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Here we discuss the quantum mechanics on the interaction of electrons in atom with the
electromagnetic field. The electromagnetic field as well as electrons, are quantized. As a result of
the interaction of electrons with photon (quantization of the electromagnetic field), the
phenomena of the absorption and emission of photon occur. The emission of photon consists of
stimulated emission and spontaneous emission. The spontaneous emission can be derived only if
the electromagnetic field is quantized. The A and B coefficients are introduced by Einstein.
Although the electromagnetic field is treated classically, the concept of spontaneous emission as
well as the absorption and stimulated emission can be well explained qualitatively. Here we
show how to calculate the transition rates for the spontaneous emission, stimulated emission, and
absorption using the Fermi’s golden rule and the Wigner-Eckart theorem. Both the stimulated
emission, and absorption are proportional to the number of photon, while the spontaneous
emission is independent of the number of photon. The polarization vector of the photon during
the transition depends on the selection rule for the matrix element of transition rate. These results
are related to the angular momentum conservation, the RHC photon has a spin angular
momentum (+ 7 ) and the LHC photon has a spin angular momentum (-7 )

The interaction of electrons with an electromagnetic field can be treated by means of time
dependent perturbation theory, since the electromagnetic interaction is comparatively weak, as is

2
shown by the smallness of the fine-structure constant « :%zé. This smallness of this
number is of the fundamental importance in quantum electrodynamics.

1. The interaction of atoms with radiation (quantum mechanics)
The Hamiltonian of the classical radiation field ( p : momentum operator of the system, Quantum

mechanical operator) is given by
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where (= -e is the charge of electron (e>0) and ¢= 0.
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We use the Coulomb gauge V- A = 0. Then we have the perturbations such that
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where we use the vector potential A for the classical case.
In quantum mechanics, the interaction of atoms with radiation is given by
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The creation operator and the annihilation operator are defined by
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Here we calculate the transition probability for the absorption and emission of photon by
electron. Using the Fermi’s golden rule for the sinusoidal time-dependent perturbation, we get
the transition rate as
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for the emission, where |I> and | f> are the final state and initial state of the atomic system. The

first term is the stimulated emission and the second term is the spontaneous emission.

2. Electric dipole approximation
We use the electric dipole approximation. In this approximation we assume

(i) e ~1 since k-r = 277[r0 <<1
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where A is the wavelength of the light and ry is the spacial spread of electron wavefunction,
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and |I> are the final and initial states of the atomic system. E,” - E” = hw = ho,
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In electric dipole transition, the matrix element <f | f)||> is the decisive quantity that must be

evaluated. This can be related to the matrix element of the position operator 7, if the unperturbed
Hamiltonian is of the form
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and if V (#) commutes with 7. Under these conditions, we have
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So we obtain the transition rate, within the electric dipole approximation, for the emission and
absorption of a photon of the energy %, , by electrons in the atom
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The first term corresponds to the stimulated emission (proportional to N, ) and the second term

corresponds to the spontaneous emission (N, ;=0).
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Fig.  Stimulated emission process and spontaneous emission. E; = E, —7i@.

We also have
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Absorption

Fig.  Absorption process. E; = E, —hw.

The transition rate for the absorption and stimulated emission is given by
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The selection rule is determined from the matrix element
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3. Transition rate for emission and absorption



The emitted photon (with a fixed polarization) having a wave number between k and k +dk in

the solid angle d€2is given by
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where the dispersion is given by @ = ck . Using the Fermi golden rule, the transition probability
per unit time to a particular final state of the atom is given by
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The transition rate for the emission is
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We note that
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The transition rate for the absorption is
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Planck’s radiation law
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Let the number of atoms in the state |1> and the state |2> be N, and N,.

equilibrium, we have

In the thermal
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where E, — E, =hw, (>0).
The number of photons undergoing absorption per unit time is
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The number of photons undergoing emission per unit time is
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In thermal equilibrium, the number of photons for the emission is the same as that for the
absorption,
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Then we get the Planck’s distribution function
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The coefficients A,, and B,, are defined as
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The electromagnetic energy (per unit time) emitted arising from the spontaneous emission,
can be obtained as
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6. Calculation of ZK f le(k,s)- 7| i>‘2

The unit vectors &(k,s=1), &(k,s =2), and k are chosen to point along the X-, y-, and z-axes.

We also assume that the wave functions describing states |I> and | f> have been chosen real such

that < f |F| i> = R is a real three-dimensional vector;
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Fig. Two polarization vectors (e;, and e;) perpendicular to the wave vector k. The vector

R= < f |17|i> is denoted by a red arrow. R = < fir i> = |R|(sin0cos¢, sin@sing,cosd).

7. Transition from the 2p state to the 1s state for the hydrogen atom
For the 1s state, we have
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Then we have the integrals
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where m =1, 0, and -1. The transition rate is given a formula
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where

The we can evaluate the lifetime as
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8. Calculation using Mathematica
Clear["Global «"];Z=1;
exp_ *:=exp /. {Complex[re , im ] = Complex[re, -im]}
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Larmor’s power formula (classical theory)

Classically, any charged particle radiates when accelerated and that the total radiated power

is proportional to the square of the acceleration. The Larmor’s power formula for an accelerating
charge is given by
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P =§V2 =§a2. (erg/s)



where a=V is the acceleration. This equation is the basis of the derivations of radiation from a
short dipole antenna

(a) Model of simple harmonics (Feynman)

Suppose we have an oscillating system (classical). Let us see what happens if the
displacement X of the charge is oscillating so that the acceleration a is given by

2 2
a=-w, X=-m, X,cos(a,t),
where

X =X, cos(a,t).
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The average of the acceleration squared over a period time T = “7 is calculated as
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Then we have
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(b) Model of circular motion
The centripetal acceleration a is given by

a=aw,r.
where r is a radius of the circle. Then P is obtained as
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3¢’

which has the same expression derived from that based on the quantum mechanics.

10. The transition rate for stimulated emission and absorption
The transition rate is determined by the matrix element defined by
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where R is the vector defined by
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11.  Calculation of the matrix element using the Wigner-Eckert theorem

Suppose that
(r|f)y=(r|nI'm) =R ,.(N)Y," (6,9),

(r|i) =(r[nim) =R (r)Y,"(6,9)



Then we have the matrix element as
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The selection rule for the electric dipole moment is determined
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where g= 1, 0, -1. This matrix can be rewritten in the form (the Wigner-Eckart theorem),
(n'1'm'[T"|nlm)

where T." is the spherical tensor of rank-1,
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(a) Wigner-Eckart theorem
According to the Wigner-Eckart theorem, we have the selection rule
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n,1,m)#0 for m'=m+q and for I'=1+1,1,
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(b) The parity

AT, q(l)fr = —'fq(l) , (odd parity)
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Thus only the transition is allowed only for

I'-l = odd integer

In the case of electric dipole transitions, the final and initial states must have different parities.
As a result, the electric dipole transitions like 1S — 2S, 2p — 3p, and so on are forbidden, while

the transitions like 1s — 2p, 2p — 3s, and so on are allowed.
((Conclusion))
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12. Selection rule for the transition
The matrix element:
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n,I,m)

+ (1", m T

n,I,m)

I~y

(1
', mT,"

e, ( nl,m)+e-e(n',I',mT"
e (I mTe

&

n,I,m)

+&

n,I,m)

(a) For the right-hand circularly polarized wave,

g=e (RHC photon)

+

I =e, -e, (n,I'mT"nl,m)+e, e (n,I'mT"
=(n',I',m'T,"|n,1,m)

The selection rule is m=m+1.

(b) For the left-hand circularly polarized wave

E=e_ (LHC photon)

| —e 'e+*<n',|',m'|-|:1(l)

— (1" mTY

nlm)+e -e,(n',I'mT"

n,1,m)

The selection rule is m'=m-1.
(©) For the linearly polarized wave

e=e,

nl,m)+e, -e (n,1',m[T¢

n,l,m)+e_ -e_*<n',|',m'|f_(11)

n,1,m)

n,1,m)



| —e, _e+*<nv,|v’mv|'ﬁ(l)

=(n, 1", m'T"|n,1,m)

The selection ruleis 'mMm'=m..

nl,m)+e, - e, (n,1',mT,"

nlm)+e, e (n',1,mT

n,1,m)

12. Formula for the spontaneous emission (electric dipole, magnetic dipole, and electric
quadrupole)

The constant A for the spontaneous emission is given by

4r%e’

Ve j-d @06 (@, — a))(2 o 3thZ‘ >‘
47z e’ Vo’
“Vmo, j dwd(@=o) 55
S oth9- EPD D=(e0):DMl) ke )+ otk £k

(a) Electric dipole contribution

A, = \z/mze f oS (w, — a))(z )3 7 )
4’”" jdwa(wo a))(z)%i”\(f A
=\jr711[22)0 (2\7/;;30&;18?”“ A
e
ek
=4 i
or
Ay = ‘3‘;”02 (F erli)f
C



(b) Magnetic dipole contribution
The contribution from the magnetic dipole is given by

47e?
Vmlw

| (k -F)(&(k,S) - p)—(&(k,S) - F)(ik - p)| >

Ang = j dod(0, - 0) s )3 n dQE( :

We note that

(rlie-P)a(h,)- 5~ 69)- Pk - o) =2 (k- P)a(h.9)-V ()] = 6k, ) - )Tk -V ()]
=L P 8) Y ()~ -V () e(k9) 1))

= }?—(k x&(k,s))[rxVy(r)]

= (k x g(k,S))<i’|’c x ﬁ|w>
= (k x s(k,S))<l’|i|'//>

The orbital magnetic moment is defined by

Hg €
__Hey___° 7
a h 2me

leading to
(r|(k - P)(e(k,S)- p)—(e(k,S)-F)(k - p)ly) = (k x e(k, S))(—%WV!W/)

or

(k- F)(&(k,9)- p)—(e(k,S) - F)(k - p)——zi(k x&(k,))it ,

Thus we have
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Areg = \‘ane J‘d @6 (w, - W)()Wd Zsl<f|—%(kxg(k,s))ﬁ|i>
47ze jd 0S(w, — a))(z\;)%meC i) dQZ‘ f|(e <e(k, S))y| >‘2

2

_4r’e® Ve, mc’ a)0387z<
Vmle, 27)’c’h € ¢ 3
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2

A

Ali)

4 3

or

2

A

Ali)

46003
Arag = 5 (f

(©) Electric quadrupole contribution
The contribution from the electric quadrupole is given by

4z
Vm

Ze _[d o (w, — )

Ay = 3 3thZka (k-F)(&-p)+(&-F)(ik - P)|>

(2) s 2

Note that

(kP P+ el D) =53 ek
_'ngi ol FIR&]i)
N

where

and

%X %R

Ji)=(E, —E)(f

> = ha)ﬁ<f

i),

We note that the electric quadrupole moment is defined as



A N R
Qij :q(xixj_§|r|25i,j)9 (1)

where g = - (e>0) for the electron. The extra term proportional to &; ; in Eq.(1) does not matter
because it gets multiplied by gk; giving &-k which is zero. We interpret this as an electric

quadrupole transition. Its transition probability is of the same order of magnitude as the one from
the magnetic dipole moment and much smaller than the transition probability from the electric
dipole moment.

Thus we have

2

47r

A
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A, = ili)
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APPENDIX Einstein A-B co-efficient

Einstein coefficients (A and B) are mathematical quantities which are a measure of the
probability of absorption or emission of light by an atom or molecule. The Einstein A coefficient
is related to the rate of spontaneous emission of light and the Einstein B coefficients are related
to the absorption and stimulated emission of light.

Here we discuss the transition rate for the two-level system. The absorption and emission of
photons occur due to the transition between two levels. According to Einstein, we set up the rate
equations for N, and N,



Stimulated emission

E Spontaneous emission
? A
A21 Blzv_v B21V_V
E, Absorption

dN — —
L= AN, —N,B,W(w)+ N,B, W (w)

dt
dN,

dt

where N; and N, are the number of occupancy for the level 1 and level 2. Note that the spontaneous

A21N2 + NlBuW(w) - NZBZIW(w)

emission is independent of V_\/(a)) . In the case of thermal equilibrium, we have

an, N,
dt  dt

or
N,A, — NIBIZW(CU) + NanW(a’): 0.

For thermal equilibrium with no external radiation introduced into the cavity

W(w) =W, (@)

with

N1 e_,BEl
W ZE = exp(fho), (B=1/kgT)
2



Then

Ay
V_\/T () = Ay _ B,,
B.e”" ~B, ghhe _By’

which is compared with the Planck’s law,

— heo® 1
Wt(®)=——————,

T(@) ¢’ e’ —1

with

Bl2 = le

A, ho’

B, ~=°c’
Wt (a))ziﬁ,

The energy density in thermal equilibrium between @ and @+dew is given by Wt (w)dw. We
know that the Planck’s law for the radiative energy density is given by

n= .
e/ _q

We note that A,, can be evaluated from the quantum mechanics,

2

A A

ri>

4620)2 Kf

¢ 4o’
= e W =5l

3 , (derived from the quantum mechanics)
C

A,
We also note that

hay, o : :
Ay _ho, . (Einstein A-B coefficient relation

B, =

where

AE=E,-E =hw=hv.



((Note)) The expression for W(v)
Since

W (w)de =W(v)d 1%

we have
27W (w)dv =W (v)dv,
or

87zhv? 1
¢ M1’

W (v) = 22W (@) =

where

h 3
o' 2271 sahy
z°C z°c’ 27 ¢




