Grad[#, {X, YV, z}1]) &) // Simplify;
Lz := (Auz. (-1 Cross[r, Grad[#, {X, VY, z}1]) &) // Simplify;

Lsq := (LX[Lx[#]] +Ly[Ly[#]] +Lz[Lz[#]] &) ;

eq2 = Lsq[Lsq[x¥[X, ¥, z]1]1] -Lsq[xLsq[¥[x, Yy, z]]] -

Lsq[xLsq[¥[X, y, z]1]] +xLsq[Lsq[¥[x, Yy, z]1]1 //
FullSimplify;

eq3 = 24° (xLsq[¢¥[X, Y, 211 +Lsq[X¥[X, Y, z11) //
FullSimplify;

eg2 - eq3 // Simplify
0

2. Eigenkets of angular momentum

|2, m) = m*I(1 +1)|1,m)



iz l,m> =hm l,m>

L,|1,m)=nJ( = m)I +m+1)|1,m +1)

L |l,m)= (I + m)I —m+1)|l,m—1)
where

L =L +iL,, L =L -iL,
3. Selection rule-I

Using the relation

L.|1,m)=nhm|l,m)
we have

(1 m'[L., 21, m) =,
or

(1 m'|£.2 = 21| 1, m) =0
or

(m'—m)(I',m'|2|1,m) =0

Then we get the relation
m'=m , for the dipole ion the z direction.

4. Selection rule-I1
Using the relation

L,

Z,m>=hm

1,m>



we have

(I'm'[L,,%+i]

1m)=n{l',m'|% + ip|1,m),
or

(I',m'|L (R +iD)— (R +iD)L,

1,m> = h<l',m'|)%+if/

l,m>
or

(m'-m— l)<l', m'|fc +1iy

[, m> =0
Then we get the relation

m'=m+1, for the dipole ion the x, y direction.

S. Selection rule-I11
Using the relation

L.

l,m>:hm

l, m>
we have

(I,m'[L.,%-i]

Lm)=-h(l',m'|x - ip

l,m>,
or

(I',m'|L (R -iP)—(R—ip)L,

l,m> = —h<l',m'|fc—ij/

l,m>
or

(m'-m+ l)<l', m‘|fc —iy

[, m> =0
Then we get the relation

m'=m—1, for the dipole ion the x, y direction.



6. Selection rule-1V
Using the commutation relation

(L [0, 57 =207 (%, L)
we get the following equation,

(I,m'[C[C, 2] 0,m)=207(I',m'|{%, L}

l, m>
or

(I',m|CLx 20500 + 20 0|1, m) =20 (', m'|2C + L%

[, m>
Here we use the relation

L Lmy, and  (I,m|C*=n*(I+1){I,m|

1,m)=n1(l+1)

Then we have

X

AU (1) =20 (DI +1) + P +1) =20 (+1) =200+ DKL m!

l,m>=0
or

('~ = 1)L+ DI+ + 2)(1 !

l,m>:0

X

The last factor yields the selection rule

I'=1+1

((Mathemtica))

gl=2a® (a+1)? -2a(a+1) b (b+1) +b? (b+1)? -
2a(a+1) -2b (b+1) // Factor

(-1+a-b) (1+a-b) (a+b) (2+a+hb)




Since /’ and / are both non-negative, the (/'+/+2) term cannot vanish, and the (/'+/) term can only

vanish for [’ == 0. However, this selection rule cannot be satisfied, since the states with [’ =/= 0 are
independent of direction, and therefore these matrix elements of X vanish. Formally, one easily shows
this

(0,0

£0,0)=0

using the parity operator.

((Proof))

where the parity operator satisfies the relations,

A =7, 2 =1
(0,0|2%2/0,0) =—(0,0(%0,0)
or
(0,0[10,0)=0
where
A|lLm)=(=1Y|1,m),
and
#0,0)=|0,0), and (0,02 =(0,0
7. Dipole selection rule

The dipole radiation is emitted if

M ={fle-fli)=e-(/li)=e D,



does not vanish, where e is the electric field (the polarization vector), and

D, =(f1f7)
We assume that |l> = l,m> and |f> = l',m'>. Then we have
D, =(I'\m'|&[l,m)e +(I',m'|p|l,m)e, +(I',m'|Z|I,m)e_,
(1) For m'=m.
<l',m’21,m>¢0, <l',m'|fc l,m>=0, <l',m'|)7 l,m>=0
Dﬁ :<l"m'|)/(\,' l,m>ex +<l',m'|j> l,m>ey +<l',m'|2 l,m>ez
:<l’,m'|2 l,m>ez

D, is directed along the z axis.

(a) Suppose that the wavevector K of the emitted photon is along the z axis. There is no radiation in
the z-direction since the polarization vector £is perpendicular to D, (the z axis).

(b) For example, we consider light going in the x direction. It can have two directions of polarization,
either in the z or in the y direction. A transition in which Am = 0, can produce only light which is

polarized in the z direction.



Fig. m'=m. D, //z. The light propagating along the x direction. It is a linearly polarized wave
(along the z axis).

(11) For m'=m+1

<l',m' 7, l,m>:O, <l',m'|2 l,m>=0.
where
. :£+ijz
7. n
(i) For m'=m-1
<l‘,m‘|f_ l,m>:0, <l’,m'|2 l,m>:0.

where



We now consider the matrix element with m'=m 1.

D, =(I',m'|%e, + Je, +Ze|l,m)
:<l',m'|)2ex +ye, I,m>
= <l‘,m'|f+ef +re, Z,m>
=e_ -<l’,m'|f+ l,m>+e+ -<l',m'|ﬁ l,m>
where
e, +ie, e, —ie, )
e, = e_= . (Jones vector notation)

or
e, =—(e,+e), e =L(e -e)
X \/_ + y \/El +
and
xe +ye, =re +re,
Note that
e, -e, =0. e -e =0
e e =1 e_-e, =1

(a) When m'=m+1,

D, =(I',m'|5e, + Je,

l,m>:e_<l',m‘|i°+

l,m>]

fi



has the same direction of the left circularly polarization vector (e_). Then the emitted photon which is

right circularly polarized (e:), can propagate along the z axis. A photon with right-hand circular
polarization carries a spin +7 in the z direction (the propagation direction).

kK +h

-

Fig. The case of m'=m+1 (right circularly polarization). A right circularly polarized photon
(e:+) propagates with a wavevector K in the z direction. Note that the electric field is
denoted by cos(kz — ar)e, +sin(kz — wrt)e,. This electric field rotates in clock-wise sense

with time 7, and rotates in counter clock-wise sense with z (as the wave propagates
forward). The corresponding spin of the photon is directed in the positive z direction (%).
D, (e). E(ze,).(e,-e_=1,e_-e =0).

(b) When m'=m —1

l,m>]

D, =(I',m'|%e, + Je,

l,m>=e+<l',m'|f_
is parallel to the right circularly polarization vector e, . The emitted photon with left circularly

polarization (e_) can propagate along the z axis. A photon with the left-hand polarization carries a spin (-

h), that is, a spin direction opposite to the z direction.

10



Fig. The case of m'=m —1 (left circularly polarization). A left circularly polarized photon (e.)
propagates with a wavevector K in the z direction. Note that the electric field is given by
cos(kz — ar)e, —sin(kz — ewr)e,, . This electric field rotates in counter clock-wise sense with

time ¢, and rotates in clock-wise sense with z (as the wave propagates forward). The
corresponding spin of the photon is directed in the negative z direction, as -i. D, (~e,).

E(e ).(e,-e_=1,e,-e, =0).

The rules on Am can be understood by realizing that o and o- circularly polarized photons carry
angular momenta of +7% ans -7, respectively, along the z axis, and hence m must change by one unit to
conserve angular momentum. For linearly polarized light along the z axis, the photons carry no z-
component of momentum, implying Am =0, while x or y-polarized light can be considered as a equal

combination of o” and o~ photons, giving Am =+1.
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