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1. Introduction

The quantum-mechanical description based on an incomplete set of data concerning the
system is effected by means of what is called a density operator. Such a density operator was
introduced by von Neumann in 1927 to describe statistical concepts in quantum mechanics. Most
physical systems consist of so many particles, or possess so many degrees of freedom. that it is
impossible to specify completely the state of these systems. Nevertheless, physicists are forced to
make predictions about the behavior of the systems they study from a knowledge of a very small
number of parameters. To this end, one can use statistical methods and introduce representative
ensembles which are collections of identical systems.

The density operator is an alternate representation of the state of a quantum system for which
we have previously used the wavefunction. Although describing a quantum system with the
density matrix is equivalent to using the wavefunction, one gains significant practical advantages
using the density matrix for many physics problem. For a quantum mechanical system there are,
in general, two reasons for statistical treatment: lack of detailed knowledge and the probabilistic
nature of quantum mechanics. The statistical treatment is carried out by means of the density
matrix which takes the place of the ensemble density in classical statistical mechanics. This
operator — as all physical quantities in quantum mechanics, the density matrix is an operator —
can be used to evaluate averages.

2. Definition of density operator

We need to consider systems for which we do not possess the maximum knowledge allowed
by quantum mechanics. In other words, we do not know the state vector of the system, but rather
the classical probabilities for having various possible state vectors. Such situations are described

by the density operator p which is a sum of projection operator |uk><uk

, each weighted by a

classical probability w;. (P. Meystre and M. Sargent III, Elements of Quantum Optics, 3" edition
(Springer 1998).
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We suppose that the state ket vector of a system is represented by
W) =2 ol n)
n
for each ensemble, where

(U, Uy ) =38, -

We define

P =|w)w] =2 e un e {un| = 20U )| = 2 oo U

with the matrix element



Prm = <un|lb|um> :ﬁ’

where the bar denotes ensemble average; that is, average over all the systems in the ensemble.
Then the density operator o has the following properties.

~

pr=p. (Hermitian operator)

()

((Proof))

A+

57[un) =, C = (un A,

(U |Blun) = (us
leading to the relation p" =p.
(b)  Tr[p]=1.

((Proof))

(lw)=20c, ¢ =2.¢, ¢y =D prn =Tr[p]=1

(c) The ensemble average of the expectation of an observable A is given by
(A)=Tr[Ap]
((Proof))
(A)=(wlAy)
=27 G (U AU,
D WML
= 2. (Un | U [ AU, )
= 2 (U, [pA, ) =Tr[pA]

A

(d) Diagonalization of the density matrix



Suppose that the density operator is given by

Pui P2 Pn
Py Pun P
[Jzzpij|bi><bj‘: . S
i
Pt P2 ° ° Pm

or

p= ;/3 by {b|
- S} olo
S njb o )|
- %:pi,-lbi )by

b

P

We solve the eigenvalue problem for the density matrix o under the basis {|bi> },
,5| ai> =W | ai>

|ai> is the eigenket of p with the eigenvalue w, . Using the basis {|ai> }, the density operator

can be expressed by

w, 0 0
0 w, 0
,sz/S|ai><ai|=ZWi|ai><ai|: '
0 0 W,
We note that
la,)=Ulb;) (@/=(bfu




where U is the unitary operator. The unitary operator can be determined by solving the
eigenvalue problem. We start with

Plag)=wa,).

(0o b ) = o]
where

(b;|a.)=(b;U[b) =U,

The eigenvalue problem is

Pu Pn o P [V U,
P Pn 0 P | YU U,
= Wk
P Pr2 P Unk Unk
where
U11 U12 v U1n
U21 U22 e Uzn
U=
Unl Un2 - U nn

(e) Equation of motion for the density operator
The time dependence of p is given by

e A5
ih—p=—p,H].
i’ [P, H]

This equation is analogous to the Liouville theorem in classical theory.



S h=lvv]
(2wl S
—Fily )| [w) v
— )| v )

L Rp- = (5]

Note that this equation of motion is a little different (in sign) from the equation of motion of the

Heisenberg operator AH .
doa ~n ) , . .
Iha A, =[A,.HI. (Heisenberg’s equation of motion)

3. Definition of the pure state
We consider the density operator for the pure state

We note that
A =lw)ylw)v|=2
since <l//|l//> =1. Then we have

T 1=Trp]=1

This is the definition of the density operator for the pure state. Note that

Av)=lw)v|v)=|w)

Then |y) is the eigenket of p with the eigenvalue 1.
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4. Definition of the mixed state
We consider the eigenvalue problem of p .

Alu,) = w|u,)

where |un> is the eigenket of p with the eigenvalue w,. Then the density operator is expressed

by
P = 2 Jun )= 22 AJun {un | = 2 wh[u, )u,|
where
w, 0 0 0 0
0 w, O 0 0
. 0 0 w, 0 0
W= {ullu) ey g g g
0 0 O 0
0 0 O W,
We note that
Trip] =2 (u[Auy)
k
=2 Wi (uy [uy )
k
=> W =1
k
TP 1= w’' <> w =1
k k
or
Tr[p°1<Tr[p]=1 (the condition of the mixed state)



since

with

w, <1

S. Expectation value and probability

The expectation value is given by

(0)=>"w, (u, [Olu, ) =Tr[Op]
k

since
TrOA1=2 (u[OAu,)
k

= kZ,I<Uk u )(u |2]u)
= %:Wk@k [Ofuy Y(uui )
= %:Wk<uk O]u,)s, ,

=Zwk<uk|f)|uk>
k

0

For the projection operator, we have

and
Tr[R, A1=Trllu, )(u, |41 = w,

which is the probability, since



TR, A1= Y w,(u, [P, Ju,) =Y w5, =w,

((Note)) The notation used by Sakurai and Napolitano

Here we use the average of the operator <O> . In their book, Sakurai and Napolitano used the

notation [O].

6. Change of the basis for the density operator
We now consider the change of basis for the density operator. Suppose that the density

operator is described by the basis {|bi> } with given matrix element <b i ‘ ,6| bk> . Suppose that the
basis is changed from {|b,> } to {|ai> }.by

a)=Ulb), (al=(bU"

where |ai> is not always the eigenket of o . Then we have

b )(b,|a;)

Alb )b,

(aldla;) = %<ai o,){b1]
- %Xbi b, ><bi

= (/U pU|b;)

u- u

b;)

In other words, the matrix of o under the basis {|ai> is the same of the element U*pU 5 under
the basis {|bi> . Then we get
U*pu

p= %‘Jai )@ |,b‘aj ><aj ‘ = %‘Jai )b b; ><aj ‘

7. Density operator for the un-polarized spin state
The density operator for the un-polarized spin state

. 1 1o _ 1
5 5[|+z><+z|+|_z><_z|]_5(0 1]_21

—n)} with

What is the expression of p under the basis of {H n>,



CcOS— A sin—
+2)=| 29, |-n)=U|-2z)= 2

[+ n) = U
e' sinE —e" cosg

where n is the unit vector in the 3D real space; n = (sin & cos ¢,sin 8 cos ¢,cos 0) .

9 . 0
COS— S —
U 2 2

el sing —g cosg
2 2

We note that

under the basis of {|+ Z>,

— Z>} . Then we get

p= ]+ ) nf + = m)(-
since

p=2la)a |/3‘aj ><aj

ij

. and  (alpla;)=(bju"pU

b;).
((Note)) This result is obvious since
[+ 2)(+z|+|-2)(~z|=1,  |+n)(+n|+|-n)-n|=1.

8. Density operator for the un-polarized light
We now consider the density operator of the linearly polarized photon,

p= | l//><l// | (the pure state)

where |l//> = | X'> = cos9| X> + sin9| y> . The corresponding density matrix under the basis of {|X>

and |y> } can be given by

10



p=[x)x]

= (C?S ej(cos 0 sind)

sin@

3 cos’ 0 sin@cos@
sinfcosf  sin’0

1 1+cos(28)  sin(26)
“ 2\ sin(20)  1-cos(26)

where

cosd

J, (x'|=(cos6 sino)

sin@

|X'> = cos9| X> +sino9| y> = (
P’ can be also calculated as

2 [ cos’d  sinfcos 0]( cos’@d  sinéfcos 0]

sinfcos®  sin’@ )\sinfcosd®  sin’@

cos’@  sinfcosd
sinfcos®  sin’@

=p
satisfying the condition for the pure state.

cos’8d  sinfcosf)1 0

_ 2 NE
sinfcos® sin’d )0 O ]=cos H_KX|X>‘

Tr 4| x)(x[] = Tr[[

) .
cos"@  sinfcosf |0 (1) ]:sin20:‘<y|x'>‘2

T y><y|]=m[

sinfcos@® sin’d )\O
where
<X| X'> = cos6’<x| X> + sin6’<x| y) =coséd,

<y| X'> = c0s¢9<y|x>+sin¢9<y| y> =sind.

11



What is the density operator for the un-polarized light? To obtain it, we take the average of
each matrix element of the density operator in the pure state over @between 0 and 2 7;

2r 2r
LJ.coszék:i@ LIsint9cos6dt9
| 27y 27 B 1 0
P =1y 2 1% ., 200 1)
—Jsm&coséﬁ& —jsm oo
27 27

0

which is the density matrix for the un-polarized light. Note that we use the region of € as
0 <6 < 2x for the photon polarization.

Since

2 11 0) -
pun_401 pun

the density operator for the un-polarized light p,, is for the mixed state. The transition from a

pure state into a mixed state is connected with the loss of no-diagonal elements in the density
matrix. The interference terms appear as non-diagonal elements in the density matrix. We note
that

12



) 172 0Y1 0 1/2 0} 1
Trpun| X)X [1 =T o 1200 o o o773

. 1/2 0Y0 0 0 0) 1

((Note)) Density operator for the un-polarized light using the |R> and | L> .

We consider the states |R> for the right-hand circularly polarized state and | L> for the left-

hand circularly polarized state.

IR)=U

X) L)=Uly)

where

and

We can show that
B == (X(X|+ YYD == RY(R| +=| LYL|
i) 2 2

since

(RlAunlR) = (XU AU [x)

Ao~ 11 =1Y1 0Y)1 1 11 O
U+ unUZ_ . . .| ==
481 1 N0 1TA1 =1 210 1

y) .

and

under the basis {|x>,

13



We also note that

Tr{pu(

=3

for the probability of the system in the |X> state after the X filter, and

A (Y)Y =

for the probability of the system in the |y> state after the Y filter.

9. Spin 1/2 system: density matrix of a perfectly polarized spin (pure state)
((Cohen-Tannoudji et al.))
We start with the case of spin S = 1/2

_i?
e 20055

w)=l+m=|
e 2sin—
2

where 0<0<r7 and 0<¢ <27,

<SX> = <l//|§x|'//> = gsinﬁcow,

(8))

2 no.oo.
<w|Sy|l//> = Esm @sin ¢

A h
(5.)= (w8 w) = "coso

or

A

S

(5)=ty

v)= %n
and

14



(5. =fwIS.[w)] = sino
where

KS . >‘ is the projection of <S > onto the X-y plane. The density operator (matrix) p(é,¢),

corresponding to the state |+ n> .

15



c:Sz:»

‘ <S>

16



_if 0
e *cos— | ¢ ¢ p
= 2 le2cos e 2sin—
N
'5 . o 2
e 2sin
cos’— e’ sinzcos—
.0 6 0
e'’ sin —cos— sin” —
2 2 2
_ Py p+]
P P

The matrix is generally non-diagonal. The matrix elements are obtained as

p., =cos’ 0 p__ =sin’ 0
++ 7 ’ - 7
p.. = e SinECOSE , P, = e'’ sin —cos—

(a) Populations (diagonal): p,, and p

The “populations” (p,, and p__) have a very simple physical significance,

0 .,0 2
—p__=cos’——sin’—=cosf ==(S ),
Py — P 7 2 h< Z>

and
P+ P :coszg+sin2§:1 (Tr(p)=1

The populations ( p,, — p__) are therefore related to the longitudinal polarization.

(b) Coherence (non-diagonal)

The “coherence” p, , p_, is

-+

.6 0 1. 1
|p+—|:|p—+|:SIHECOSEZESIHQZ%‘<S¢>

17



where
KSJ‘ = gsinﬁ .

The argument of p, , p_, is ¢, that is, the angle between <S L> and the X axis. Note that

D (0,0) = |+ n><+ n|+ n><+ n| = |+ n><+ n| =p(0,9)
is a relation characteristic of a pure state.

10. A statistical mixture; un-polarized spin state
The only information we possess about the spin is the following. It can point in any direction
of space and all directions are equally probable. The situation corresponds to a statistical mixture

of the state |+ n> with equal weights.

1
A—ijdgﬂ(e ¢)—LTd¢Tsinme‘(9 $) = 2 ! -1
p4np’4;z00p’012
2
since
Lngé]Esin@dHA (6 ¢)—L2J?d¢]€sin9c052€d9
4 3 PIRIEIPEE O = )T 2
1 17 .
=—27z—jsm9(1+cos9)d9
dr 2y

=lj(sme+lsm29)d9
49 2

18



1 2z n . . 1 27 V4 ‘ ‘ 29
E£d¢£sm¢9d9p22(6’,¢)=a}[d¢}[sm0sms Edé?

izﬁljsme(l —cos@)do
4z 23

:1j(sin9—lsin29)de
49 2

[ T SR VT oy f. .0 0
E.([d¢'([51n6d6’p12(0,¢) :E'([e ¢d¢.([51n951n5c0s5d0

=0
So we have
N
P 2,0,

So p is the density operator for which a statistical mixture of states. Note that
A& log, 1. 2
(S;) =Tr[p5;] =Tr15]=-Tr(S,]=0.

We again find that the spin is un-polarized: since all the directions are equivalent, the mean value
of the spin is zero,

((Comment))

(1) The coherence ” p, and p_, are related to the transverse polarization <S L> of the spin.

Upon summing the vector <S L> corresponding to all (equi-probable) directions of the x-y

plane, we obviously find a null result.
(i1) It is impossible to describe a statistical mixture by an average state vector.

((Note)) Difference between the wave function and density operator
We assume that we are trying to choose « and f so that the vector is given

19



w)=dl+z)+B-2),
with
o +1p =1,

represent an un-polarized spin, for which

(@ f+aof)=0

o | S

f( - N0 1Y«
=g 2} o)
h( o« NO —iYa) K . .
R Y VI
and
. N1 0 . .
<Sz>=§(a ﬁ{o _J(“H(aa—ﬁm:o

Then we get
a’ B=0,and |0¢|2 :|,B|2 :%.

A

So we cannot find & and f, so that <§X> = <§y> = <SZ> =0. There is no way to express the wave

function satisfying the unpolarized spin state. So we need to introduce the concept of the density
operator for such a case.

11. Mixed state: another example of a statistical mixture
We could imagine other statistical mixture which would lead to the same density matrix.

(1) A statistical mixture of equal proportions of |+ Z> and |— Z>

20



o= sheaezlegl-at-d=3y ol3le 13l o
=3 2 210 o) 20 1) 2(0 1

(i) A statistical mixture of equal proportions of |+ n> and |— n>

p= () ] |- m)(-
:li:l[l Oj
2 2(0 1

Since all the physical predictions depend only on the density matrix, it is impossible to
distinguish physically between the various types of statistical mixtures which lead to the same
density matrix.

We note that

Trp, 1=Trip, 1=Tr[p,’] =% (mixed state)

12. Probability
(a) The mixed state
The density operator for the un-polarized state is given by

n 1({1 0 li (mixed state)
=— =— mixed state
Pun 2\0 1) 2

Suppose that the electrons with un-polarized spin state is measured by using the Stern-Gerlach
experiment, where the in-homogenous magnetic field B is applied along the direction of the unit
vector (n).

21



0 , 0 .0 0
coS— 0 0 cos°—  sin—cos—
|+n><+n|: 2 cos— sin— |= 2 2 2
. 0 2 ) ., 0
sin— sin—cos— sin” —
2 2 2 2
., 0 . 0
SIHE ) 0 sin 5 — SlnECOSE
—n)a=| 2, (sma _cosgj: N ¥
—COS— —sin—cos— cos” —
2 2 2

Then we have

Tr[lbun|+ n><+ n|] = %Tr[ﬂ‘f‘ n><+ n|] = %

Ty~ )l =Tl m)(- )=

The probability of finding a particle in the state |+ n> is 1/2 and in the state |—n> is 1/2. This
result is independent of the angle &, where @ is the angle between the z axis and the unit vector n.

(b) The pure state
The state vector is given by

p=tfel=[% Je: >[ T;j{j (ure st
where

lw)=c,|+2)+c|-2).
Then we get

.
0 o Lo |
SIN —COS— Sin —
2%,

2 * cos’ 9 singcosg
| cc 2 22
C

cc, |c_|2]

Tr[p,|+ n)(+ n[]= Tr[[

=, |2 cos’ 9 + |C_|2 sin’ 9
2 2

22



TﬂﬁJ—nx—nU=Tﬂ[kJ* -

ce, e

]

., 0 .0 0
¢’ sin” — —sin—cos—
- 2 2 2

|2 .0 0 , 0
—sin—cos— Cos” —
2 2 2

., 0 0
- |c+|2 sin’ 5+|C_|2 cos’ 5

The probability of finding a particle in the state |+ n> and in the state |— n> strongly depend on

the angle 6, where @1is the angle between the z axis and the unit vector n.

13. Entropy S (I)

In quantum statistical mechanics, the von Neumann entropy, named after John von
Neumann, is the extension of classical Gibbs entropy concepts to the field of quantum mechanics.
For a quantum-mechanical system described by a density operator p, the von Neumann entropy

S is defined by
S =—k,Tr[pln p]

where kg denotes the Boltzmann constant. The entropy vanishes for pure states only, exceeds
zero for mixed states, and, most importantly, is an extensive quantity for non-entangled
subsystems p, ® p, because in this case

S=8+5,

S =—ksTr,[(£10,) In(0,,)]
=k Tt ,[(00,){In(0)) + In(p,)}]
= _kBTrl,z[(bubz)ln(bl)] - kBTrl,z[(bubz)ln(/az )]
=—ksTr[p In(5)] - ke Tr[ 2, In(p,)]
=5 +5S,

The von Neumann entropy is regarded as the fundamental measure of preparation impurity for

quantum states. However, the entropy might be difficult to calculate. Another computationally

more convenient option is the purity tr[p>] or the purity parameter
P=1-Tr[p’]

Using the eigen-basis of the density operator, we see that
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14. Entropy S (IT)
As shown above, the entropy S is defined by

S =—k;Tr[pln p]

where Kg is the Boltzmann constant. When
Alug) =wu)

the entropy S can be rewritten as

S =—ks > _(u[pIn Au,) = kg D W, Inw,
k k

For the two spin states {|+ Z> ,

+ Z> }, we assume that the density operator is described by
P =W+ z)(+z|+ (1 - w)|-2)(-z|
Then we get
S
—=—Wlnw—-(1-w)In(1-w).
B

We make a plot of S/k; as s function of the probability w.
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0.7 =

In(2)
0.6 S/kg

0.5
0.4
0.3r
0.2

0.1

0.2 0.4 0.6 0.8 1.0

Fig. The reduced entropy (S/kg) vs w. It exhibits a peak (= In2 = 0.693147) at w = 1/2.

Using the Mathematica, one can evaluate the entropy even if the density matrix o is not

diagonal;
S/kg = o= -Tr[p MatrixLog[p]]

((Example))
The density operator (in the pure state) for the photon polarization |X'> is given by

5 1x)x _1{1+cos(20)  sin(20)
A=l |_5 sin(20)  1-cos(260)

We calculate the entropy o =-K;Tr[plnp] as a function of @ for 0<@ <=, using the

NG

Mathematica. The result is as follows.

25



0.15+

0.1

0.05¢

g
s

s
8

|
INNEE

s s
24 12

1 0
Fig. The entropy s for the photon polarization |X'> as a function of 6. p= [0 O] for and

LA L [P
=— orov=m/4.
P75

How about the entropy for the density operator

. 1(1 a
P=%a 1)

where a is the parameter (0<a<l). Using the Mathematica, the entropy can be evaluated as

1 4
c=—=—[aln(l-a)—-aln(l+a)+1n
 ~plaini-a)-aind ) tin

2

Whena=1, 6=0. Whena=0, c=In2.

26



Fig. Entropy o :ki a.s a function of the parameter a. o =In2=0.69315 at a = 0.
B

oc=0ata=1

15. Calculation of entropy with the use of Mathematica
Suppose that

D
Il
0| —

S O O O O O o =
S O O O O O = O
S O O O O = O O
S O O O = O O O
S O O = O O O O
S O = O O O O O
S P O O O O O O
—_ O O O O O O O

Using the Mathematica, we can calculate the entropy
S=k;InN

16. Eigenvalue problem (formulation)
Suppose that the density operator can be described by

,5=Zi:pi|ai><ai

b

27



under the basis of {|ai> }. |ai> is the eigenket of o with the eigenvalue p;.
Pla)=2pfa)fala)=2pa;)0 = nla)
J
Here we choose the basis {|bi > }, where

ja)=Ulb). [a)=U[b,)

where

U=UZ|bi><bi|=

U bi><bi|=iZ|ai><bi|

(bJa,)=(b b)) =U,

The matrix element under this basis is
(b |A]by) = Z pi(b[a;)(a; [by)
The eigenvalue problem:
Ala)=pila)
ZIX ol )i &) = piby |ay)

Since
<bl|ai>:UIi
Y

b, >U“ =pU, (eigenvalue problem)
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Pu Po - - - - o PR (Us U,

P Py -+ - - o Py ||Uy U,
= pi

pnl pnz L pnn Uni Uni

UCY p o0, U

p=2 mlaja | =X pUlb)b "

17. The use of Mathematica for the calculation of the density operator
We use the following Mathematica program for the calculation of density operator.
(@)
Tr[A]

(i) v ) v,

(a)
w,.ComplexTranspose[y, |
when
1 bl
2 b2
wi) = P |w,)=
al’l bn
(iii)
KroneckerProduct[ ,,y, ] | v, > ®| (,//2>

(ii1))  Eigenvalue problems
Eigensystem
Orthogonalize

29



Normalize

Suppose that the matrix of p is given in the form of n x n matrix. We solve the eigenvalue

problem of the matrix of p using the Program "Eigensystem".
Eigensystem[ p ]
Suppose that there are n eigenvalues and the corresponding normalized kets.
Wi |gyi> (i=1,2,.,n).
where
<'//i “// j> = 5ij
Then we have the diagonal form of the density operator as

/3=/3§i‘,|l//i><wi |=in3| v | =2 W v (v |

1
using the closure relation (completeness).

18. Example: eigenvalue problem
The density matrix (2 x 2 matrix) is not diagonal.

p=2() T dae el aal-frakal--ae 2

Note that
P =p
T =Trpl=1

satisfying the condition for the pure state.

Eigensystem[ o ;

30



Eigenvalue Eigenket

"= e

w =0 el =51+

Then we have

\S]

P = v )| +w2)w)
= Wiy )y + Wy )(ws |
= w|y ) v
=[=x)(=x|
19.  Density operator for the spin 1/2 system
((L.I. Schiff))

In general the density operator for the spin 1/2 system can be described by

ﬁ:(p” pm]:ai+a&x+ﬂ&y+y6yZl(a+7 a—iﬂ}
P P 2 20a+ip a-y

where a, a, £, and yare real numbers. Since Tr[p]=1, we get

at+y+a-y

1,
2

or
a=1.

Then the density operator can be rewritten as
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/52,5,,
=—1+—\/05 + B2 +7( —G, +
\/a +[5’ +y°
P 5, + Y é,)
\/a2+ﬁ'2+7/2 \/a2+,82+72

:%[i+w/a2 + >+ (6-n)]

with
|n| =1 (n: unit vector)

and

_ o b /4
n=( 2 2 2’ 2 2 2 2 2 2)
\/a +B +y \/a +pB +y \/a +B +y
Note that
[32:1 >+ +yt 142y 2(a—ip)
4 2(a+if) a2+ﬂ2+72+1—27 '

For the pure state, we have
P =p, or  Tr[p*]=Tr[p]=1
leading to the relation
a’+pr 4yt =1
Then the density operator for the pure state is
D =l(i+&.n).
2

20. Comment on the density operator for the pure state
The density operator for the pure state can be described by
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-t 27

En
where
W= zyea-=(F)
with
o+ =1
We note that

s A=k, )
or

no=&n+én, o =-i€n-En),

n, =2 ~1=1-2J’
The expectation values of spin components are given by

W[6.ly)=Tr(G,p,) =5 THG,(+ 6 m] = THG, (6 - m] =n,

. . | | P
(v|6,|w)=Tr(6,p,) = ETr[ay(l +6-n)]= ETr[ay (6-nm)]=n,

(v|6.|lw)=Tr(5,p,) = %Tr[&z (+6-n)]= %Tr[&z (6-n)]=n,
where
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Trlo,6,]1=Tr[6,6,]=0, Tr[6,6,]=Tr[5,6,]=0,

Tr[6,6,1=Tr[6,6,]1=0,
Tr[6, 1=Tr[6,’ 1=Tr[6,']1=2,

Then we have

A _ * * 0 1 é: e *
(wls.|w)=(& n ! 0][77}—577%77 =n,

A _ * * O _I é _ * _ N
s, lv)=(& n i o) i(En—-¢én')=n,

* * 0 2 2 2 2
wiadn) = o[y Ol - =2t 112 =

21. Density operator: the Bloch-sphere for mixed states
We discuss the general case (both the pure state and mixed state). For convenience we use

a=r,, p=r, y=r,
An arbitrary single qubit density operator can be written as

I+r, n—IN

S L SIS S B 2
p—5(1+rxax+ry0'y+r20‘2)— fir, 1ot
2 2

where r =(r,,r,,r,) is an arbitrary real vector of length |r| <1. We see that

Trp]=1.

We calculate
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Tr[[)z]:%(lﬂf-r),

When |r|<1, p is the density operator of a mixed state. When |r|=1 (i.e., the points are on the

surface of the Bloch sphere), p is the density operator of a pure state;

Trp']=1
Tripl=1.
C)=Tpod=r,  (o)=TiS I, (o)=Tripe e,
| -
Tr[(| + X><+ XN p]= —;rx , TI’[(| . X><— X|)p] _ 2I’X ’
1+ 1—
Tr[(|+ Y><+ Y|)/5] = +2 L, TI’[(| - y><_ Y|),5] _ Zry ,
1+ -,

Tri(+z)(+zppl=—+,  Tri(-z)(-z)pl=—+.
2 2

((Mathematica))
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Clear["Global +"];

*

expr_* =
expr /. Complex[a , b ] @ Complex[a, -Db];
0 1)\. (0 -1 _ (1 0.
"X‘(l o)"’y‘(i 0 )"’Z‘(o -1)’
1 O)
01

El = ( :
El+rxXxoX +r rz oz
P +2y°y Y29/ sinplify

{{1-;rz, %—(rx-airy)}, { (rx + i ry), 1-ér2}}

N =

1 1
yxp=—— {1, 1}; yxn = — {1, -1};
A2 A2

1 1
yyp=— {1, i}; yyn = — {1, -1}; yzp = {1, O};
V2 V2

i (0 1). (0 -1i).

zlrzn:{O,l},ox-(l O),Gy—(i O)’
10

o 1)

oz - |
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Axp = Outer[Times, ¥xp, ¥xp*] // Simplify;
Axn = Outer [Times, yxn, ¥xn*] // Simplify;
Ayp = Outer [Times, yyp, ¥yp*] // Simplify;
Ayn = Quter[Times, yyn, yyn*] // Simplify;
Azp = Outer[Times, yzp, ¥zp*] // Simplify;
Azn = Outer [Times, ¥zn, ¥yzn*] // Simplify;
Tr[ox.p] // Simplify

rx
Tr[oy.p] // Simplify
ry

Tr[oz.p] // Simplify

rz

Tr[Axp.p] // Simplify

1+rXx
2

Tr[Axn.p] // Simplify

1-rx
2
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Tr[Ayp.p] // Simplify
l+ry

2
Tr[Ayn.p] // Simplify
1-ry

2
Tr[Azp.p] // Simplify

1+rz
2

Tr[Azn.p] // Simplify

1-rz
2

22. Interpretation of the density matrix elements
What is the probability to find the qubit in the state |+ z) when it is described by a density

matrix p?
1+r, r1,—ir,
b:l(i+rx&x+ry&y+rz&z): 2 2 :(p“ 'Olzj
2 Loty 1-rn P Pxn
2 2

The projection operator:

F3+=|+z><+z|=((1) gj F3=|_Z><_Z|=(g (1)]

The probability to find the qubit in the state |+ z) is

N
P+ ZTr[P+,0]: > =P

The probability to find the qubit in the state |- z) is
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P =Tr[P p]= 5 X =p,

with
P.+P =p,+py=1.
So the probability to find the qubit in a certain state is given by the diagonal elements.

23. Bloch sphere picture
The Bloch sphere is a geometrical representation of the pure state space of a two-level
quantum mechanical system (qubit). The north and south poles of the Bloch sphere are typically

chosen to correspond to the ketvectors and |+ Z> and |— Z>, respectively, which correspond. to
the spin-up and spin-down states of an electron. The points on the surface of the sphere

correspond to the pure states of the system, whereas the interior points correspond to the mixed
states.

| +2>-i| -z>

V2

| +2>+| -2
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Bloch sphere, r| =1 and the vector r pointing from the origin to a point on the sphere.
cosg
) =|+r) =cosE |+ 2y sesind|-2)=| 2
2 2 e' sin—

r=(,r,.1), (called the -).

r =Tr[p6,1=(w|6,|w) =sinfcosg

r, =Tr[p6,]1=(w|6,|w) =sinGsing
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r,=Tr[pc,]= <1//|6'Z|l//> =cosd

The density operator (pure state) is defined as

where

cos? 9 %e‘i“’ sin@
p =p= 1. 0
—e'’sin@  sin’—
2 2

Pauli spin matrix representation of the density matrix is given by
N .
p= 5(1 +r-0)

((Example-1)) Plot the density matrix state p = %[|+ Z><+ z | + |— Z><— Z|] in the Bloch sphere.

((Solution))
~ 1 1(1 O
p=glle sl f+l-2-2h=3 o )
Tr(56,) =0,
Tr(p6,) =0,
Tr(p6,) =0

The corresponding point of the Bloch sphere is the origin (0, 0, 0).

((Example-2)) Plot the density obtained by averaging
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coszg %e‘i”’ sin @
P11 0
—e%sin@  sin’ =
2 2

over ¢ with a uniform probability distribution in the interval [0,27].

((Solution))

0 sin® —
2
Tr(p6,) =0,
Tr(p6,)=0.
Tr(pS,)=cosf.
Then the corresponding point of the Bloch sphere is the origin (0, 0, cos6).
((Example-3)) The average <6' : n>
We evaluate the average <6‘ . n> using the density operator,
(6-n)=Tr[p(6-n)]= Tr[% (+r-6)6-n)
Noting that
(r-6)n-6)=(r-ml+ié-(r=n) (formula)
we get
<6’-n>:%Tr[&-n+(r-n)i+i6'-(r><-n)]
Since

Trle-n]=Tr(6)-n=0, Trle-(rx-n)]=Tr(e)-(rx-n)=0

we have
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<6' . n> = %(r -m)Tr[l]=(r-n)

((Example-4)) Pure state p = %(i +r-6)

) 1 2 ~ 1 2 A
=—(+r-o)=(1+r-o

pr=7( )5 ( )
:%[i+r-&+r-&+(r-6')(r-6')]

:%[i(l+r~r)+2(r-6')+i6"(r><”)]

=%[i(1+r~r)+2(r-6')]

Tr[p*] = %Tr[i(l +ror)+2(r-6)]

1 2
=—(+r
2( )
Whenr=1 Tr[p’]=1; (pure stae).
When r<I Tr[p’]<1: (mixed state)

24. Poincare sphere picture
Adopting a basis set {|R> ,

photon of any polarization can be represented, within an overall phase by the superposition

L> }, representing right- and left-circularly polarized photons, a

lw)= cos§| R)+e'" sing| L)
2 2
where the angles @ and ¢ define the point on the surface of the unit sphere (the Poincaré sphere)

whose south and north poles represent the states |L> and |R> , in analogy with |— Z> and |+ Z> in
the Bloch sphere, respectively.

R= i), L= (x)-ily)
The orthogonal horizontal and vertical linear polarizations are given by

[H)= %q R)-|L)), and |[V)= %q R)+|L)), respectively.
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They appear at diametrically opposite points on the equator. An incoherent polarization state is
represented by a point within the Poincare sphere. For a pure photon state, the density operator
can be expressed by

.~ 1
=—l+s-0
P 2( )

where Sy, Sy and S, are called Stokes parameters.

s, =Tr[jo,]. s, =Trlpo, 1, s, =Tr[jo,]

25.  Example-I: eigenvalue problem
We consider the density matrix given by

p=(1/4 1/4j:Z|+Z><+Z|+Z|+Z><_Z|+Z|_Z><+Z|+Z|+Z><+Z|

under the basis of {|+z),

- z> }+. This matrix is not diagonal. We now try to find the new basis

under which the new density of matrix is diagonal. In order to do that, we need to solve the
eigenvalue problem using the Mathematica.

The eigenvalue problem.

|V/1>=U|¢1>a |V/2>=U|¢2>
2442 _ _(0.92388
h=m T08S3s, y)= 0.382683J
C2-42 _ _(-0.382683
Ay == = 0.146447, )= 0'92388J

A 0.92388  0.382683
—0.382683 0.92388

. A .+ (0.853553 0
pnew:U oIdUZ

0 ol 46447j =0.853553y, )y, |++0.146447)y, )(w, | .
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26. Example-II: eigenvalue problem
We consider the density matrix given by

. (U2 u2) 1 [ 1
i R e e e

under the basis of {|+2),

— ) }. This matrix is not diagonal.

A

p=p. (pure state)

We now try to find the new basis under which the new density of matrix is diagonal. In order to
do that, we need to solve the eigenvalue problem using the Mathematica.

The eigenvalue problem.

[vi)=Ul+2), lv2)=Ul-2)

N

2
RS
GolV2 V2
1
2 2
plvi)=Alwi)

or

£ =P ) [+[wo v ) = Aw Y | =lva v | =]+ x)(+ ¥]

which is the density matrix for the pure state.
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27. Example-III: | X> representation

The probability of finding the system in the quantum state represented by the state vector | ;(>

(of norm unity) is
P(x) =Trlp| 2} x|l

Pure state in the |x> representation.
p=lviiv

The probability of the system at the position X:
P() =Tr[A(

P

x)(x|x) = (x|t ) = (x|}

X)(x])]= j dx'(x'

We consider a system which is in either a coherent, or incoherent (mixture) superposition of two
momenta |k> and |—k>

(a)  Coherent superposition
)= (k) +[-k)
p=|w)iy|
— LK)+ kDK + (k)
= IRk R}k k) | )k
and

P(x) =Tr[p|x)(x|]

1
= (k)i )+ (x k)= )+ (x| =K )(k )+ (x| =Kk | = x)]
Using the transformation function,
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(x{k)=—=e*

2z

we have
1 i2kx —i2kx 1
P(X)=— 2+ +e")=—[1+cos(kx)]
4 2
(b) Incoherent mixture
.~ 1
5= L1010k KK

P(x) =Tr[p|x)(x|]

1
=[xk x)+ (x| =Kk [ = x)1=
_ b
Cor
28 Application to the statistical mechanics; Spin in the presence of magnetic field

(a) Two-spin states
The spin of the electron has a magnetic moment (spin magnetic moment) as

~ 21p &
g,
H 7

where S is the spin angular momentum. The spin Hamiltonian in the presence of a magnetic
along the z axis is

A R A h .
H=-4,-B=w,S, = D &

7°

where

B

[0)
* mc

(Larmor angular frequency, e>0)

The eigenvalue problem:
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z

v2)="% ),

H+z>:h;)°& 5

~2)="2 5, |-2)=- T2 7).

The system is in the thermodynamic equilibrium at T. We can assert that it has a probability

lexp(— haoy ), of being in the state |+ Z>, and
z 2k, T

1 haw, .

—eX , of being in the state |—2),

7Py 1) s -2

where Kg is the Boltzmann constant and Z is the partition function is defined by

ho, ho,
Z =exp(——>) +ex 2.
P ) PG )
The density operator is given by
haw,
e p—
S L T

Z ha,

0 ex

PO,

with
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2 A h ho, ho, h ho
S,)=Tr[pS,]=—[exp(——=) —exp(+—2)] = ——tanh :
(8.) = TrLA8.1 = 7 [expl—y ) = expliry 2] == tanh(y )
Since tanh(2k = )| <1, this polarization is less than the value 5 which corresponds to a spin
B

which is perfectly polarized along the z axis. “Partially polarized along the z axis.

(b) Canonical ensemble in statistical mechanics
The time dependence of p is given by

. 0 . A A
ih—p=—{p,H].
el [o,H]

Note that the sign is opposite to that of the usual Heisenberg operator equation.We see that, if

,5(I:I) is a function only of H , then

For a canonical ensemble we may write

F-H,_ 1 H
" ) =—-exp(-
Tz koT

p =exp( )

where H is the Hamiltonian and Z is the partition function. Since

Trpl=1
Z is given by
Z =exp(— F ) =Tr[exp(— A )]
Pt Pt

The Helmholtz free energy F is given by

F=—k,TInZ
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Because of the invariance of the trace under unitary operators, we may calculate Z by taking the

A

trace of exp(— ) in any representation.

B

p=7 NE|
= NE|
- TonSEE
where
HIE,) = E,[E,)
and

YA =Zexp

(©) Lagrange multiplier method: Derivation of canonical distribution
We define the entropy S as

S=—k;Tr[plnp],
where kg is the Boltzmann constant. The quantity o =S/K; is expressed by

S

P o= _Zpkk In p
B k

when it is assumed that p is diagonal,

p= Zpkk| Ek><Ek|
k

with
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Trlp]= Zk:pkk =1
The internal energy U is given by
U=(H)=Tr[pH]= ;Ekpkk
Let us maximize o by requiring that

6o = _z (In py +1)Ip (1)
K

with two constraints

5<H> :zEk5pkk (2
oTr[p]= zgpkk =0 &)
k

Using the Lagrange multiplier, we get:

zépkk[lnpkk +1+ B, +7]1=0
K

where fand yare constants.
Inp, +1+pE, +7=0
Then we have
Puc = exp[=(1+ &, +7)]= Aexp(-fE,)

From the relation
D P =AY exp(-fE,) =1
k k

where A is constant. The constant A can be determined as
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1 1

A= e -
Zk:exp(—ﬂEk) Z
where Z is called the partition function
Z= Zk:exp(—ﬂEk) =Trle™]
Then we have

1
P = 2GXP(_ﬁEk)

or

o= Zk:pkk|Ek><Ek |
= Z%exp(—ﬁEk )| Ek >< Ek |

k

— 2 exp(-H)

This system is called the canonical ensemble.

29. Spin with two energy levels
We now consider the system with two spin states with |+ Z> and |— Z>. Suppose that the

magnetic field B is applied along the z axis. The spin Hamiltonian is given by

‘ {y.g}ﬂsgd

H|+2)=E |+ )= B+ 2), H|-2)=E,|-2) = —u;B|-2)

where E, = ;B and E, =—14B.

Lo E
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Z =exp(-pfE,) +exp(-fE,)

1 (GXP(—ﬂEl) 0 j

P27l 0 expE)

The internal energy U:

U=(H)=Tr(sH)

[E, exp(—fE,) + E, exp(—fE,)]
1 Inx N Iny
X y

h|_‘ N|H

X | —

+

< | =

_ I{ylnx+xIny
X+Yy

B
The entropy S:

S =—kgTr[pIn(p)]
—xInx—ylny+(x+ y)In(x+Y)

=k
ol X+Y :
_ kB[—(xlnx +ylny) T+ In(x+ y)]
X+Yy
with
X =exp(fE,), y = exp(fE,)

The Helmholtz free energy F:

F =—kTInZ
=—k,T In[exp(—SE,) + exp(—fE, )]

= —%[ln(x +Y)—-Inx—-Iny]

Note that
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F=E-ST.
The magnetization per unit mole is given by

M = N,utg(=0,) = =N, 5 Tr[6,] = N st tanh[ Bz, B]
where N, is the Avogadro number.

((Mathematica))
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. .4 [EL O
Clear["Global "] ; H1 = ( 0 EZ)

rulel = {E1—> % Log[x], E2 - % Log[y]};

P1 = MatrixExp[-B H1]; oz = PauliMatrix[3];
Z1 =Tr[P1]

e—El B + (e—EZ 3

pl=P1l/Z71

(et ob o e )]
@—El/B N @-EZB ? ’ ’ e—El/S + (e—EZB

Z1 /. rulel // Simplify[#, {x>0,y>0, 3>0}]¢&

+

X |k
<Lk

S1=-kB Tr[pl MatrixLog[pl]] /- rulel //
Simplify[#, {x>0,y>0,B>0}]&

o[

X+y

kB (xLog[ﬁ/
X+Y
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_ Log[Z1]

F1 = T/-rulel//
Simplify[#, {x>0,y>0,8>0}]&
1 1
_Log )—(+)—/
3

Ul=Tr[Hl1.01] /. rulel//
Simplify[#, {x>0,y>0, 8>0}] &

yLog[X] + XLog[y]
XB+yps

S11=kBp (U1-F1) /. rulel //
Simplify[#, {x>0,y>0,8>0}]&

kB (y Log[Xx] + (X +YV) Log 1

+ X Log[Yy]

1,
X

X+V¥Y

(S1-S11) 7/ Simplify[#, {x>0,y>0,3>0}] &
0

Aveoz = Tr[oz.pl] // ExpToTrig // Simplify;

M1 =-NAuB Aveoz /. {E1 > uBB, E2-> -uBB}
NA B Tanh[B 3 1B]

30. Examples
(a) Example-1  Sakurai and Napolitano

As an example of a partially polarized beam, let us consider a 75-25 mixture of two pure
ensembles, one with |+ Z> and the other with |+ X> . The corresponding p can be represented by
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PSP LT T e L () R
P=y 4 “2lo o) sl1 1) 8l 1

where
Tr[p]=1, S =—kgTr[pIn(p)] = 0.335322k,

TS, A= TS, 1-0, THS. A=

Solving the eigenvalue problem, we have the diagonal form of p,

08953 0
p=0.8953¢, (¢4 |+0.1047|4, (¢, | = ( J

0  0.1047
with

|¢)=0.9871|+z) +0.1672|— z)

|¢,) =—0.1672|+ z) + 0.9871|- z)
(b)  Example-2

We consider a 75-25 mixture of two pure ensembles, one with |+ Z> and the other with |— X> )

The corresponding p can be represented by
.3 1 J3roy it =17 -1
pegeateategionin= 3l ol )
where

Trp]=1 S =k, Tr[pIn(p)] = 0.335322K,

Tr[§x,5]:—§, Tr[S,p]=0, Tr[ézﬁ]:%

(c) Example-3
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We consider a 75-25 mixture of two pure ensembles, one with |+ x> and the other with |— x> .

The corresponding p can be represented by

I 1
. 3 1 3(L 1)y 11 =1} |5 4
=S+ X+ X[+ == XN=X|== +— =
e R I o Y o O
4 2
where
Tr[p]=1 S =—k,Tr[pIn(p)] = 0.562335k,
P 2 A A
Tr[Sxp] = Z ) Tr[syp] =0 ) Tr[Szp] =0

(d) Example-4: the difference between the pure state and mixed state

We consider the state given by

| >_ cosd
Vi= e sind

Does the density operator

define a density matrix?

((Solution))

A ( cos* @ ei"’sin@cos@j

- e sin@cos® sin’ @
Trip]=1, Tr[p*]1=1

pr=p
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For any | ;(> , we have

(2|8l 2)=|(x|w) =0

So p is the density operator for the pure state.

((Mathematica)
Clear["Global "] ;

*

exp_ I=
exp /. {Complex[re_, im_] = Complex[re, -im]};

_ Cos[9] )
¥l = (Exp[i ¢] Sin[e] )

Y11 = Transpose [¢1][[1]];
p = Outer[Times, y11, y11*] // Simplify
[{cos[6]?, e *?Cos[e] Sin[o] ],

{e!?Cos[e] sin[e], Sin[e1%}]

o // MatrixForm

Cos[6]2 e t?®Cos[6] Sin[e]
e!?®Cos[6] Sin[e] Sin[e]?
p-p // Simplify
[{cos[e12, e*?Cos[o] Sin[e]},

{e’?Cos[o] Sin[o], Sin[o]?}]

Tr[p] // Simplify
1

Trip-p] // Simplify
1

31 Problems and solutions (collection)
31.1. Example: Cohen-Tannoudji
Quantum Mechanics Chapter 4 exercise (4-4)
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A beam of atom of spin 1/2 passes through one apparatus, which serves as a
"polarizer" in a direction which makes an angle € with Oz in the xOz plane, and then
through another apparatus, the "analyzer," which measures the S, component of the spin.
We assume that between the polarizer and the analyzer, over a length L of the atomic
beam, a magnetic field By is applied which is uniform and parallel to Ox. We call v the
speed of the atoms and T =L/Vv the time during which they are submitted to the field B,.
We set o, =—)B,.

What is the state vector |l//1> of a spin at the moment it enters the analyzer?

b. Show that when the measurement is performed in the analyzer, there is a

probability  equal to %[1+cosﬁcos(a)0T)] of  finding +§ and

%[1 —cosdcos(w,T)] of finding —g . Give a physical interpretation.

c. Show that the density matrix p, of a particle which enters the analyzer is written,

in the {|+ Z>, - Z>} basis:

o1 ( 1+cos@cos(w,T)  sin@+icosOsin(w,T )j
Pr=7
2

sin@—icosdsin(aw,T) 1 —cos@cos(w,T)

Calculate Tr[/31§x] , Tr[/31§y] , and Tr[,S,]. Give an interpretation. Does the

density operator p, describes a pure state?

d. Now assume that the speed of an atom is a random variable, and hence the time T
is known only to within a certain uncertainty AT. In addition, the field By is
assumed to be sufficiently strong that @,AT >>1. The possible values of the

product @, T are then (modulus 27) all values included between 0 and 2m, all of

which are equally probable.
In this case, what is the density operator p, of an atom at the moment it

enters the analyzer? Does p, correspond to a pure case? Calculate the quantities

Tr[bzéx], Tr[,bzéy], and Tr[ﬁzéz]. What is your interpretation? In which case

does the density operator describe a completely polarized spin? A completely
unpolarized spin?

Describe quantitatively the phenomena observed at the analyzer exit when
w, varies from zero to a value where the condition @ AT >>1 is satisfied.
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((Solution))
(a)

COS—

[+m)= 0

sin—
2
The Hamiltonian is given by

H=—w,0,

o | S

Time evolution operator:

ly(t=T))= exp(—% HT)|+n)

= exp(—% @,6, T )| + n>

COS

NN
—isin c
2

0
COS—COs
2

—icos—sin
2

Note that

@, T .. O
—Isin

o, .. 0.
_ISIHESIH

o, .
+sin Dh

2| cosg|+ z>+sin£|— Z> att=0.
2 2
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exp(—%a)OOA'xt) = exp(_%wo&xt)ﬂ + X><+ X| + |_ X><_ X|)
- efi%t|+ X)(+ x|+ e5w°t| —X){— X))
—U(e "+ 2)(+ 2| +e*™ |- 2)(~2)U"

gle”™ o

Il
o -
S
D
S
|- S
S \ﬁ—/
[«
+

where

with

)

Then we have

(b) Density matrix for the pure state

|w(t=T>>=[Z,j,

where

@, T

o, T

0 .. 0 .
o= COSECOS —I1S1n—sin
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p=-i cosgsin£+singcos£.
2 2 2 2

We define the density matrix for the pure state as

P =lw=T))pt=T)| :(aj(a* ﬂ*):[aa* aﬂ*j

B ap ps
where
P =o@
=cos’ gcosz ﬂ +sin? Qsinz @
2 2 2 2
= %[1 +cos @ cos(w,T)]
p._=af
.0 0 . . @, @, T
=sin—cos— +1icos@sin cos
2 2
= %[sin 6 +icos@sin(w,T)]
p_, =pa’
= sing cosg —icos Hsinﬂcos @,
2 2 2
= %[sin 6 —icos@sin(w,T)]
p_=pp

2 @,

2£Jrsin2 Qcos —
2 2 2

, 0 .
=c0s” —sin
2
= %[1 —cos @ cos(w,T )]
Of course, we have

A2 A
P =P
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from the definition of
P, = |(//(t = T)><w(t = T)| for the pure state.
($,)=Trl4S,]
s o)
2 B

(3 &)
2 BB
L
2

zg(aﬂ +a f)=—sinb

i g
2 Na'p g )i o
1 [C“f* _?“f‘*}]
2 g g —lap

5 20
ap BB -1
Tr[[ —ap J]

ap -pB

_h e _h
—Z(aa pB) 2cos6’cos(a)0T)

(d) The possible value of the product 7 =@, T are all values included between 0 and 2,

all of which are equally probable.
4 1( 1 sing
A = — d 5 = —
= 2 I r 2 (sin@ 1 J
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with

T=w,l

Note that
2 2z
Idrsin(r):O, Idrcos(r)zO
0 0

Then we find that

L2 1{ 1 sm@) 1 sind
P> “4lsing 1 |sino 1

1 l1+sin’@  2siné L5
4 2sin€® 1+sin’0 0

Therefore p, correspond to the mixed state case.

[S,]=Tr[5.S,]

) 1 sind\ 0 1

i ]
4 siné 1 1 0

iné 1

ETI‘[ Sin ‘ ]

4 1 sin @

:Esinﬁ
2

[Sy]:Tr[,bzéy]

[ 1 sinHJ(O —i]
Trf| . . ]
sin @ 1 10

- isin@ —i
"l i —isinH]

L
4
1
4
0
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[S,]=Tr[5.8,]

i 1 sind)1 O
=—Tr[| . ]
4 [sm 0 1 J(O - lj

i 1 —sin@
=T ]
4 sin @ -1

=0

31.2 Problem and solution
A spin-1/2 particle is in the pure state |l//> = a| + Z> + b| — Z>

(a) Construct the density matrix in the S, basis for this state.
(b) Starting with your result in (a), determine the density matrix in the Sy basis where

)= e 2)el-). = dea)-|-2)

(c) Use your result for the density matrix in (b) to determine the probability that a
measurement of Sy yields 7/2 for the state |l,//>

((Solution))

|y/> = (aj under the basis of {|+ Z>, - Z> }

We define the unitary operator as

l+x)=U|+12), |-x)=U

_2)

with

(a)
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L (a).. ,.\_(aa ab’ , ~
pz—|!//><l//|—( J(a b)_[a*b bb*] undertheba51sof{|+x>,| X>}
(b)
p,=U"pU

_LLI ljaa* ab’ L(l lj

20 -1la’b bbb JV2 1 -1

_l(l lja(a*+b*) a(a -b")

201 —1){b@ +b") b@ -b"

_1{(a+b)@ +b") (a+b)a -b’)

“2((a-b)a +b’) (a-b)a +b")

The projection operator

FA>x = | + X><+ X| = ((1)](1 O) = ((1) ?J under the basis of {|+ X> , |— X> }

Then we have

5 4 _(1 Ojl (a+b)a +b") (a+b)a -b")
=0 0)2 (a-b)@ +b") (a-h)@ +b"

1 ((a +b)@ +b") (a+bya - b*)J

2 0 0
and
Tr[P.A, 1= %(a +b)@ +h")
((Mathematica))
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Clear["Global *"]; oX = (g (1)) ¥z = {a, b};

yzCe = {a*, b*}; pz = Outer[Times, ¥z, yzC];
pz // MatrixForm

(aa* ab*)
ba* bb*
1
U=—— (i _11); UH = Transpose[U] ;
V2
pX =UH.pz .U // Simplify; px // MatrixForm
—; (a+b) (a* +b*) —; (a+b) (a* - b*)
—; (a-b) (a* +b*) —; (a-b) (a* - b*)

Px = Outer[Times, {1, 0}, {1, 0}71;
Tr[PXx.pX]

12' (a+b) (a*+b*)

31.3. Problem and solution
Given the density operator

3

. 3 1
p=2le vzl v b2

construct the density matrix. Show that this is the density operator for a mixed state. Determine

(Sy)s <Sy>, and (S,) for this state.

((Solution))
. 1(3 0
=400 1
PP )
Tr[p ]=§ <1 (mixed state)
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N 0 1 A 0 —i A 1 0
s (0 1) gm0 ) g a1 0)
2{1 O 2010 2\0 -1

(S,)=Tr[S,p]1=0, (s,)=Tr(S,p]=0,

(5.)=TrIS.A1=, .

((Mathematica))

h h —1
Clear["Global *"]; Sx=—2 (2 (1)) Sy=§ (? OI);

A
S2=7 (é -01)’

3
=", Outer[Times, {1, 0}, {1, O}] +

1
Z Outer[Times, {0, 1}, {0, 1}]

{50 o 31}
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31.4 Problem and solution

Show that
.1 1
p =+ )t n|+|=m{=n[1="1]+ )+ 2 +[-2)({~2[]
where
cosE sin —
[+m)=| ol -m= 0
e sin— —e"cos—
2 2
((Solution))

Tr[p*]= (for mixed state)

((Mathematica))
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Clear["Global «"];

expr * :=expr /. Complex[a , b ] = Complex[a, -b];
e e
ypn = {COS[_Z] , EXp[i ¢] Sin[E]};

ymn = {Sin[—i] , —EXp[i ¢] Cos[g]};

31.5 Problem and solution

Find states |l//1> and |l//1> for which the density operator

.~ 3 1
p=2ls2)ral+ 22

can be expressed in the form
AR ALA
p 2 2

((Solution))

Assume that

=L g d-a)-

V3
2
1
2
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|‘/’2> =5
Then we have

3
51 1 _3 L4
p=glvil gl = el el

= O

with
5
Tr[p*1==
[P°] 2

((Mathematica))
Clear["Global %"];

expr_* = expr /. Complex[a , b ] = Complex[a, -b];

p =
1 ) 1 )
E Outer[TlmeS, vl, zpl*] +—2 Outer[Tlmes, 2, ¢2*] //

Simplify

({30 fo- 31

Trip-p]

31.6 Problem and solution
The density matrix for an ensemble of spin-1/2 particles in the S, basis is
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n

1
p=|4
n o p

(a) What value must p have? Why?
(b) What value(s) must n have for the density matrix to represent a pure state?
(©) What pure state is represented when n takes its maximum possible real value? Express

your answer in terms of the state |+ n> given by

Cos—
2

|+n) =
e' sin—
2

((Solution)) Here we assume that n is the complex number,

(a)
n=a+ib
L asie
P=| 4
a—ib p
A 3
Trp]=p+ =1, p=-
4
(b)
Tr[p°] =§+ 2(a*+b*) =1 for the pure state
|n|:\/a2+b2:g,
()
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2]
cos—
|+n) = 29 ,
e' sin—
| >< | coszg —e’sind
p=|+n)+n|=
lef”sinﬁ sinzﬁ
2 2
So we have

a+ib:le‘¢ sin @
2

When b =0, ¢=0. nis a real number.

1. . 3

a=—sinf=—,
2 4

sin@ = 73 leading to the value of fas 6 = % or 0=—

Here we note that

cos’

NSNS

1
—, or cos9=—l
4 2

So we get

0==".
3

((Mathematica))
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Clear["Global "] ;

*

expr_* :=expr /. Complex[a , b ] :» Complex[a, -b];

( 1 a+ib]

p = 4

a-1ib p

(X, a+ib], (a-ib, p}
4" s » P

eql = Solve[Tr[p] =1, p]

(P31

p-p/-€eql[[1]] // Simplify

1 . . 9
{{1—6 +a2+b2, a+11b}, {a—nb, 1_6 +a2+b2}}

eq2 = Tr[p.p] /-eql[[1]1] // Simplify
§+2<‘5[2+2bz

8

eq2l = eq2 /. {a2 > X - b2} // Simplify

§+2X
8

Solvel[eq2l == 1, X]

x> 21)

ypn = {Cos[—Z] , EXp[i ¢] Sin[Z]};

pn = Outer[Times, ypn, ypn*] // Simplify

{{cos[T]%. 5 e@sintel}, {5 e ?sinfe), sin[2]%])

31.7 Problem and solution
Show that the Curie constant for an ensemble of N spin-1 particles of mass m and charge q =
-e immersed in a uniform magnetic field B = Bk is given by

B 2Ny’
3kg

C
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where y = 3ﬂ. Compare this value of C with that for an ensemble of spin-1/2 particles,
mc

((Solution))

The magnetic moment is defined as

Qg S
7]

fi=-

A

The magnetic moment is antiparallel to the spin angular momentum. The Hamiltonian H is
given by

|:| =_ﬁ'B=_/:lzBo = gluBBO SAz

n
H 1,m> =gﬂTBBoéz Lm> =gﬂTBB°hm 1,m> = gusB,m 1,m> =E,m 1,m>
The energy eigenstate energy eigenvalue
Lm= l> Eo (the magnetic moment is antiparallel to B).
1,m=0) 0
ILLm= —1> -Eo (the magnetic moment is parallel to B)
((Solution))
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Clear["Global *"];
expr_* z=expr /. Complex[a_, b ] = Complex[a, -b];
ypl = {1, 0, 0}; O = {0, 1, O}; yml = {0, O, 1};
100
Sz=~h [O 00 J;
00 -1

rulel = {Z1 - EXp[BEL1l] + 1 +EXp[-BE1l], El1l -» guBBO};

p =
1
Z_l (EXp[-B E1] Outer[Times, ypl, ypl] +
Outer[Times, ¢y0, yO ] +
Exp[B E1] Outer[Times, yml , yml]) //

FullSimplify

e ElA 1 ekl A
{ 21 0, 0}, {0, 217 o}, {0, 0, 21

g uB o
M=-——N1LTr[Szp] // Simplify

h

e FlP (~1+e2F1F) gN1 B
z1
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ML=M//- rulel // Simplify

(-1+e2B095:8) gN1 1B
1+eBOgBuB +e280g5u8

X
M2 = M1 /. {BO-> - /3}

(-1+e®X) gN1LB
2X

1l+reX+e

M3 = Series[M2, {x, 0, 2}] // Normal

2
— gN1xuB
39 M

M4 =M3 /. {Xx->guB BBO} // Simplify

2
3 BO g% N1 3 uB?

31.8 Problem and solution
Show for the density operator for a mixed state

p= Zk: Py )y ™|

that the probability of obtaining the state |¢> as a result of a measurement is given by Tr[ﬂ " o1,

where

FAT¢> - | ¢><¢| :

((Solution))
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31.9 Problem and solution
Show that the equation governing time evolution of the density operator for a mixed state is
given by

. d o . A na
ih—p=—[p,H]=[H,
dtp [o,H]=[H, ]

((Solution))
S h=lv ]
(2 o+ St )
— Fily ) |-}y I
— |-y
— o =[5, H]
or
inS 5 =5, A1=[H, 5]
dt

31.10 Problem and solution
(a) Show that the time evolution of the density operator is given by

79



AO=U®)AHOU" (1)
where U (t) is the time-evolution operator, namely

() =U®)|y(0)

(b) Suppose that an ensemble of particles is in a pure state at t = 0. Show the ensemble
cannot evolve into a mixed state as long as time evolution is governed by the Schrodinger
equation.

((Solution))
(a)

AO =]y O)w D)
where
() =Uly(t=0)

Then we get

=Uly(t=0)y(t=0U"

A =Uly(t=0)y(t=0U"
=Up(t=0)U"

(b)
Suppose that p(t = 0) is the density operator for the pure state.

T A1) A1) =TrUpt =00 Up(t=0)U"]
=TrlUp(t=0)p(t=0)U"]
=TrlU"Up(t = 0)5(t = 0)]
=Tr[p(t=0)p(t=0)]=1

Thus p(t) is still the density operator for the pure state.
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