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1. What is the Berry phase? 

In classical and quantum mechanics, the geometric phase, Pancharatnam–Berry phase 
(named after S. Pancharatnam and Sir Michael Berry), Pancharatnam phase or most commonly 
Berry phase, is a phase difference acquired over the course of a cycle, when a system is 
subjected to cyclic adiabatic processes, which results from the geometrical properties of the 
parameter space of the Hamiltonian. The phenomenon was first discovered in 1956, and 
rediscovered in 1984. It can be seen in the Aharonov–Bohm effect and in the conical intersection 
of potential energy surfaces. In the case of the Aharonov–Bohm effect, the adiabatic parameter is 
the magnetic field enclosed by two interference paths, and it is cyclic in the sense that these two 
paths form a loop. In the case of the conical intersection, the adiabatic parameters are the 
molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave 



systems, such as classical optics. As a rule of thumb, it can occur whenever there are at least two 
parameters characterizing a wave in the vicinity of some sort of singularity or hole in the 
topology; two parameters are required because either the set of nonsingular states will not be 
simply connected, or there will be nonzero holonomy. 
http://en.wikipedia.org/wiki/Geometric_phase 
 
((Geometric phase, Berry’s phase)) 

A particle which starts out in the n-th eigenstate of H(0) remains, under adiabatic condition, 
in the n-th eigenstate state of H(t), picking up only a time-dependent phase factor 
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where )(tn  is the dynamic phase and )(tn  is the so-called geometric phase. It is surprising that 

the existence of the Berry phase has not been noticed for almost 60 years since the development 
of the quantum mechanics. 
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2. Adiabatic theorem (Griffiths, Quantum Mechanics) 

If the Hamiltonian is independent of time, then a particle which starts out in the n-th 
eigenstate such that 
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If the Hamiltonian changes with time, the eigenstate and energy eigenvalue are time dependent 
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with the condition 
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We now consider the time-dependent Schrödinger equation 
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We assume that 
 


n

n
ti

n tetct n )()()( )(   

 
where the dynamic phase is defined by 
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____________________________________________________________________________ 
((Note)) The phase factor from the Schrödinger equation 
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When we assume that )](exp[)( tit nn   . The substitution of this into the Schrodinger equation 

leads to  
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Substituting these equation into the Schrodinger equation, we get 
 













n

ti
nnn

n
n

ti
nn

n
n

ti
n

n

ti
nnnnnnn

n

n

nn

etttici

tetctE

tettctHettticttcttci

)(

)(

)()(

)()()(

)()()(

)())(()(])()()()()()()([

















 

 
Then we have 
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Multiplying )(tm  from the right side of this equation we get 
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When we neglect the second term, we have 
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The solution of this equation is obtained as 
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where n  is real since 
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If the particle starts out in the n-th eigenstate ( 1)0( nc  and 0)0( mc ), then we have 
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It remains in the same n-th state with additional phase factors. 
 
((Note)) proof of the formula 
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We start with 
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Taking the derivative of this equation with respect to time t, 
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Multiplying )(tm  by the above equation from the left side, we get 
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For mn   
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3. General formula for phase factor 
M.V. Berry, Quantum Phase Factors Accompanying Adiabatic Changes, Proc. R. London A392, 

45-57 (1984). 
 

Let the Hamiltonian Ĥ  be changed by varying parameter R [R = (x, y, z)] on which it 
depends. Then the excursion of the system between times t = 0 and t = T can be pictured as 

transport round a closed path R(t) in parameter space, with Hamiltonian ))((ˆ tH R  and such that 

)0()( RR T . The path is called a circuit and denoted by C. For the adiabatic approximation to 

apply, T must be large. 

The state vector ))(t  of the system evolves according to Schrödinger equation given by 

 

))())((ˆ))())( ttHtit
t

i  R



 . 

 

At any instant, the natural basis consists of the eigenstates )(Rn  (assumed discrete) of )(ˆ RH   

for )(tRR  , that satisfy 
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with energies ))(( tEn R . The eigenvalue equation implies no relation between the phases of the 

eigenstates )(Rn  at different R. 

Adiabatically, a system prepared in one of these states ))0((Rn  will evolve with  

Ĥ  and so be in the state ))(( tn R  at t 
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where )(tn  is a geometric phase, and the dynamical phase factor )(tn  is defined by 
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Plugging the solution form into the this Schrödinger equation, we get 
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or 
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Taking the inner product with ))(( tn R  we get 
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Since 1))(())(( tntn RR , we have 
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))(( tn R  depends on t because there is some parameter )(tR  in the Hamiltonian that changes 

with time. 
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4. Expression of )(Cn  

We calculate the geometric phase )(Cn  as follows. 

For 1nn  (normalization), we have 

 

0







x

n
nn

x

n
, 

 

0







y

n
nn

y

n
, 

 

0







z

n
nn

z

n
. 

 

For 0mn   ( mn  ) (orthogonality) 
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For 0 nmEnHm n  )( mn   

 

0 nHmnHmnHmnHm iiii  

 
or 
 

0 nmEnHmnmE imiin  

 

Since 0 nmnm ii  

 

0 nmEnHmnmE imiin  



 
or 
 

mn

i
i EE

nHm
nm




  

 

The rotation of the vector nn 0A  is given by 
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where we use the closure relation and the relations 
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Then we obtain 
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where we use the relations 
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with i = x, y, and z. We note that 
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So we have 
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since 0]Re[ nn . Note that 
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is called the Berry’s vector potential or Berry’s connection. 
 

Using the Stokes’ theorem, we get 
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where da denotes area elements in R space 
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The notation for nV  is the same used by Berry in the original paper (1984). 

 
5. Gauge transformation 

The magnetic field B is defined as 
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Then B is invariant under the Gauge transformation 
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Under this transformation, the geometrical phase is invariant, since 
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6. Spin in Magnetic Field (the adiabatic approximation)  

A particle with the angular momentum Ĵ  interacts with a magnetic field B via the  
Hamiltonian: 
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where )(Bm  is the eigenstate of zĴ  with the eigenvalue )(Bm . 

For any fixed value of B, we have 
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Schrödinger equation: 
 

)())(()()]([ˆ)( ttEttHt
t

i m  BB 



  

 
with 
 

))0(()0(  tmt B  

 

where ))0((Bm  is the eigenstate of ))0((ˆ tH B .  

 

)](exp[)](exp[))((

)](exp[]'))'((exp[))(()(
0

tititm

tidttE
i

tmt

mm

m

t

m





B

BB



   

 
where 
 


t

mm dttEt
0

'))'((
1

)( B


  

 
Plugging the solution form into the this Schrödinger equation, we get 
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Taking the inner product with ))(( tm B  we get 
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Note that )(tm  is real, since 
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The geometrical character of the Berry phase emerges when the variation of the instantaneous 
energy eigenstates with time is restated as their variation with field; 
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This expresses the phase as an integral over field values; 
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Stokes’ theorem applied to Eq.(1) gives, in an abbreviated notation. 
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da denotes area element in B space and exclusion in the summation is justified by 
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Here we use the commutation relation 
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We can put this in a form that does not depend on choice of the 3-axis to lie along B: 
 

B
B

BV 3

)(
)](Im[

B

m
m   

 
We note that 
 

)(4
1

BB 
B

 

 
where 
 

3

1

BB

B
B   

 
This singularity is spherically symmetric. The Berry phase is given by 
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where )(C  is the solid angle subtended by C as seen from the origin in field space. 
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with eB being the unit vector along the direction of B. 
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((Proof))  Vector analysis: Gauss’ law 
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where )(B  is the Dirac delta function. 

 
7. Example: spin ½ under the magnetic field which undergoes a precession 

adiabatically 
 



 
The magnetic field is given by 
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The energy eigenstate: 
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except for the minus sign, when    and    (parity operation). 
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The final state after one rotation where 0)( BTB   is then given by 
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We see that the dynamical phase factor depends on the period T of the rotation, but the geometrical phase 

depends only on the special geometry of the problem. In this case it depends on the opening angle  of the 
cone that the magnetic field traces out. 
 
8. Interference experiment 
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The intensity is proportional to 
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9. Berry’s phase in the Aharonov-Bohm effect 
 

 



The Aharonov-Bohm effect can be explained using the Feynman path integral and the gauge 
transformation. Here We discuss this effect based on the Berry’s phase with the gauge transformation. 

We assume that q = -e (e>0). We start with a relation 
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)(' Rr n  is the free particle wave function, and R is the position vector of the charged particle around 

the contour (the solenoid is situated inside the contour). 
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since p̂  is the odd parity, and RT̂  is the translation operator with 1̂ˆˆ 
RR TT . 

((Another method)) 
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From the Berry’s formula, we have 
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This confirms the Aharonov-Bohm effect, revealing that the Aharonov-Bohm effect is a particular 
example of geometric phase. 
 
 



8. Experimental verification of Berry phase (Rajasekar and Velusamy) 
 

 
 
Fig.1 Circuits on the Poincaré sphere corresponding to the experiment. P: RHC. Q: LHC. X: H. –X:V. 
 

A typical measurement of the Berry phase is as follows. The light beam is split into two channels. 
One channel is taken as a reference. In the other channel a set of transformations act. When the beams are 
recombined the relative phase arises in the interference pattern. The following is a brief summary of the 
experiment.  

A linearly polarized beam from a He-Ne laser is split into two beams by a beam splitter. The 
measurement beam is taken along a cycle of polarization transformations through the following 
three components: 
 

1. A quarter-wave plate (QWP1) oriented with its principal axes at 45° to the electric vector 
in the beam. 

2. A half-wave plate (HWP) with its axes oriented at an angle 90° + α/2 to that of QWP1. 
3. A linear polarizer LP. 
 
The above cycle of transformations can be represented on the Poincaré sphere as shown in Fig. 1. 
These three processes represent the path APBQA. Steps 1, 2 and 3 correspond to the parts AP, 



PBQ and QA respectively. In these processes the beam gets a geometric phase. Its magnitude is 
half the solid angle subtended at the center of the sphere by the area APBQA.  

The absolute value of the acquired phase is not easy to determine because it would be buried 
in a larger magnitude dynamical phase. However, it is possible to measure the change in the 
geometric phase by changing the circuit from APBQA to APCQA. This can be achieved by 
rotating the HWP plate about the beam axis through an angle θ. This is recorded by a laser 
interferometer system in the experiment. The sign of the phase change depends upon the 
direction of rotation of the HWP. 

The HWP was rotated into two full rotations in one sense and then two full rotations in the 
opposite sense. The phase is found to change with the angle of rotation of the HWP. Further, the 
change in the phase is found to continue after a full rotation of the HWP and moreover returned 
to the original value after an equivalent amount of reverse rotation. This is attributed to 
geometric 
phase. 
 
9. Berry’s phase and Foucault pendulum (classical mechnics) 

The Foucault pendulum is an example of adiabatic transport around a closed loop on a sphere. The 

solid angle subtended by a latitude line 0  is 

 

)sin1(2 0   

 

due to the Coriolis forces. Relative to the earth (which has meanwhile turns through an angle of 2), 

the daily precession of the Foucault pendulum is 0sin2  , a result that is obtained due to a 

Coriolis forces in the rotating reference frame. Note that the physics of Foucault (classical 
mechanics) is discussed in other place. 
 



 
 

 
 
24. Foucault pendulum 

 



 
 

Fig. Rotation of the coordinate axes. OP = rI = rR. {ex, ey}; the old orthogonal basis. {eRx, eRy,};. and 

the new orthogonal basis. The rotation angle is . The rotation axis is the z axis. 

 

Assume the Earth is a sphere rotating about the zI axis with constant angular velocity . 
Choose a co-ordinate system on Earth with the k axis along the vertical, the xR axis pointing 

South, and the yR axis pointing East.  is a latitude of the observer.  is the colatitude.  = 90° - 

. 
 
((Equation of motion)) 
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The pendulum is very long so that the string is essentially vertical at all times. 
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where  is the latitude of the location on the Earth. Then we have the differential equations, 
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We define the complex number as 
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The diffrential equation is then given by 
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with the initial condition 
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The solution of the differential equation is obtained by using the Mathematica. The final result is 
as follows. 
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Fig. The oscillation of the Foucault pendulum. K = 1.  = 3. v0 = 1. t = 1 - 15. 
 
Berry’s phase of Foucault 

We use the equation 
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where k is the cosnatnt. From the relation 
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we have the time where the Foucault pendulum undergoes one rotation around the vertical 
reference ine is 
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Foucault’s pendulum, Pantheon, Paris 

The first public exhibition of a Foucault pendulum took place in February 1851 in the Meridian of the 
Paris Observatory. A few weeks later Foucault made his most famous pendulum when he suspended a 28 
kg brass-coated lead bob with a 67 meter long wire from the dome of the Panthéon, Paris. The plane of 
the pendulum's swing rotated clockwise 11° per hour, making a full circle in 32.7 hours. The original bob 
used in 1851 at the Panthéon was moved in 1855 to the Conservatoire des Arts et Métiers in Paris. A 
second temporary installation was made for the 50th anniversary in 1902.  
http://en.wikipedia.org/wiki/Foucault_pendulum 
 
The angular velocity of the Earth: 
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Latitude of Panthéon, Paris, France 
 

 = 48.8742° N.  = 90°- = 41.1258°. 
 
The detail of the Foucault  pendulum: 
 

L = 67 m.  m = 47 kg. 
 
The angular velocity of the pendulum 
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Fig. Foucault’s pendulum, Pantheon, Paris 
http://en.wikipedia.org/wiki/Foucault_pendulum 
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APPENDIX-I:  Derivation of Green’s function 
 

)(4
12 r
r

, 

 
where 
 

),,( zyxr ,  222 zyxr  . 

 

We consider a sphere with radius  ( )0  

 

  )
1

(
111

r
da

r
d

r
d

r
d narr  

 
where 
 

222 zyxr  , ),,(
r

z

r

y

r

x

r r  e
r

n , dad na   

 
and 
 

3

1

rr

r
 ,  

23

1
)(ˆ

1

rr
r

r


r
n  

 

0)
1

( 
r

 except at the origin. (see the proof below by Mathematica) 

 
We now consider the volume integral over the whole volume (V - V') between the surface A and the 
surface of sphere A' (volume V', radius )0 . We note that the outer surface and the inner surface are 

connected to an appropriate cylinder. 
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((Mathematica)) 

 
 
APPENDIX-II Feynman path integral on Aharonov-Bohm effect 

The classical Lagrangian L is defined by 
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in the presence of a magnetic field. In the absence of the scalar potential ( 0 ), we get 
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where the charge q = -e (e>0), A is the vector potential. The corresponding change in the action 
of some definite path segment going from ),( 11  nn tr  to ),( 1 nn tr  is then given by 
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This integral can be written as 
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where rd  is the differential line element along the path segment.  

Now we consider the Aharonov-Bohm (AB) effect. This effect can be usually explained in 
terms of the gauge transformation. Here instead we discuss the effect using the Feynman’s path 
integral. In the best known version, electrons are aimed so as to pass through two regions that are 
free of electromagnetic field, but which are separated from each other by a long cylindrical 
solenoid (which contains magnetic field line), arriving at a detector screen behind. At no stage do 
the electrons encounter any non-zero field B.  
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Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams go into 

the two narrow slits (one beam denoted by blue arrow, and the other beam denoted by red 
arrow). The diffraction pattern is observed on the screen. The reflector plays a role of 
mirror for the optical experiment. The path1: slit-1 – C1 – S. The path 2: slit-2 – C2 – S. 

 
Let B1  be the wave function when only slit 1 is open. 
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The line integral runs from the source through slit 1 to r (screen) through C1. Similarly, for the 
wave function when only slit 2 is open, we have 
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The line integral runs from the source through slit 2 to r (screen) through C2. Superimposing 
Eqs.(1) and (2), we obtain 
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The relative phase of the two terms is 
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by using the Stokes’ theorem, where the closed path consists of path1 and path2 along the same 
direction. The relative phase now can be expressed in terms of the flux of the magnetic field 
through the closed path, 
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where the magnetic field B is given by 
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The final form is obtained as 
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and   is the magnetic flux inside the loop. It is required that 
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Then we get the quantization of the magnetic flux, 
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where n is a positive integer, n = 0, 1,2,….. Note that 
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which is equal to 2 0 , where 0  is the magnetic quantum flux, 
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