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1. Angular momentum 

The orbital angular momentum is defined as 
 

prL ˆˆˆ   

 

xyz pypxL ˆˆˆˆˆ   

 

yzx pzpyL ˆˆˆˆˆ   

 

zxy pxpzL ˆˆˆˆˆ   

 
We consider the commutation relation: 
 

LLL ˆˆˆ i  
 

xzy LiLL ˆ]ˆ,ˆ[  , yxz LiLL ˆ]ˆ,ˆ[  , zyx LiLL ˆ]ˆ,ˆ[   

 

0]ˆ,ˆˆˆˆ[]ˆ,ˆ[  zpypxzL xyz , 

 

yixpyxpyxpypxxL xxxyz ˆ]ˆ,ˆ[ˆ]ˆ,ˆˆ[]ˆ,ˆˆˆˆ[]ˆ,ˆ[   

 

xiypxypypxyL yxyz ˆ]ˆ,ˆˆ[]ˆ,ˆˆˆˆ[]ˆ,ˆ[   

 
or 
 

)ˆˆ()ˆ(ˆ]ˆ,ˆ[]ˆˆ[]ˆˆ,ˆ[ yixxiiyiyLixLyixL zzz    

 

)ˆˆ()ˆ(ˆ]ˆ,ˆ[]ˆˆ[]ˆˆ,ˆ[ yixxiiyiyLixLyixL zzz    

 
We also note that 
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}ˆ,ˆ{2]]ˆ,ˆ[,ˆ[ 2222 LLL xx   

 
where 
 

ABBABA ˆˆˆˆ}ˆ,ˆ{   

 
((Mathematica))  Proof 
 

 
 
____________________________________________________________________________________ 
2. Eigenkets of angular momentum 
 

mlllml ,)1(,ˆ 22  L  

 

Clear"Global`";

ux  1, 0, 0; uy  0, 1, 0; uz  0, 0, 1;

r  x, y, z;

Lx : — ux. Crossr, Grad, x, y, z &  Simplify;

Ly : — uy. Crossr, Grad, x, y, z &  Simplify;

Lz : — uz. Crossr, Grad, x, y, z &  Simplify;

Lsq : LxLx  LyLy  LzLz &;

eq2  LsqLsqx x, y, z  Lsqx Lsqx, y, z 
Lsqx Lsqx, y, z  x LsqLsqx, y, z 

FullSimplify;

eq3  2 —2 x Lsqx, y, z  Lsqx x, y, z 
FullSimplify;

eq2  eq3  Simplify

0
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mlmmlLz ,,ˆ   

 

1,)1)((,ˆ  mlmlmlmlL   

 

1,)1)((,ˆ  mlmlmlmlL   

 
where 
 

yx LiLL ˆˆˆ  ,  yx LiLL ˆˆˆ   

 
3. Selection rule-I 
Using the relation 
 

mlmmlLz ,,ˆ   

 
we have 
 

mlzLml z ,]ˆ,ˆ[',' , 

 
or 
 

0,ˆˆˆˆ','  mlLzzLml zz  

 
or 
 

0,ˆ',')'(  mlzmlmm  

 
Then we get the relation 
 

mm ' , for the dipole ion the z direction. 
 
4. Selection rule-II 
Using the relation 
 

mlmmlLz ,,ˆ   
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we have 
 

mlyixmlmlyixLml z ,ˆˆ',',]ˆˆ,ˆ[','   , 

 
or 
 

mlyixmlmlLyixyixLml zz ,ˆˆ',',ˆ)ˆˆ()ˆˆ(ˆ','    

 
or 
 

0,ˆˆ',')1'(  mlyixmlmm  

 
Then we get the relation 
 

1'  mm , for the dipole ion the x, y direction. 
 
5. Selection rule-III 
Using the relation 
 

mlmmlLz ,,ˆ   

 
we have 
 

mlyixmlmlyixLml z ,ˆˆ',',]ˆˆ,ˆ[','   , 

 
or 
 

mlyixmlmlLyixyixLml zz ,ˆˆ',',ˆ)ˆˆ()ˆˆ(ˆ','    

 
or 
 

0,ˆˆ',')1'(  mlyixmlmm  

 
Then we get the relation 
 

1'  mm , for the dipole ion the x, y direction. 
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6. Selection rule-IV 
Using the commutation relation 
 

}ˆ,ˆ{2]]ˆ,ˆ[,ˆ[ 2222 LLL xx   

 
we get the following equation, 
 

mlxmlmlxml ,}ˆ,ˆ{','2,]]ˆ,ˆ[,ˆ[',' 2222 LLL   

 
or 
 

mlxxmlmlxxxml ,ˆˆˆˆ','2,ˆˆˆˆˆˆ2ˆˆˆ',' 222222222 LLLLLLLL    

 
Here we use the relation 
 

mlllml ,)1(,ˆ 22  L , and mlllml ,)1(ˆ, 22  L  

 
Then we have 
 

0,ˆ',')]1(2)1'('2)1()1()1'('2)1'('[ 22224  mlxmlllllllllllll  

 
or 
 

0,ˆ',')2')(')(1')(1'(  mlxmlllllllll  

 
The last factor yields the selection rule 
 

1'  ll  
 
__________________________________________________________________________________ 
((Mathemtica)) 
 

 
____________________________________________________________________________________ 

g1  a2 a  12  2 a a  1 b b  1  b 2 b  12 

2 a a  1  2 b b  1  Factor

1  a  b 1  a  b a  b 2  a  b
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Since l’ and l are both non-negative, the )2'( ll  term cannot vanish, and the ( ll ' ) term can only 

vanish for l’ = l = 0. However, this selection rule cannot be satisfied, since the states with l’ = l = 0 are 
independent of direction, and therefore these matrix elements of x̂  vanish. Formally, one easily shows 
this 
 

00,0ˆ0,0 x  

 
using the parity operator.  
((Proof)) 
 

xx ˆˆˆˆ   
 
where the parity operator satisfies the relations, 
 

 ˆˆ  , 1̂ˆ 2   
 

0,0ˆ0,00,0ˆˆˆ0,0 xx   

 
or 
 

00,0ˆ0,0 x  

 
where 
 

mlml l ,)1(,ˆ  , 

 
and 
 

0,00,0ˆ  ,  and  0,0ˆ0,0   

 
_______________________________________________________________________________ 
7. Dipole selection rule 
 
The dipole radiation is emitted if 
 

fiififM Derere  ˆˆ  
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does not vanish, where e is the electric field (the polarization vector), and 
 

iffi rD ˆ  

 

We assume that mli ,  and ',' mlf  . Then we have 

 

zyxfi mlzmlmlymlmlxml eeeD ,ˆ',',ˆ',',ˆ','  , 

 
(i) For mm ' .  
 

0,ˆ',' mlzml ,  0,ˆ',' mlxml , 0,ˆ',' mlyml  

 

z

zyxfi

mlzml

mlzmlmlymlmlxml

e

eeeD

,ˆ','

,ˆ',',ˆ',',ˆ','




 

 

fiD  is directed along the z axis. 

(a) Suppose that the wavevector k of the emitted photon is along the z axis. There is no radiation in 

the z-direction since the polarization vector  is perpendicular to fiD  (the z axis).  

(b) For example, we consider light going in the x direction. It can have two directions of polarization, 

either in the z or in the y direction. A transition in which m = 0, can produce only light which is 
polarized in the z direction.  
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Fig. m' = m. zfi //D . The light propagating along the x direction. It is a linearly polarized wave 

(along the z axis). 
 
(ii) For 1'  mm  
 

0,ˆ','  mlrml ,  0,ˆ',' mlzml . 

 
where 
 

2

ˆˆ
ˆ

yix
r


 . 

 
(iii) For 1'  mm  
 

0,ˆ','  mlrml ,  0,ˆ',' mlzml . 

 
where 
 

z

x
k

Dfi e
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2

ˆˆ
ˆ

yix
r


  

 
We now consider the matrix element with 1'  mm . 
 

mlrmlmlrml

mlrrml

mlyxml

mlzyxml

yx

zyxfi

,ˆ',',ˆ','

,ˆˆ','

,ˆˆ','

,ˆˆˆ','













ee

ee

ee

eeeD

 

 
where 
 

2
yx iee

e


 ,  
2

yx iee
e


 .  (Jones vector notation) 

 
or 
 

)(
2

1
  eeex , )(

2

1
  eee

i
y  

 
and 
 

  eeee rryx yx ˆˆˆˆ  

 
Note that 
 

0  ee .  0  ee  

 

1  ee .  1  ee  

 
 
(a) When 1'  mm , 
 

],ˆ',',ˆˆ',' mlrmlmlyxml yxfi  eeeD  
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has the same direction of the left circularly polarization vector ( e ). Then the emitted photon which is 

right circularly polarized (e+), can propagate along the z axis. A photon with right-hand circular 
polarization carries a spin +ħ in the z direction (the propagation direction). 
 

 
 
Fig. The case of 1'  mm  (right circularly polarization). A right circularly polarized photon 

(e+) propagates with a wavevector k in the z direction. Note that the electric field is 

denoted by yx tkztkz ee )sin()cos(   . This electric field rotates in clock-wise sense 

with time t, and rotates in counter clock-wise sense with z (as the wave propagates 
forward). The corresponding spin of the photon is directed in the positive z direction (ħ). 

)(  eD
if . )(  eE . ( 1  ee , 0  ee ). 

 
 
(b) When 1'  mm  
 

],ˆ',',ˆˆ',' mlrmlmlyxml yxfi  eeeD  

 

is parallel to the right circularly polarization vector e . The emitted photon with left circularly 

polarization ( e ) can propagate along the z axis. A photon with the left-hand polarization carries a spin (-

ħ), that is, a spin direction opposite to the z direction.  
 
 

k

D

e

+Ñ
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Fig. The case of 1'  mm  (left circularly polarization). A left circularly polarized photon (e-)  
propagates with a wavevector k in the z direction. Note that the electric field is given by

yx tkztkz ee )sin()cos(   . This electric field rotates in counter clock-wise sense with 

time t, and rotates in clock-wise sense with z (as the wave propagates forward). The 

corresponding spin of the photon is directed in the negative z direction, as -ħ. )(  eD
if . 

)(  eE . ( 1  ee , 0  ee ). 

 

The rules on m  can be understood by realizing that   and _  circularly polarized photons carry 
angular momenta of +  ans - , respectively, along the z axis, and hence m must change by one unit to 
conserve angular momentum. For linearly polarized light along the z axis, the photons carry no z-
component of momentum, implying 0m , while x or y-polarized light can be considered as a equal 

combination of   and _ photons, giving 1m . 
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