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1. What is the Berry phase?

In classical and quantum mechanics, the geometric phase, Pancharatnam—Berry phase
(named after S. Pancharatnam and Sir Michael Berry), Pancharatnam phase or most commonly
Berry phase, is a phase difference acquired over the course of a cycle, when a system is
subjected to cyclic adiabatic processes, which results from the geometrical properties of the
parameter space of the Hamiltonian. The phenomenon was first discovered in 1956, and
rediscovered in 1984. It can be seen in the Aharonov—Bohm effect and in the conical intersection
of potential energy surfaces. In the case of the Aharonov—Bohm effect, the adiabatic parameter is
the magnetic field enclosed by two interference paths, and it is cyclic in the sense that these two
paths form a loop. In the case of the conical intersection, the adiabatic parameters are the
molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave



systems, such as classical optics. As a rule of thumb, it can occur whenever there are at least two
parameters characterizing a wave in the vicinity of some sort of singularity or hole in the
topology; two parameters are required because either the set of nonsingular states will not be
simply connected, or there will be nonzero holonomy.
http://en.wikipedia.org/wiki/Geometric_phase

((Geometric phase, Berry’s phase))
A particle which starts out in the n-th eigenstate of H(0) remains, under adiabatic condition,
in the n-th eigenstate state of H(t), picking up only a time-dependent phase factor

an (l) SN eib‘n (t)eiy,. (t)Wn (l‘)

where 6 (¢) is the dynamic phase and y,(¢) is the so-called geometric phase. It is surprising that

the existence of the Berry phase has not been noticed for almost 60 years since the development
of the quantum mechanics.
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2. Adiabatic theorem (Griffiths, Qquantum Mechanics)
If the Hamiltonian is independent of time, then a particle which starts out in the n-th
eigenstate such that

HO)|y,(0)) = E,0)|w,(0)
If the Hamiltonian changes with time, the eigenstate and energy eigenvalue are time dependent

H()

v, ()= E, ()

v, ()
with the condition
(v, O, ) =3,
where
(v, O, )= [dry, 0w, (r0)

We now consider the time-dependent Schrodinger equation
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We assume that
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where the dynamic phase is defined by
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((Note)) The phase factor from the Schrédinger equation
., 0
i, (0= E,(0p,(0)

When we assume that , (¢) = exp[—i&,(¢)]. The substitution of this into the Schrodinger equation

leads to

o(t) = —E"T(t), or 0,(t) = —%jE (¢")dt'

Substituting these equation into the Schrodinger equation, we get
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= ZEn (f)Cn (t)eia,,(t)
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Then we have
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or

v, ()¢
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v, (0)e"" == c, ()

Multiplying <l//m (t)| from the right side of this equation we get

Z[én (t)<l//m () e (t)>ei9n ()
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v, (0)e"" == ¢, (), )

or

Zén (1), €% = _z c (f)<Wm Oy ( t)>e[9n(t)

or

6u(0) = =2 ¢, (O, O]y, ()"
=—c, Oy, Oy, ()= c, O, O]y, 1))

n#m

When we neglect the second term, we have
¢, (1) ==, O, Oy, )

The solution of this equation is obtained as
c, (t)=c, (0)e””

with

t

v, = iJ. <1//m (t')|l,/'/m (t')>dt' (geometric phase, Berry phase)

0

where y, is real since

d
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If the particle starts out in the n-th eigenstate (¢,(0) =1 and ¢, (0) =0), then we have

¥ (l‘)> = 0D i7a (D)

v, (1))
It remains in the same n-th state with additional phase factors.

((Note)) proof of the formula

o wa OH@|, )
<l//m (t)|‘//n (l‘)> = E(0)—E. (1) for m#n

We start with
H(@\y,(0)=E,0ly,®)

Taking the derivative of this equation with respect to time ¢,
ﬁl(t)h//n(t)} + H@O)\yr, () = E, (0w, (1)) + E, (0], (1))

or

H()

w, () + H(t)

v, (0)+E, (1)

v, () = E, (1) v, (1))

Multiplying <l//m (t)| by the above equation from the left side, we get

W OO, O)+ (v, OOy, 0) = E, 0w, 0]y, )+ E,0){p, O, )
or

W OHO, )+ 0,0, 0) = £,05,, + E,0)w, 0, 0)
For n#m

(W, O[HOy, 0) =[E, ()~ E, Xy, 0]y, 0)




or
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3. General formula for phase factor

M.V. Berry, Quantum Phase Factors Accompanying Adiabatic Changes, Proc. R. London A392,
45-57 (1984).

Let the Hamiltonian H be changed by varying parameter R [R = (x, y, z)] on which it
depends. Then the excursion of the system between times ¢t = 0 and ¢t = T can be pictured as

transport round a closed path R(¢) in parameter space, with Hamiltonian H (R(?)) and such that
R(T) = R(0). The path is called a circuit and denoted by C. For the adiabatic approximation to
apply, T must be large.

The state vector |l//(t))> of the system evolves according to Schrodinger equation given by

ih%hﬂ (1)) = ihly/ () = H(R@))|w (1))

At any instant, the natural basis consists of the eigenstates |n(R)> (assumed discrete) of H (R)

for R = R(?), that satisfy

H(R@)|n(R()) = E,(R())|n(R(2))),

with energies E (R(¢)). The eigenvalue equation implies no relation between the phases of the
eigenstates |n(R)> at different R.
Adiabatically, a system prepared in one of these states |n(R(O))> will evolve with

H and so be in the state |n(R(t))> att

v (0) = expl— [ E, (R@)drlexpliz, (0] n(R(@)

= exp[i6), (n]expliy, ()] n(R()))

where y (¢) is a geometric phase, and the dynamical phase factor 6, (¢) is defined by



6, =—%IEH(R(r')>df. 6,0)=- E,(0)
Plugging the solution form into the this Schridinger equation, we get

L2 nCR(O) = 1, (ROIACR) + 17, 00RO = E,RO(R(E)
or

|A(R(2))) +i7, (0)|n(R(2))) = 0.

Taking the inner product with <n(R(t))| we get

(n(R@)|A(R@))) +i7, () n(R(@)|[n(R(1))) = 0,

Since (n(R(1))|n(R(t))) =1, we have

7,(2) = i{n(R())|#(R(©)))

|n(R(t))> depends on ¢ because there is some parameter R(z) in the Hamiltonian that changes

with time.
[R(R@)) = |V g (R(Y) - R()
so that
7,(0) = i(n(RO)|V n(R(Y) - R(0)

and thus

R,

v,@)=i I <n(R(t))|V Rn(R(t))> -dR (path integral)

R;



4. Expression of y, (C)

We calculate the geometric phase y, (C) as follows.

For <n|n> =1 (normalization), we have

on on
—\n)+{n
({5

For <n|m> =0 (n#m) (orthogonality)

For  (m|H|n)=E,(m|n)=0 (n #m)

0,{m{}n) = (0 m{n) + (o, 1] + {1l 0) = 0
or

E,(0,m|n)+(m|0,H|n)+E,(m|o,n)=0
Since  (0,m|n)+(m|0n)=0

—En<m|6in>+<m|8iH|n>+Em<m|8in> =0
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The rotation of the vector A4, = <n|Vn> is given by

VxA, =Vx<n|Vn>
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where we use the closure relation and the relations
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Then we obtain
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where we use the relations
(m|on) = (mfo,Fi]n) ’ (n[6,m) = (nl0,H|m)
E -FE, E —-E
with i = x, y, and z. We note that
e e e
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where
an:<n|V1:I|m>, Pmn:<m|V1:I|n>.

Then we get



P xP
v A - nm mn
A= 2Ry

B Z<n|VI:I|m>>< <m|VI:I
-~ (E,—E,)

)

So we have

7,(C)=ifdR - 4,
= i§dR - (n|Vn)
= ifdR -[Re({n|Vn))+iTm((n|Vn))]
= —Im§dR-(n|Vn)

since Re[<n|Vn>] = 0. Note that
A, = i<n|Vn> = —Im<n|Vn>

is called the Berry’s vector potential or Berry’s connection.

Using the Stokes’ theorem, we get

7,(C) =i§da-[w<n|vn>]
= §da - 4,
=—Im{da- 4,
=—fda-v,

where da denotes area elements in R space

V (R)=Im Z <”(R) |VRI:I(R)|m(R)> X <m(R) |VR1:I(R)|n(R)>
' (E,(R)—E,(R))

The notation for ¥V, is the same used by Berry in the original paper (1984).

n

S. Gauge transformation
The magnetic field B is defined as



B=VxA

Then B is invariant under the Gauge transformation
A'=A4A+Vy

Suppose that the phase of the eigenstate is redefined as
) = |n) = & |m)

where A(R) is an arbitrary phase,

A'= i<n'|VRn'>

= i<n |ei‘9(R)[—iVRl9(R)e’iH(R)|n> + e’i‘g(R)|VRn>
i(n|V gn)+i(n|n)[=iV O(R)]
= A+V  0(R)

Under this transformation, the geometrical phase is invariant, since

7,'(C) = i$dR - (n'|Vn')
= ifda [V, x (n'|Vn')]
= §da-V,x A
= fda -V x[A+V ,0(R)]
= §da-V x4
=§da-B

6. Spin in Magnetic Field (the adiabatic approximation)

A particle with the angular momentum J interacts with a magnetic field B via the
Hamiltonian:

H(B) =——gJ:B J-B,

where g, is the Landé-g factor. Note that



J.|m(B)) = hm(B)|m(B)),

where |m(B)> is the eigenstate of J _ with the eigenvalue im(B) .

For any fixed value of B, we have

H(B)m(B)) = E, (B)m(B))
Schrédinger equation:

i<y @) = ALB @1y ) = E, (BOy )
with

[yt =0) = |m(B( = 0)

where |m(B(O))> is the eigenstate of H(B(t =0)).

v (@) =|m(B(2))) GXP[—% I E, (B(¢"))dt'Texpliy,, (1)]

= |m(B(1)))expli6, (H)]expliy,, (1)]

where
1 t 1 1
0,(=— ! E, (B(t"))dt

Plugging the solution form into the this Schrodinger equation, we get

;97 (®)

o '
i m(B() = E, (B m(B@) + | m(B))i="

1= E,,(B@)) m(B(1)))

or

07, (1)

im(B())) = |m(B(t))>7



Taking the inner product with <m(B (t))| we get

im(B(0))|i(B(1))) = L (’)< (B(1))|m(B(1).
Since <m(B(t))|m(B(t))> =1, we have

07, (1)

25 = i(m(B(@)|(B(0)

or

7 (0) = [ (m(B())|r(B(t'))dr'

0

Note that y, (¢) is real, since

(m(B(6))|m(B(£))) +(r(B(t))|m(B(1))) = Re[(m(B(2))|m(B(t)))]= 0

The geometrical character of the Berry phase emerges when the variation of the instantaneous
energy eigenstates with time is restated as their variation with field;

dB(t) 0O
) =202

|m(B(t)>>=—| (B(t)) m(B)) = B-|V ym(B))

This expresses the phase as an integral over field values;

7,(C) = ifdB -(m(B)|V ,m(B))
= i§ dB -[Re((m(B)|V zm(B)))+ilm((m(B)|V ym(B)))] (1)
- —Imj§d3 (m(B)|V ym(B))

Note that
(m(B)|V ym(B))+(V zm(B)|m(B)) = Re[(m(B)|V ym(B))] =0

Stokes’ theorem applied to Eq.(1) gives, in an abbreviated notation.



7,(C)=—Im[da -V, x(m(B)|V ,m(B))
=—Im[da- Y (V,m(B)|n(B))x (n(B)|V ym(B))

n+m

= —Imjda .V (B)
where

V,(B) =Y (Vym(B)|n(B))x(n(B)|V ym(B))

da denotes area element in B space and exclusion in the summation is justified by
(n(B)|Vyn(B)) being imaginary. The off-diagonal elements (n(B)|V zm(B)) are obtained as
follows. Since

H(B)\m(B)) = E, (B)m(B)), (Eigenvalue problem)
we get

V ,H(B)m(B))+H(B)V ym(B)) =V ,E, (B)m(B))+E,(B)|V ,m(B))
But the |n(B)) is an orthogonal set, so for 1 # m, we have
(n(B)|V ,H (B) m(B))+(n(B)|H(B)|V ym(B)) = (n(B)|V ,E,,(B)|m(B))+(n(B)|E,(B)V ym(B))
or
(n(B)V ,H(B)|m(B))+ E,(BYn(B)|V ym(B)) = (n(B)|V ,E,, (B)|m(B)) + E, (B)(n(B)|V ym(B)).
Since

(n(B)|V ;E, (B)|m(B)) =V ,E, (B)(n(B)|m(B)) =0

we get



(n(B)|V ,H(B)m(B))

(n(B)|V ym(B)) =

E,(B)-E,(B)

Hence

V (B)= z[<m(B) |V3ﬁ(B)|”(B)> X <n(B)|VBﬁ(B)|m(B)>

T = (E,(B)-E, (BT

where

HA(B):_gJILlBj,B:_gjﬂBBj.eB’ VB]:I(B)=—gJ'qu

h h 7
Then we get
€ e, e,

(m(B)|J|n(B))x{n(B)|J|m(B)) =

(m(B)\[n(B))  (m(B)||n(B)) (m(B)|J;|n(B))
(n(B)|J|m(B)) (n(B)|],|m(B)) (n(B)|J;|m(B))

(m(B)|J,|n(B)) = %<m(B) J, +J_|n(B))

_1
2

(m(B)|J,|n(B)) +—(m(B)|J_|n(B))

1
2

(m(B)|J,|n(B)) = 2ii<m(B)|j+ ~J_|n(B))

<m(B)|j3|n(B)> = hn<m|n>

=hno,, ,

A

(m(B)|J

+

n(B))=1(j—n)(j+n+1)(m|n+1)

=1(j—m)(j+n+1)S, .,

= h\/(] -m-1)(j+ m)5m,n+1




(m(B)|J |n(B)) =hf(j+n)(j—n+1)(m|n-1)
= h\/(] +n)(j-n+1)o,
= h\/(j +m+1)(j—m)o,,

So we get

[Im[V,,(B)] = —— Im Z[<m(3)|jz|”(3)><n(B)|j3|m(B)>_<m(32|j3|"(B)><H(B)|j2|m(3)>
B e [m(B) - n(B)]

or

ImV, (B)=0.

(m(B)|J,|n(B))(n(B)|J,|m(B))— (m(B)|J,|n(B)}n(B)|J,|m(B))
[m(B)—n(B)Y

1
ImV,,(B) = Wlmr;[

or

ImV,,(B)=0.

(m(B)|J,|n(B))(n(B)|J,|m(B))—(m(B)|J,|n(B))(n(B)|J,|m(B))
[m(B)—n(B)]’

1
ImV, .(B) =Wlm§1[

Since [m(B)—n(B)]* =1, we have

Im[V,,(B)] = B%hzlm > [(m(B)|J,|n(B))(n(B)|J,|m(B))

—(m(B)|J,|n(B))(n(B)|J,|m(B))]
| AU
= Im(m(B)|J,J, ~J.J | m(B))
1 5
= a7 Im(m(B)inJ [ m(B))
m(B)




Here we use the commutation relation

A A A

oy =, =iy
We can put this in a form that does not depend on choice of the 3-axis to lie along B:

m(B)

BS

B

Im[V, (B)] =
We note that
1
\ VBE =—-476(B)

where

This singularity is spherically symmetric. The Berry phase is given by

m(B)

7,(C)=—Im[da-V,(B)=[da- =

B =-Q(C)m(B =0)=-mQ(C)
where QQ(C) is the solid angle subtended by C as seen from the origin in field space.
| 2 1
[ da B = [ B*dQxe, €)= [aa=0(0)

with ep being the unit vector along the direction of B.
((Formula))

1 ) 1
V, (Vy—)=V, —=-475(B
B(BB) BB ()

((Proof)) Vector analysis: Gauss’ law



2 1 1
[aB(v, 2= [aBIV, (V)]

1
= '[da . VB E
- —J'da %
=-| Bde%
=—[do
=-4r
where
1 B
ETTE
which yields the relation
1 2 1
Vi (Vg E) =V, E =—476(B)

where 6(B) is the Dirac delta function.

7. Example: spin 2 under the magnetic field which undergoes a precession
adiabatically



The magnetic field is given by

B =B;sinfcosge, +sinfsinge, +cosbe,

with
o=t
. . A 2y & ~
Spin magnetic moment: g, = — 7 S =—u,0.
where
My = ﬂ . (Bohr magneton)
2mc

The spin Hamiltonian is given by



H(t)=—j, - B() = 1,6 - B(t) = 11,B(1)6 -,

where & is the Pauli spin operator. The eigenstates are given by

6 -n(0)|+ n(t)) = ++n()), 6 - n(t)|-n(t)) = |- n())
where
. (0 1j . (o —i] . (1 oj
o.= , o, = , o, =
* 1 0 g i 0 : 0 -1
CcoS— —sin—
@)= 2], -n@)=| %
' sin— e cos—

The energy eigenstate:
H(0)|+n(0)) = 1, B+ (1)), H(0)|-n(1)) = —p1,BQ)| - n(1))

|+ n(t)> is the eigenstate of H () with the energy eigenvalue E L= UgB(1). |— n(t)> is the eigenstate

of H(t) with the energy eigenvalue £_= -1, B(t) .

We note that we change the parameters: § -7 —6 and ¢ > 7 + ¢ in

COSE
[+n(0)=| it
e sin—
2
Then we get
—SinE
—n()) =
|

COS—
2



cosM —sin—

2 _ 2 | _ |
- IPNEE =—-n(1))
e sinM e’ cosg
2 2

except for the minus sign, when @ — 7 —6 and ¢ — 7 + ¢ (parity operation).

In the spherical co-ordinate,

0 16 L 5
Vi+n(t)=e. —|+n())+e,———|+n(t)) +e 00,
[+n0)=e, [+ nO) + ey 2ol )+ ey 4 n(0)

1| 85 1 o o83

_69—% ' 0 +e¢ '95_ | p

r & sin— rsin@ 0¢ o sin?

2 2
_, 1 ——sin— » . | 0
O ei"’lcosg ¢ sing| i€ sin—

0 16 L5
Vi—n(1))=e,—|-n(t))+e,——|—n(l))+e —|—n(t
[=n0)= e, 5 |=n®) +ey pl=n)+e, s = n0)

I | o | —sin

r o cosZ rsin® 0g| s . ¢

2 2

1 —lcosg | 0

=€ 2 2 lie »

r e"”—sing ¢ 1sin@| ie” cos—

22

Then we get



1.0

1 o o\ —Hsin
<+n(t)‘v‘+n(t)>=eg—(cos— e"¢sin_j 1 29
' 2 2 ei¢—COS—
2
! o .. o0f O
+e¢ . COS — e S1n — g s
rsin @ 2 5 | ie Smg
isin® —
=e
? rsin®
where
(+n(t)| = (cosg e i Singj .
2 2
—lcos—
<—n(t)|V|—n(t)>:egl(_sinﬁ e[¢COSQ] 21 5
' 2 2 e'’ —sin
2
0
+e¢ 1 —Sil’lg e_i¢cosg . g 0
rsin@ 2 5 | ie COSE
icos’ —
— % rsin @

where
(—n()|= (— Sing e cosgj .

7, (C) =i (+n(®)|V|+n(0))-dr
27 isinza
:i£e¢ -e¢mrsinﬁd¢

= 2xsin’ [4
2

=—-7(1-cos®)



y(C)=if(~n(®|V|-n(2))- dr

.0
2z 1COS E )
=] £e¢ ‘e, By rsin 6d ¢
= -27cos’ 4
2
=—r(1+cos®)
or
y (C)=27m—n(l+cosf)=rn(l—-cosH) (mod 27)
A
z
C o /B
S’ Q
’ Y
'. >
\
X

where



dr =e,rsin@dg

The solid angle

4
Q(C) = j 27sin6d0 = 27 (1 - cos )
0
1§ y7i
0, =—|E.(t")dt'=F-LB,T
. hj (1) B,

In conclusion we have

1
L =F-0(C
Vo =¥ ©)






The final state after one rotation where B(T') = B, is then given by

v (1)) = expli6,(T)]expliy, (T)]|+ n(T))

= exp[—iz(1F cosO]exp(+i %BOT )|i n(0)>

We see that the dynamical phase factor depends on the period T of the rotation, but the geometrical phase
depends only on the special geometry of the problem. In this case it depends on the opening angle & of the
cone that the magnetic field traces out.

8. Interference experiment



Suppose that we take a beam of neutrons (all in the same state (i), and split it into two, so that one

beam passes through an adiabatically changing potential, while the other does not. When the two beams
are recombined, the total wave function has the form

1 1
V=SVt e

where i, is the direct beam wavefunction, and /" is the extra phase (in part dynamics, and in part

geometric) acquired by the neutron beam subjected to the varying H. In this case

1 _ y
vl = Z|wo|2(1 +eT)((1+e™)

1
= E|wo|2 (1+cosT')(

.,
- |¢//0|2 sng

. o . 2 .o T . .
The intensity is proportional to |l//| . It shows a peak when sin’ 5 =1 (constructive interference) and is
.o .
zero when sin 5 =0 (destructive interference).

9. Berry’s phase in the Aharonov-Bohm effect

i Magnetic flux line
|

[




The Aharonov-Bohm effect can be explained using the Feynman path integral and the gauge
transformation. Here We discuss this effect based on the Berry’s phase with the gauge transformation.
We assume that g = -e (¢>0). We start with a relation

B=VxA

Under a gauge transformation such that
A'=A-Vy

the magnetic field B remains unchanged,
B=Vx(A+Vy)=Vx A

Suppose that we choose y such that
A=A-Vy=0.

w'(r) is the field-free wave function and can be written as
ie
v (r) = exp(- Ly (r).
hc
where
2(r)=[dr-A@r),
R

where R is an arbitrary initial point in the field region. The Schrédinger equation of y'(r) for
the free particle with A'=0 is

0
~ L Vy=inly,
2m v 8tw

where the new Hamiltonian is that of free particle;

Then we have



.=y, (r—R)

= eXP(—h—)W,,'(" - R) ,
C
le T |. 1 ! _
= exp[—— j dr- Ay, (r - R)]

where

e
fic

v, '(r — R) is the free particle wave function, and R is the position vector of the charged particle around

the contour (the solenoid is situated inside the contour).

le//n = VR[eigl//n'(r - R)] = ;_l_eCA(R) eig l//n'(r - R) + eingl//n'(r - R)

(. [Vaw,) = [dre Iy, (- BT e'g[ A(R) v, (r=R)+V,w,'(r— R)]
= [drly, (- R)]*[’e AR) 7, (r=R)+ VY, (r = )]
= h—A(R) + [drly, (r =RV g, (r = )]
C
= AR) = [drly,'(r= R Vy,'(r = R)]
C

ie
=—A(R
oo (R)

where

Since
v, =R =(r—Ry,) =(r[Tw,) =, |T|r).

v, (r =BTV, (r=R) =— <v/ T |r)r (BT,

v,

we have



I={drly, (r =R Vy, (r-R)]
= % Jdr(y, v,)]

TR+ﬁTR

S+
TR

r><r|f1fR

i ' '
- %<l//n y/n >
i

AT

(w, v,

A

p

i ' !
- %<l//n v, >

=0

since p is the odd parity, and T » 1s the translation operator with 7, R+T r=1.

((Another method))
Note that
A 1 .2 . ho.
[H,X] = 2—[px2,X] =— P
m mi
(w, 4.3, = (v, |05 - 2H|y,") = (E, - E)v, Ew,) =0
(w,|p]w,) =0

From the Berry’s formula, we have

7,(C)=—Im§dR -y, |V, )
:—h—‘1§dR-A(R)

- —h—i§da [V x A(R)]
=—h—i§da-3

- ‘o
fic

This confirms the Aharonov-Bohm effect, revealing that the Aharonov-Bohm effect is a particular
example of geometric phase.



8. Experimental verification of Berry phase (Rajasekar and Velusamy)

z

Fig.1 Circuits on the Poincaré sphere corresponding to the experiment. P: RHC. Q: LHC. X: H. -X:V.

A typical measurement of the Berry phase is as follows. The light beam is split into two channels.
One channel is taken as a reference. In the other channel a set of transformations act. When the beams are
recombined the relative phase arises in the interference pattern. The following is a brief summary of the
experiment.

A linearly polarized beam from a He-Ne laser is split into two beams by a beam splitter. The
measurement beam is taken along a cycle of polarization transformations through the following
three components:

1. A quarter-wave plate (QWP1) oriented with its principal axes at 45° to the electric vector
in the beam.

2. A half-wave plate (HWP) with its axes oriented at an angle 90° + o/2 to that of QWPI.

3. A linear polarizer LP.

The above cycle of transformations can be represented on the Poincaré sphere as shown in Fig. 1.
These three processes represent the path APBQA. Steps 1, 2 and 3 correspond to the parts AP,



PBQ and QA respectively. In these processes the beam gets a geometric phase. Its magnitude is
half the solid angle subtended at the center of the sphere by the area APBQA.

The absolute value of the acquired phase is not easy to determine because it would be buried
in a larger magnitude dynamical phase. However, it is possible to measure the change in the
geometric phase by changing the circuit from APBQA to APCQA. This can be achieved by
rotating the HWP plate about the beam axis through an angle 6. This is recorded by a laser
interferometer system in the experiment. The sign of the phase change depends upon the
direction of rotation of the HWP.

The HWP was rotated into two full rotations in one sense and then two full rotations in the
opposite sense. The phase is found to change with the angle of rotation of the HWP. Further, the
change in the phase is found to continue after a full rotation of the HWP and moreover returned
to the original value after an equivalent amount of reverse rotation. This is attributed to
geometric
phase.

9. Berry’s phase and Foucault pendulum (classical mechnics)
The Foucault pendulum is an example of adiabatic transport around a closed loop on a sphere. The

solid angle subtended by a latitude line 6, is
Q=27(1-sinb,)

due to the Coriolis forces. Relative to the earth (which has meanwhile turns through an angle of 27),
the daily precession of the Foucault pendulum is 27sing,, a result that is obtained due to a

Coriolis forces in the rotating reference frame. Note that the physics of Foucault (classical
mechanics) is discussed in other place.



24.  Foucault pendulum




—

Fig. Rotation of the coordinate axes. OP = r;= ry. {ey, e,}; the old orthogonal basis. {egx, €ry};. and

the new orthogonal basis. The rotation angle is 6. The rotation axis is the z axis.

Assume the Earth is a sphere rotating about the z; axis with constant angular velocity .
Choose a co-ordinate system on Earth with the k axis along the vertical, the xg axis pointing
South, and the yg axis pointing East. S is a latitude of the observer. A is the colatitude. 4 = 90° -

p.
((Equation of motion))

Xp = —ixR +2Q, cos(A)y,
mL

LT .+ sin(A)3
P = _EyR —2Q[cos(A)x, +sin(A)z,]

Z,=—g +i(L —z,)+2Q,sin(4)y,
mL

The pendulum is very long so that the string is essentially vertical at all times.



where

and

where fis the latitude of the location on the Earth. Then we have the differential equations,
¥, = —a’x, + 2Ky,
Fp =0y, — 2K%y
We define the complex number as
Up = Xp + Vg
i, =X, +iV, = =@ (X, +iy,) = 2iK (%, +iV,) = —’u, — 2iKii,,
The diffrential equation is then given by
i, + 2iKii, ++@’'u, =0

with the initial condition

Up(t=0)=x,(t=0)+iy,(t=0)=0, 11, (t =0)=x(t = 0)+ iy, (t =0)=v,.



The solution of the differential equation is obtained by using the Mathematica. The final result is
as follows.

v, cos(K?)sin(£2,¢)
Ql

xR(t) =

v, sin(K#)sin(€;7)
Ql

ye(®) =

where

Since

v, sin(ax)

xXp(t) = cos(Kt)

v, sin(at)

()= sin(Kr)

with

K=Q,sinp



Fig. The oscillation of the Foucault pendulum. K=1. ®=3.voy=1.¢=1-15.

Berry’s phase of Foucault
We use the equation

AQ =27sin G, = k(24h)
where £ is the cosnatnt. From the relation
AQ=2r=k(Ty)

we have the time where the Foucault pendulum undergoes one rotation around the vertical
reference ine is

T, = ?4h
sin 6,




Foucault’s pendulum, Pantheon, Paris

The first public exhibition of a Foucault pendulum took place in February 1851 in the Meridian of the
Paris Observatory. A few weeks later Foucault made his most famous pendulum when he suspended a 28
kg brass-coated lead bob with a 67 meter long wire from the dome of the Panthéon, Paris. The plane of
the pendulum's swing rotated clockwise 11° per hour, making a full circle in 32.7 hours. The original bob
used in 1851 at the Panthéon was moved in 1855 to the Conservatoire des Arts et Métiers in Paris. A
second temporary installation was made for the 50th anniversary in 1902.

http://en.wikipedia.org/wiki/Foucault pendulum

The angular velocity of the Earth:

27

Q,=—""——=7.27221x10" rad/s
24 x3600

Latitude of Panthéon, Paris, France

P=48.8742° N.A=90°-=41.1258°.
The detail of the Foucault pendulum:
L=67m. m =47 kg.

The angular velocity of the pendulum

0= \/g =1/@ =0.382451 rad/s
L 67

2
T, =" =16.4287 s.

w

K=0,sinf3=0.753267 x 7.27221 x107°=5.477916 x 10” rad/s

Q, =V’ +K* =0.382451 rad/s ~ o.

The period:

2
TK:%2114700 s =31 hours 51 min 40 sec



Fig.  Foucault’s pendulum, Pantheon, Paris
http://en.wikipedia.org/wiki/Foucault_pendulum
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APPENDIX-I: Derivation of Green’s function
5 1
V—=—-4no(r),
r

where

r=(x,y,z), F=AxX"+y 4+,

We consider a sphere with radius (& — 0)

J.drV~V% = jdrA% = J.da-V% =J.da(n-V%)

where
reyX 4y 42, n=t=e =(%,2.5), da = nda
r rrr
and
1 | 1
V—:—%, n V—:r-(—%):——2
r r r r r
1 .. .
V-V (=) =0 except at the origin. (see the proof below by Mathematica)
r

We now consider the volume integral over the whole volume (V - V') between the surface 4 and the
surface of sphere 4' (volume 77, radius € — 0) . We note that the outer surface and the inner surface are

connected to an appropriate cylinder.



11

ViV

1
Since V -V(—) =0 over the whole volume V' - V', we have
r

Using the Gauss's law, we get

1 1
drvV-V—= | drvV’—
:[V' rv Vr V:fV' rvV

v r

z.A[da(n-V%)+£da'(n'-V%) =0
or
£ da(n - v%) = —/J;da'(n'-V%) = ! da'(n - v%)

where n'=—n =—7 and dr is over the volume integral. Then we have

[da(n- vlZ | da(—iz) =4z’ iz = —47 = —4z [drs(r)
) r r &

Using the Gauss's law, we have



[da(n- vl - [arv- vl o4z [aro(r)
A r 4 r 14
or
1
A—=-4715(r).
r
or
Ay ==5(r)
4’ '

(Mathematica))
Clear["Gobal "];

Needs["VectorAnalysis ']

SetCoordinates[Cartesian([X, Y, Z]]

Cartesian[x, Y, Z]

ri={x,y, z};r=vrl.r1

2

X +y2+22

Grad[f] /7 Simplify
r

(= ST A )
<X2+y2+22>3/2’ <X2+y2+22>3/2’ <x2+y2+22)3/2
1 .
Laplaman[—] // Simplify
r
0
APPENDIX-II Feynman path integral on Aharonov-Bohm effect

The classical Lagrangian L is defined by

L=lmv2—q¢+1v-A.
2 c



in the presence of a magnetic field. In the absence of the scalar potential (¢ =0), we get

L=imv+dy. a=19-%y. 4,
t2 c ' c

where the charge g = -e (¢>0), 4 is the vector potential. The corresponding change in the action
of some definite path segment going from (r,_,¢,_,) to (r,.t,) is then given by

t/Y
SOmn-1)—S"(mn-1-= | dt(ﬂ)A,
c dt

n-1

This integral can be written as
t, r,
€ I d{ﬂj.A:E J-A-dr,
¢ dt c.

where dr is the differential line element along the path segment.

Now we consider the Aharonov-Bohm (AB) effect. This effect can be usually explained in
terms of the gauge transformation. Here instead we discuss the effect using the Feynman’s path
integral. In the best known version, electrons are aimed so as to pass through two regions that are
free of electromagnetic field, but which are separated from each other by a long cylindrical
solenoid (which contains magnetic field line), arriving at a detector screen behind. At no stage do
the electrons encounter any non-zero field B.



Fig.

Aharonov—-Bohm effect

il Screen

Solenoid

Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split into two
paths that go to either a collection of lines of magnetic flux (achieved by means of a long
solenoid). The beams are brought together at a screen, and the resulting quantum
interference pattern depends upon the magnetic flux strength- despite the fact that the
electrons only encounter a zero magnetic field. Path denoted by red (counterclockwise).
Path denoted by blue (clockwise)



Reflector

Incident Electron bea,

Screen

out of page

Reflector

Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams go into
the two narrow slits (one beam denoted by blue arrow, and the other beam denoted by red
arrow). The diffraction pattern is observed on the screen. The reflector plays a role of
mirror for the optical experiment. The pathl: slit-1 — C1 — S. The path 2: slit-2 — C2 — S.

Let y,, be the wave function when only slit 1 is open.

Vs =gl [ dr-Aw)], (1)

The line integral runs from the source through slit 1 to r (screen) through C,. Similarly, for the
wave function when only slit 2 is open, we have

Va0 =g (Pexpl=i [, dr- AP, @)

The line integral runs from the source through slit 2 to r (screen) through C,. Superimposing
Egs.(1) and (2), we obtain

Vo) =i (Pexpl= [ dr- AWy (Pexpl=2 [, dr- A(r).



The relative phase of the two terms is
'fPathldr A(r) = Jpathz dr- A(r) = §dr - A(r) = I(V xA)-da,

by using the Stokes’ theorem, where the closed path consists of pathl and path2 along the same
direction. The relative phase now can be expressed in terms of the flux of the magnetic field
through the closed path,

AO="fd-dr=="[(VxA)da=—[B da=—.
ch ch ch ch

where the magnetic field B is given by
B=VxA.

The final form is obtained as
ie .
W) =expl—— dr-A(r)]y, (r)exp(=iAd) + v, ,(r)],
hc Path?2

and @ is the magnetic flux inside the loop. It is required that
AO=2nr.
Then we get the quantization of the magnetic flux,

> =n2zzch ’
e

where 7 is a positive integer, n =0, 1,2,..... Note that

2ch
e

=4.1356675x 107 Gauss cm”.

which is equal to 2@, where @, is the magnetic quantum flux,

_ 2mch
2e

@, =2.067833758(46) x 10”7 Gauss cm”.  (NIST)



