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“I mentioned my results to Niels Bohr, during a walk. That is nice, he said, that something new. I
told him I was puzzled by the extremely simple form of the expression for the interaction at very
large distances and he mumbled something about zero-point energy. That was all, but it put me
on a new track.” (H.B.G. Casimir (private communication, March 1992).
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In quantum field theory, the Casimir effect and the Casimir—Polder force are physical forces
arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir. The
typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart.
In a classical description, the lack of an external field also means that there is no field between
the plates, and no force would be measured between them. When this field is instead studied
using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual
photons which constitute the field, and generate a net force—either an attraction or a repulsion
depending on the specific arrangement of the two plates. Although the Casimir effect can be
expressed in terms of virtual particles interacting with the objects, it is best described and more
easily calculated in terms of the zero-point energy of a quantized field in the intervening space
between the objects. This force has been measured, and is a striking example of an effect
captured formally by second quantization. However, the treatment of boundary conditions in
these calculations has led to some controversy. In fact "Casimir's original goal was to compute
the van der Waals force between polarizable molecules" of the metallic plates. Thus it can be
interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields
http://en.wikipedia.org/wiki/Casimir_effect




Hendrik Brugt Gerhard Casimir (July 15, 1909 — May 4, 2000) was a Dutch physicist best
known for his research on the two-fluid model of superconductors (together with C. J. Gorter) in
1934 and the Casimir effect (together with D. Polder) in 1948.

1 Electric field and magnetic field in the vacuum
We start with the Maxwell’s equation in vacuum
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with @ =ck . Similarly, we have
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We now consider an electromagnetic wave in the closed cube with side L.
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Fig. Boundary condition for the electric field (red) (tangential component continuous)) and
the magnetic field (green) (normal component continuous).

From the boundary conditions we have
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(N, Ny, N, =1,2,3,...)
o(n,n,n,)=ck’ +k,*+k,’
Note that

x=0 fory=0andy =L planes and z= 0 and z = L planes.
y=0 for z=0 and z =L planes and X =0 and X = L planes.
0 for x =0 and x = L planes and y = 0 and y = L planes.
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From the condition
V-E=0

we have
E, = E, cos(k,x)sin(k, y)sin(k,z),
E, = E, sin(k,x)cos(k, y)sin(k;z),
E, = E, sin(k,X)sin(k,y)cos(K,Y)

From the condition

we have



B, = B, sin(k;x)cos(k,y)cos(k,z),
B, = B, cos(k,x)sin(k, y)cos(k;z),

B, = B, cos(k,X)cos(k,Y)sin(k,z)

where

Bx=0 for x =0 and x = L planes

By=0 fory=0andy =L planes.

B,=0 for z=0 and z = L planes.
We note that

V- E =(EKk, + E,k, +Ek;)sin(k,X)sin(k,y)sin(k;z) =0
or

(Ek, +E,k, +Ek,) =%(Elnx +E,n, +En,)=0

This means that the vector (E;, E», E3) is perpendicular to the wave vector k = (Ky, ka, K3).
For each k, there are two independent directions for (E;, E, E3); polarization.
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2. Modes
E, = E, cos(k,x)sin(k, y)sin(k,z),

E, = E, sin(k x)cos(k, y)sin(k;z),



E, = E, sin(k,X)sin(k,y)cos(K,Y)

with

(Ek, +Ek, +E k,) :%(Elnx +En, +En,)=0
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(b) klzta kzzt, k3:0
E,+E, =0
E, =0, E, =0,

E, =E, sin(% X)sin(% y)
There is only one polarization vector (one mode).
(©) kl=%, k2=% k3=%

E =E cos(%)sin(%) sin(ﬂl_z),

E,=E, sin(%)cos(%) sin(”TZ),

E =E sin(%)sin(%) cos(%z) ,

with



E,+E,+E=0.

There are two polarization vectors (two modes)

In conclusion,
(a) There are two modes for n, #0, n, #0, n, #0

(b) There is one mode for one of three indexes Ny, Ny, N, is equal to zero.

() There is no mode for two of three indexes ny, ny, n, are equal to zero.
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Fig.  The number of modes. Open circles for states which are not allowed): Red points for one
mode (one of three ny, ny, and n,). Two modes for ny, ny, and n, (one of them are zero).

3. Zero-point energy
The corresponding vector potential can be expressed by

A, = A cos(k,x)sin(k,Yy)sin(k,z),
A, = A sin(k x)cos(k,y)sin(k;z),

A, = A;sin(k x)sin(k, y)cos(k,y)



The Coulomb gauge
V- A=—(kA +k,A, +k,A;)sin(k x)sin(k, y)sin(k,y) =0

We consider the 3D system with the sizes of L x L x a.

Here we have

The zero-point energy of this system can be evaluated as follows.
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K=k, + Za2 ,  kdx=Kk,dk,
Thus we get
& L.k 2
Lzhc_ ”[j dK+nZ:nJ/;c dx]. (1)

If we choose an appropriate function F(x) such that

K <K,

1
F(k)=e"'*, or F(K)={ ,
0 K> K,

the sum in Eq.(1) can converge. Here we use F(x)=e """, where x, is the cut-off wave

number. @, 1s the cut-off angular frequency and is defined by

=CK,.

and
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Then we get
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We use the Mathematica of this calculation. The zero-point energy is evaluated as

e 1 111
Acl? 2z dx® 2x  xe™?-—]

)

=L 4a?coth(®)+ m(2a + meoth(Zy)—
8a“zx 2a . 40, T
sinh™(—)
2a
3a 7’ z'x? zox* °x°

T4 I 5 7t 5T
z°X"  720a° 5040a° 80640a’ 1710720a
In the large limit of a, we have
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where X=—=— and @, is the cut-off angular frequency. We note that this quantity is
KC a)C

independent of X. The pressure is defined by

d ¢—¢ d #hcx? her?
P,=-hc— 8y m——(— =—— .|
‘ da  L° ) da( 720a3) 240a*

The vacuum fluctuations of the electromagnetic field cause two parallel conducting plates to
move toward each other.

((Example))
Whena=1 cm, P,=1.300 x 10™"* dyne/cm’.
Whena=1 pm, P,=1.300 x 10 dyne/cm”.
Whena=1A, P,=1.300x 10" dyne/cmz.

5. Calculation of the zero-point energy for three dimensional system with sides LxLxL



First we discuss the density of states of the three-dimensional system with size L x L x L.
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where V = L, and the factor 2 is the number of independent polarization vector for each mode
with K.

Since w=ck ,
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of modes having their frequencies between @ and wt+dw.
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P, = i =VD(w) (density of modes)
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where C is the velocity of light and
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We have the following formula;
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P Ipwda) =vj D(w)dw
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For single mode |k>, the energy is given by
1
E..=(n +Dho, .
' 2
The zero-point energy is given by
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where we use
F(w)=e"""

in order to avoid the divergence of the integral. Then we have
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Suppose that V = al*, then we get
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6. Intuitive method for the derivation of Casimir effect.
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Fig. Two conducting plates with the separation distance d. Each mode has a wavelength

satisfying the condition d > % .

We consider a pair of conducting plate separated by a distance d. This separation distance
should be larger than a half of the wavelength for each mode;

d>i.
2

Since w=ck = 2772(: > Cd—ﬂ The zero-point energy for the 3D system (with volume Ad) may be

written as
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where fis a constant and is nearly equal to 1/3, and
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We neglect the first term (volume energy). Then we have
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The pressure P is given by
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7. Experiment with atomic force microscopy (AFM)
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Fig. The measurement of Casimir effect using atomic force microscopy (AFM) [Simpson,
2015].



Including the Lamoreaux’s ground-breaking experiment, a number of Casimir force
measurements were made using variations on the atomic force microscope apparatus. A metal
plate mounted on a piezoelectric translator interacts with a small metal sphere attached to a
sensitive cantilever. As the two bodies are brought into proximity, the bending of the cantilever
is detected by a laser beam reflected off the back of the cantilever, and observed as a change in
the signal of a detector monitoring the difference in light intensity between the top and bottoms
halves of the detector..
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The data were obtained by Roy et al. using the AFM. The Casimir force between the sphere and
the plate is measured as a function of the separation distance.
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