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Here we discuss the density operator for the two and three-particles system. The concept of the 

reduced density operator is significant. The reduced density operator enables one to obtain 

expectation values of one subsystem 1’s observables without bothering about the states of the other 

subsystem 2. It is formed from the density operator of the entire system by taking the partial trace 

over the states of subsystem 2. 

 

1. Kronecker product 

A classical bit of information is represented by a system that can be in either of two states, 0, 

1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the 

state of a two-level system, whose basic components may be written as 
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This is the so-called quantum bit of information, or, in short, a qubit. Here we define the 

combined state of two qubits as 

 

21   = KroneckerProduct[ 1 , 2 ] 

 

Then we have 
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2. Calculation of density operator by Mathematica 

A classical bit of information is represented by a system that can be in either of two states, 0, 

1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the 

state of a two-level system, whose basic components may be written as 

 

 

0
0

1
1 








 ,  1

1

0
2 








  

 

 

This is the so-called quantum bit of information, or, in short, a qubit. 

 

The Kronecker product 

 

 

21   = KroneckerProduct[ 1 , 2 ] 
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Then we have 
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((Note)) 
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3. Density operators for two-particle system  

We consider the two-particle system. Typical example is the two-spin system with spin 1/2. 

There are four states, 
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21
, zzzz  ,  

21
, zzzz  . 

 

In general, the density operator for two particle system can be expressed by 
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where i  is the eigenket of the particle 1 and j  is the eigenket of the particle 2. lkji ,ˆ,   

is the density matrix. Here we use the formula 
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4. Reduced density operator 1̂  

The reduced density operator 1̂  describes completely all the properties/outcomes of 

measurements of the system 1, given that system 2 is left unobserved (”tracing out” system 2). 
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This represent the maximum information which is available about the particle 1 alone, irrespective 

of the state of particle 2. The reduced density operator 1̂  is defined as 
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where we use the formula 
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Note that 
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for the two-particles system. For simplicity we use the following notation. 
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where 1,1 1 , 1, 2 2 , 2,1 3 , 2, 2 4 , 
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5. Reduced density operator 2̂  

The reduced density operator 2̂  describes completely all the properties/outcomes of 

measurements of the system 2, given that system 1 is left unobserved (“tracing out” system 1). 

This represent the maximum information which is available about the particle 2 alone, irrespective 

of the state of particle 1. 

The reduced density operator 2̂  is defined by 
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We note that 
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for the two-particles system. For simplicity, we use the following notation 
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6. Example-1: two spins (independent subsystems) 

We consider the state of the composite system 1-2 consisting of independent subsystems  
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The density operator is obtained as 
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where Â  and B̂  denote the operators for particle-1 and particle-2, respectively. The matrix form 

of 12̂  is given by 
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The reduce density operators 1̂  and 2̂  are obtained as 
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Note that 
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using the formula given in the APPENDIX-II  

 

7. Example-2: Two spins: independent subsystems 

We start with the two-particle pure state 2,1,12 zz  . The density operator is given by 
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under the basis of { z  and z }, where 
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The reduced density is obtained as 
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under the basis of {  ,  }. 

 

8. Example-3: Bell's two-particle entangled state 

The Bell’s entangled state is given by 
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The density operator (in the pure state) is given by 
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((Mathematica)) 
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The reduced density operator is obtained as 
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under the basis of { z , z }. Thus for measurements of particle 1 (or 2) the Bell's state 

behaves like the mixed states of completely un-polarized ensemble. 

 

((Note)) 

M.A Nielsen and I.L. Chuang, Quantum computation and quantum information, 10th 

Anniversary Edition (Cambridge, 2010). 

Notice that this state 1̂  (or 2̂ ) is a mixed state. This is a quite remarkable result. The state 

of the joint system of two qubits is a pure state, that is, it is known exactly, however, the first qubit 

is in a mixed state, that is a state about which we apparently do not have maximal knowledge. This 

strange property, that the joint state of a system can be completely known, yet a subsystem be in 

the mixed state, is another hallmark of quantum entanglement.  

 

9. Density operator for three-spins system 

1
1

0
; 2

0

1
;

12

1

2
KroneckerProduct 1, 2

KroneckerProduct 2, 1 Simplify

0 ,
1

2
,

1

2
, 0

0 12.Transpose 12 Simplify;

0 MatrixForm

0 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 0



13 

 

In general, the density operator for three particle system can be expressed by 
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where i  is the eigenket of the particle 1, and j  is the eigenket of the particle 2, and k  is 

the eigenket of the particle 3. ˆ, , , ,i j k l m n  is the density matrix. Here we use the formula 
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We consider the density operator for the three-spins system (with spin 1/2). 
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where 
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10. Reduced density operator 

The reduced density operator 23̂  is obtained from the full density operator by tracing over the 

diagonal matrix elements of particle 1, leading to 
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The reduced density operator 3̂  is obtained from the full density operator by tracing over the 

diagonal matrix elements of particles 1 and 2, leading to 
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We also have the density operator for the three spins and its reduced density operator 
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((Reduced density operator 23̂ )) 
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((Reduced density operator 13̂ )) 
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((Reduced density operator 12̂ )) 
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11. Example-1 Entangled GHS state 
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The reduced density operators are obtained as 
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which is equivalent to a completely un-polarized state,  

 

12. Example-2 Another entangled GHZ state 

The entangled GHZ state is given by 
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The reduced density operators are obtained as 
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which is equivalent to a completely un-polarized state,  

 

13. Origin of the collapse of the state vector 

This is the origin of the collapse of the state vector. The collapse postulate states that upon the 

measurement a system evolves from pure state to mixed state. 

 

i.e., if we are in a state   and we measure A, we end up in an eigenstate a  with the probability 

2

a . 

 

i.e.  the pure state   evolves to a mixed state 
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where 

 

aaaA ˆ . 

 

This puzzle is resolved if we keep track of entanglements. 

 

  = the state of system 

E  = the state of measuring apparatus 

 

Measurement: 
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where aE  is the state of apparatus after measuring a . 
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then by linearity measurement 
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If we do not wish to study the state of our apparatus, we must trace over EH . 
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where we use the formula 
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The state vector is collapsed. They just get entangled. It is when we forgot about quantum density 

operator of measuring apparatus that they appears to collapse. Assume that ',' aaaa EE  , this is 
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By choosing not to measure E we have reproduced the apparent collapse of the state vector in a 

unitary way. 

 

The assumption that ',' aaaa EE   is the statement that E is classical. 

Why are some variable “classical” and some are not. 

 

14. Schrodinger’s cat 

14.1 Bipartite quantum system 

We consider the state vector in the BA  system. The system A is accessible, while the system 

B is inaccessible.  
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where 11100 
AA

, 00110 
AA

, 11100 
BB

, 00110 
BB

, and 

 

1
22
 ba  

 

Suppose that we measure the system A by projecting onto the { }1,0
AA

. With the probability 

2
a , we obtain the state 

A
0 . The state vector collapses into the state 

 

BA
00  . 

 

With the probability 
2

b , we obtain the state 
A

1 . The state vector collapses into the state 

 

BA 11  . 

 

In either case, a definite state of the system B is picked out by the measurement. If we subsequently 

measure the system B, then we are guaranteed to find 
B

0 , and we are guaranteed to find 
B

1 , if 

we had found 
A

1 .  

The density operator for the combined system AB is given by 
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The average value of the observable BAM 1̂ˆ   in the state 
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We introduce the density operator Â  of the system A (which is the reduced density operator), 

such that 
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So we have the expression 
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Note that Â  represents an ensemble of possible quantum state, each occurring with a specified 

probability. 
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a  is the probability in the state 
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0  and 
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b  is the probability in the state 
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1 . 

 

14.2 Reduced operator 

We show that Â  is the reduced density operator given by 
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Â  for the subsystem A is obtained by performing a partial trace over subsystem B of the density 

operator for the combined system AB. 

 

((Another method)) The matrix representation. 
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Then we have 

 

BA  ˆˆ   

 

The reduced density operator Â  contains the same information about the system A as the state 

vector of the combined system. We now understand how probabilities arise in quantum mechanics, 

when a quantum system A interacts with another system B. The systems A and B are entangled, 

that is correlated. The entanglement destroys the coherence of a superposition of states of A. so 

that some of the phase in the superposition becomes inaccessible if we look at A alone. We may 

describe this situation by saying that the state of system A collapses. It is in one of a set of 

alternative states, each of which can be assigned a probability. 

 

14.3 Gedanken experiment Schrodinger’s cat) 

The Schrödinger cat paradox is a gedanken experiment designed by Schrödinger to illustrate 

some of the problems of quantum measurement, particularly in the extension of quantum 

mechanics to classical systems. The apparatus of Schrodinger’s gedanken experiment consists of 

a radioactive nucleus, a Geiger counter, a hammer, a bottle of cyanide gas, a cat, and a box. The 

nucleus has a 50% probability of decaying in one hour. The components are assembled such that 

when the nucleus decays, it triggers the Geiger counter, which causes the hammer to break the 

bottle and release the poisonous gas, killing the cat. Thus, after one hour there is a 50% probability 

that the cat is dead. 

 

 
 

((Schrödinger 1935)) 

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along 

with the following device (which must be secured against direct interference by the cat): 

in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the 

course of the hour one of the atoms decays, but also, with equal probability, perhaps none; 
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if it happens, the counter tube discharges and through a relay releases a hammer which 

shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an 

hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-

function of the entire system would express this by having in it the living and dead cat 

(pardon the expression) mixed or smeared out in equal parts. (E. Schrödinger, November 

1935). 

 

As an example of the usefulness of the density matrix, we consider Schrödinger’s cat paradox. 

Schrödinger imagined placing a cat (the system A) in a box with some radioactive material. After 

one hour there is 50% probability that one of the radioactive atoms (the system B) decays, and this 

decay triggers a mechanism which kills the cat. Before the box is opened, and a measurement is 

performed to determine whether the cat is alive or dead. The apparatus is designed such that there 

is a one-to-one correspondence between the un-decayed nuclear state and the live-cat state and a 

one-to-one correspondence between the decayed nuclear state and the dead-cat state. Though the 

cat is macroscopic, it is made up of microscopic particles and so should be described by a quantum 

state, albeit a complicated one. Thus, we expect that the quantum state of the combined system 

AB after one hour is described  
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which is an entangled state, where 
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The density operator is given by 
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or, using the matrix representation, 
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The reduced density operator Â  for the system A is 

 















10

01

2

1

)1100(
2

1

][ˆ

AAAA

ABABBA Tr 

 

 

where 

 





















10

01

2

1

11
2

1
00

2

1

1111
2

1
0000

2

1

]11[11
2

1
]00[00

2

1

])]0011()1100(

)1111()0000[(
2

1
][

BBBB

ABBABB

AAABBAAABB

BABABABA

BBAABBAABABABB

TrTr

TrTr 

 

 

Using the formula, 
 

]1ˆ10ˆ0[
2

1

]ˆˆ[

AAAA

AAA

MM

MTrM



 
 

 
We can calculate the probability 

 

(a) 
AAM 00ˆ   
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]
2

1
]ˆˆ[ AAMTr   

 

(b) 
AAM 11ˆ   

 

2

1
]ˆˆ[ AAMTr   

 

Â  represents an ensemble of possible quantum state for the system A (corresponding to the in-

polarized state for the photon system), each occurring with a specified probability. 
2

1
 is the 

probability in the state 
A

alivecat 0  and 
2

1
 is the probability in the state 

A
deadcat 1 . 

The reduced density operator Â  for the system A is 

 















10

01

2

1

)1100(
2

1

][ˆ

BBBB

ABABAB Tr 

 

 

Â  represents an ensemble of possible quantum state for the system B, each occurring with a 

specified probability. 
2

1
 is the probability in the state 

B
decaynon0  and 

2

1
 is the probability 

in the state 
B

deadcat 1 . 

 
((Note)) Maximally entangled state 

Maximally entangled state means that when we trace over the system B to find the density 

operator Â  of the system B, we obtain a multiple of the identity operator 

 

AA 1̂
2

1
ˆ   

 

(and similarly,  BB 1̂
2

1
ˆ  ). This means that if we measure spin A along any axis, the result 

is completely random. We find spin up with probability 1/2 and spin down with probability 1/2. 

 

15. Quantum teleportation 
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We consider the pure particle state 123  which is related to the quantum teleportation. The 

density operator for this pure state is given by 

 

123123123
ˆ    

 

where 

 

)([
2

1
][

2

1

][
2

1
][

2

1

33

)(

1233

)(

12

33

)(

1233

)(

12123

zbzazbza

zbzazbza







 
 

 

with 

 






















0

1

1

0

2

1
][

2

1
2121

)(

12 zzzz  

 





















 

1

0

0

1

2

1
][

2

1
2121

)(

12 zzzz . 

Note that 
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1
22
 ba . 

 

The density operator 123̂  can be obtained as 

 











































00000000

02/2/002/)(2/)(0

02/2/002/)(2/)(0

00000000

00000000

02/)(2/)(002/2/0

02/)(2/)(002/2/0

00000000

ˆ

22**

22**

**22

**22

123

bbbaba

bbbaba

ababaa

ababaa

  

 

Tracing out particle 1, the reduced density operators are obtained as 

 



































































































0000

0110

0110

0000

2

1

0000

00

00

0000

2

1

0000

00

00

0000

2

1

0000

00

00

0000

2

1

]ˆ[ˆ

2222

2222

22

22

22

22

123123

baba

baba

bb

bb

aa

aa

Tr 

 

 

Tracing over particle 2 furthermore, we have 

 

3 12 123

1 0 0 0 1 01 1 1
ˆ ˆ[ ]

0 0 0 1 0 12 2 2
Tr 

     
        

     
 

 

which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information 

about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until 
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he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into 

the state   that Alice’s particle was in initially. 

 

((Mathematica)) 
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16. Average 1X̂  

 

We consider the average value of an operator 1X̂  that acts only on the system 1 in a global 

density operator ̂  for the particles 1 and 2; 

 

]ˆˆ[]ˆˆ[]ˆ)ˆˆ[(ˆ
111122111221121  XTrTrXTrIXTrX   

 

where 

 

 ˆˆ
21 Tr  

 

Since 2112
ˆˆˆ   , we have 

 

]ˆˆ[

]ˆˆ[]ˆˆ[

)]ˆˆˆˆ[(

)]ˆˆ)(ˆˆ[(

]ˆ)ˆˆ[(ˆ

111

22111

2211

2121

12211











XTr

ITrXTr

IXTr

IXTr

IXTrX











 

 

and 

 

12212121
ˆ]ˆ[ˆ]ˆˆ[ˆ   TrTr  
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17. Schmidt decomposition 

((Theorem)) 

Suppose that   is a pure state of a biparticle composite system, BA . Then there exist 

orthonormal states Ai  for system A, and Bi  for system, B such that 

 


i

BAi iip , 

 

where ii p is known as Schmidt coefficient and is non-negative real number satisfying 

 

1
2 

i

i , or 1
i

ip  

 

The states Ai  and Bi  are any fixed orthonormal bases for A and B (the relevant state spaces are 

here of the same dimension). 

 

The density operator is defined by 

 

 ˆ . 

 

Note that 

 


i

iTr
22

]ˆ[  . 

 

If 1]ˆ[ 2 Tr  (pure state), 1i  for one and only one i and zero for all others  

 

__________________________________________________________________________ 

We consider the simple case. 

 

1222122121121111 baCbaCbaCbaC   

 

1 1 1 2 2 2
p v w p v w    

 

where 1 2 1p p  . 

The unitary transformation: 
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22111111
ˆ aUaUaUv   

 

22211222
ˆ aUaUaUv   

 

where 

 











2221

1211ˆ
UU

UU
U ,  1̂ˆˆ UU  

 

We also have 

 

1 1 11 1 21 2
ˆw V b V b V b    

 

2 2 12 1 22 2
ˆw V b V b V b    

 

where 

 











2221

1211ˆ
VV

VV
V , 1̂ˆˆ VV  

 

Then 

 

1 1 1 2 2 2

1 11 1 21 2 11 1 21 2

2 12 1 22 2 12 1 22 2

1 11 11 2 12 12 1 1 1 11 21 2 12 22 1 2

1 21 11 2 22 12 2 1 1 21 21 2 22 22 2 2

( ( )

( ( )

( ) ( )

( ) ( )

p v w p v w

p U a U a V b V b

p U a U a V b V b

p U V p U V a b p U V p U V a b

p U V p U V a b p U V p U V a b

  

  

  

   

   

 

 

Then we have 

 

122121111111 VpUVpUC  ,  222122111112 VpUVpUC   

 

122221112121 VpUVpUC    222222112122 VpUVpUC   
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Using the matrix form, we get 

 

T

T

VdU

VV

VV

p

p

UU

UU

VV

VV

p

p

UU

UU
C

ˆˆˆ

0

0

0

0ˆ

2221

1211

2

1

2221

1211

2212

2111

2

1

2221

1211



























































 

 

Under the basis of { ,i j i jia b a b  , where d̂  is a non-negative diagonal matrix, and TV̂  is 

the transpose matrix of V̂ . 

 













2

1

0

0ˆ
p

p
d  

 

Thus we have 

 

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )( )

ˆ ˆˆ ˆ ˆ ˆ( )( )

ˆ ˆˆ ˆ

T T

T T

CC UdV UdV

UdV V d U

Udd U

 

  

 







 

 

1

2

ˆ ˆˆ ˆˆ ˆ( )

0

0

U CC U dd

p

p

  

 
  
 

 

 

In order to determine the values of 1p  and 2p , we need to solve the eigenvalue problem of CC ˆˆ , 

if CC ˆˆ  is not a diagonal matrix. 

 

Thus we can calculate the Schmidt numbers 

 

Schmidt decomposition 

 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )( ) ( ) ( )A B C D AC BD     

 

ˆ ˆˆ ˆ( )A B A B      
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ˆ ˆˆ ˆ( )T T TA B A B    

 
1 1 1ˆ ˆˆ ˆ( )A B A B      

 

______________________________________________________________________________ 

 

ˆ ˆ( ) ( )

ˆ ˆ( )( )

i j i j

i j

v w U a V b

U V a b

  

  
 

 

Eigenvalue problem 

 

,
ˆ ( ) ( )i j i i j i jC v w p v w    

 

or 

 

,
ˆ ˆ ˆ ˆ ˆ( )( ) ( )( )i j i i j i iC U V a b p U V a b      

 

or 

 

,

,

ˆ ˆ ˆˆ ˆ ˆ ˆ( )( ) ( )( )

ˆ ˆ( )( )

i j i i j i j

i i j i j

C C U V a b p C U V a b

p U V a b





     

  
 (1) 

 

where ,i j  is the Kronecker delta. Here we note that 

 

ˆ ˆ ˆ ˆ( )U V U V      

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ1 1

U V U V U V U V

U U V V

  

 

    

 

 

 

 

Thus, Eq.(1) can be rewritten as 

 

,
ˆ ˆˆ ˆ ˆ ˆ( ) ( )( )i j i i j i jU V C C U V a b p a b       (2) 

 

When we introduce a new unitary operator, 
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ˆ ˆ ˆ( , )X u v U V   

 

we get 

 

, ;
ˆ ˆ( , ) ( , )( )i j i i j iX u v C CX u v a b p a b      

 

or 

 

, ;
ˆ ˆ ( , )( ) ( , )i j i i j iC CX u v a b p X u v a b     

 

under the basis of { i ja b }. So, we need to solve the eigenvalue problem of matrix ˆ ˆC C  

under the basis of i ja b to determine the eigenvalue ip . 

 

((Example-1))  Pure state 

 

]0100[
2

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 











00

11

2

1
Ĉ , 










11

11

2

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 11 p , eigenket: 







1

1

2

1
. 

 

eigenvalue; 02 p , eigenket: 







1

1

2

1
. 

 

So, there is only one nonzero Schmidt coefficient and thus   is a product state. 

 

((Example-2))  Entangled state 
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]1100[
2

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 











10

01

2

1
Ĉ , 










10

01

2

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
2

1
1 p , eigenket: 








0

1
. 

 

eigenvalue; 
2

1
2 p , eigenket: 








1

0
. 

 

So there are two nonzero Schmidt coefficients and thus   is an entangled state. 

 

((Example-3))  Entangled state 

 

]1001[
2

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 











01

10

2

1
Ĉ , 










10

01

2

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
2

1
1 p , eigenket: 








0

1
. 

 

eigenvalue; 
2

1
2 p , eigenket: 








1

0
. 
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So there are two nonzero Schmidt coefficients and thus   is an entangled state 

 

((Example-4)) 

 

]110100[
3

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 











10

11

3

1
Ĉ , 










21

11

3

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 873.01 p , eigenket: 







85.0

53.0
. 

 

eigenvalue; 127.02 p , eigenket: 







 53.0

85.0
. 

 

So there are two nonzero Schmidt coefficients and thus   is an entangled state. 

 

((Example-5)) 

 

]1
2

1
0

2

1
][1

2

1
0

2

1
[1]11100100[

2

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 














11

11

2

1
Ĉ , 













11

11

2

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 11 p , eigenket: 







1

1

2

1
. 
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eigenvalue; 02 p , eigenket: 







1

1

2

1
. 

 

So there are one nonzero Schmidt coefficients and thus   is a product state. 

 

((Example-6)) 

 

]11)32(10)32(01)61(00)61[(
62

1
  

 

We construct Ĉ  and CC ˆˆ  . 

 

















3232

6161

62

1
Ĉ , 













21

12

4

1ˆˆ CC  

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
4

1
1 p , eigenket: 








1

1

2

1
. 

 

eigenvalue; 
4

3
2 p , eigenket: 








1

1

2

1
. 

 

So there are one nonzero Schmidt coefficients and thus   is an entangled state. 

 

18. Schmidt decomposition application 

It is very easy to compute the reduced density operator given the Schmidt decomposition 

 


i

BAi iip  

 

The density operator is 

 


ji

BABAji jjiipp
,

̂  
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The reduced density operator is given by 

 









i

AAi

kji

AABBBBjiB

iip

jikjikppTr
,,

)ˆ(
 

 









i

BBi

kji

BBAAAAjiA

iip

jikjikppTr
,,

)ˆ(
 

 

We note that the spectrum (i.e., set of eigenvalues) of both reduced density operators are the same. 

 

19. Purification 

Suppose we are given a state Â  of a quantum system A. It is possible to introduce an 

additional system, which we denote R (R has the same dimension as A) and define a pure state 

AR  for the joint system AR  

 

 
 
such that  

 

ARARTrRA ̂ . 

 

That is, the pure state AR  reduces to Â  when we look at system A alone. This is a purely 

mathematical procedure, known as purification, which allows us to associate pure states with 

mixed states. For this reason we call system R a reference system: it is a fictitious system, without 
a direct physical significance. 
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((Proof)) 

To prove that purification can be done for any state, we explain how to construct a system R 

and purification AR  for Â . Suppose Â  has orthonormal decomposition 

 


i

AAiA iip̂  (mixed state) 

 

To purify Â , we introduce an additional system R which has the same dimension as system A, 

with orthonormal basis states Ri , and define a pure state for the combined system 

 


i

RAi iipAR  (pure state) 

 

We now calculate the reduced density operator for the system A corresponding to the state AR  

 

A

ji

AAi

ji

ijAAji

ji

RRAAji

ji

RARAjiR

iip

jipp

jiTrjipp

jjiiTrppARARTr





ˆ

)(

)()(

,

,

,

,



















 

 

Thus AR  is a purification of Â . 

 

Notice the close relationship of the Schmidt decomposition to purification: the procedure used to 
purify a mixed state of system A is to define a pure state whose Schmidt basis for system A is just 

the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root 
of the eigenvalues of the density operator being purified. 

 

20. ((Example-1)) 

Given the density operator 

 














11

11

2

1
][

2

1
ˆ zzzzzzzz , 
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construct the density matrix. Use the density operator formalism to calculate xS  for this state. Is 

this the density operator for a pure state? Justify your answer in two different ways. 

 

((Solution)) 

 














11

11

2

1
̂  

 

1]ˆ[]ˆ[ 2   TrTr   (pure state) 

 

2
]ˆˆ[

ℏ
xSTr   

 

((Mathematica)) 

 

 
 

____________________________________________________________________ 

21. ((Example-2)) 

Show that 

Clear@"Global`∗"D; Sx =
—

2
J 0 1

1 0
N;

ρ =

1

2
HOuter@Times, 81, 0<, 81, 0<D +

Outer@Times, 80, 1<, 80, 1<D −

Outer@Times, 80, 1<, 81, 0<D −

Outer@Times, 81, 0<, 80, 1<DL

:: 1
2
, −

1

2
>, :− 1

2
,
1

2
>>

Tr@Sx.ρD

−
—

2

ρ.ρ − ρ êê Simplify

880, 0<, 80, 0<<
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][
2

1
][

2

1
ˆ zzzz  nnnn  

 

where 

 



















2
sin

2
cos





ie

n ,  




















2
cos

2
sin





i
e

n  

 

((Solution)) 

 











10

01

2

1
][

2

1
ˆ zzzzz  

 











10

01

2

1
][

2

1
ˆ nnnn
n

  

 

Then we have 

 

z ˆˆ 
n

 

 

2

1
]ˆ[ 2 Tr  (for mixed state) 

 

((Mathematica)) 
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_____________________________________________________________________________ 

22. ((Example-3)) 

Find states 1  and 1  for which the density operator  

 

zzzz 
4

1

4

3
̂  

 

can be expressed in the form 

 

2211
2

1

2

1
ˆ    

 

((Solution)) 

 

Assume that 

 





















2

1
2

3

2

1

2

3
1 zz  

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ψpn = :CosB

θ

2
F, Exp@	 φD SinB

θ

2
F>;

ψmn = :SinB
θ

2
F, −Exp@	 φD CosB

θ

2
F>;

ρ =

1

2
OuterATimes, ψpn, ψpn∗E +

1

2
OuterATimes, ψmn, ψmn∗E êê Simplify

::1
2
, 0>, :0, 1

2
>>

Tr@ρ.ρD
1

2
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2

1
2

3

2

1

2

3
2 zz . 

 

Then we have 

 



















4

1
0

0
4

3

4

1

4

3

2

1

2

1
ˆ

2211 zzzz . 

 

with 

 

8

5
]ˆ[ 2 Tr  

 

((Mathematica)) 

 
 

____________________________________________________________________________ 

23. ((Exmple-4)) 

An attempt to perform a Bell-state measurement on two photons produces a mixed state, one 

in which the two photons are in the entangled state 

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;

ψ1 = :
3

2
,
1

2
>; ψ2 = :

3

2
, −

1

2
>;

ρ =

1

2
OuterATimes, ψ1, ψ1∗E +

1

2
OuterATimes, ψ2, ψ2∗E êê

Simplify

:: 3
4
, 0>, :0, 1

4
>>

Tr@ρ.ρD
5

8
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],,[
2

1
yyxx   

 

with probability p and with probability 2/)1( p  in each of the states xx,  and yy, . Determine 

the density matrix for this ensemble using the linear polarization states of the photons as basis 

states. 

 

((Solution)) 

 





















1

0

0

1

2

1
],,[

2

1
1 yyxx , 

 





















0

0

0

1

,2 xx ,  





















1

0

0

0

,3 yy  

 

The density operator: 

 



























100

0000

0000

001

2

1

2

1

2

1
ˆ

332211

p

p

pp
p 

 

 

where 

 

1]ˆ[ Tr  

 

2

1
]ˆ[

2
2 p

Tr


  

 

((Mathematica)) 
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24. ((Example-5)) 

Use the density operator formalism to show the probability that a measurement finds two spin-

1/2 particles in the state xx  ,  differs for the pure Bell state, 

 

],,[
2

1)( zzzz  
 

 

for which, 

 
)()(

1
ˆ    

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;

ψ1 =
1

2

81, 0, 0, 1<; ψ2 = 81, 0, 0, 0<;

ψ3 = 80, 0, 0, 1<;

ρ =

p Outer@Times, ψ1, ψ1D +
1 − p

2
Outer@Times, ψ2, ψ2D +

1 − p

2
Outer@Times, ψ3, ψ3D êê Simplify

99 1
2
, 0, 0,

p

2
=, 80, 0, 0, 0<,

80, 0, 0, 0<, 9p
2
, 0, 0,

1

2
==

ρ êê MatrixForm

1

2
0 0

p

2

0 0 0 0

0 0 0 0

p

2
0 0

1

2
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and for the mixed state 

 

zzzzzzzz  ,,
2

1
,,

2

1
ˆ

2  

 

Thus, the disagreement between the predictions of quantum mechanics for the entangled state and 

those consistent with the views of a local realist are apparent without having to resort to Bell 

inequalities. 

 

((Solution)) 

The Bell state 
)(  is given by 

 



















 

1

0

0

1

2

1)( , 

 

and, the first density operator is  

 



















 

1001

0000

0000

1001

2

1
ˆ )()(

1 , 

 

for the Bell state. 

 

1)ˆ(
2

1 Tr  

 

which means that 1̂  is the density operator for the pure state. 

When 





















1

1

1

1

2

1
, xx , 

 

the projection operator is given by 
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1111

1111

1111

1111

4

1
,,ˆ

,
xxxxP

xx
. 

 

Then we have 

 

2

1
]ˆˆ[ 1,
 

xx
PTr . 

 

The probability of finding the system in the state xx  ,  is 1/2. 

 

We now consider the second density operator given by 

 























1000

0000

0000

0001

2

1

,,
2

1
,,

2

1
ˆ

2 zzzzzzzz

 

 

Since 

 

2

1
)ˆ(

2

2 Tr  (<1). 

 

2̂  is the density operator for the mixed state. We have 

 

4

1
]ˆˆ[ 2,
 

xx
PTr . 

 

The probability of finding this system in the state xx  ,  is 1/4. 

 

((Mathematica)) 
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Clear@"Global`∗"D; expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;

ψxpT =
1

2

81, 1<; φxp =
1

2

J 1
1
N; φzp = J 1

0
N; φzn = J 0

1
N;

ψ11 =
1

2

HKroneckerProduct@φzp, φzpD + KroneckerProduct@φzn, φznDL;

ψ1 = Transpose@ψ11D@@1DD; ψ21 = KroneckerProduct@φxp, φxpD; ψ2 = Transpose@ψ21D@@1DD;
ψ3p1 = KroneckerProduct@φzp, φzpD; ψ3p = Transpose@ψ3p1D@@1DD;
ψ3n1 = KroneckerProduct@φzn, φznD;
ψ3n = Transpose@ψ3n1D@@1DD;

ψ11 êê MatrixForm

1

2

0

0

1

2

ψ21 êê MatrixForm

1

2

1

2

1

2

1

2
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ρ1 = Outer@Times, ψ1, ψ1D êê Simplify; ρ1 êê MatrixForm

1

2
0 0

1

2

0 0 0 0

0 0 0 0

1

2
0 0

1

2

Tr@ρ1.ρ1D
1

PX = Outer@Times, ψ2, ψ2D êê Simplify;

PX êê MatrixForm

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

Tr@PX.ρ1D
1

2

ρ2 =
1

2
Outer@Times, ψ3p, ψ3pD +

1

2
Outer@Times, ψ3n, ψ3nD ;

ρ2 êê MatrixForm

1

2
0 0 0

0 0 0 0

0 0 0 0

0 0 0
1

2

Tr@ρ2.ρ2D
1

2

Tr@PX.ρ2D
1

4
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25. ((Example-6)) 

Prove that the state of the form 

 





















0

0

212112
yx

xy

yxxy
C

C
xyCyxC  

 

where 

 

1
22

 yxxy CC  

 

and both coefficients are non-zero, cannot be written as a Kronecker product state 

 

2112
'    

 

with 

 

111
yx yx    

 

222
yx yx   . 

 

((Solution)) 

 























yy

xy

yx

xx







2112

'  

 

Suppose that 
1212

'   . Then we have 

 

0xx , 0yy , yxxyC  , xyyxC   

 

Then we get 
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0 yyxxxyyxyxxyCC   

 

This is not consistent with the assumption that both xyC  and yxyC  are non-zero. 

 

26. Example ((Townsend)) 

Consider the state vector 

 

][
2

1
2121212112

yyxyyxxx  , 

 

describing the polarization of two photons. Show that the reduced density operators 

 

]ˆ[ˆ
1221  Tr ,  ]ˆ[ˆ

1212  Tr  

 

describe pure states, where 

 


121212

ˆ   

 

((Solution)) 

The density operator: 

 





















1111

1111

1111

1111

4

1
ˆ

12  

 

The reduced density operators: 

 











11

11

2

1
]ˆ[ˆ

1221  Tr , 









11

11

2

1
]ˆ[ˆ

1212  Tr  

 

Since 

 

1

2

1
ˆ

11

11

2

1
ˆ  








 , 2

2

2
ˆ

11

11

2

1
ˆ  








  

 

the reduced density operators 1̂  and 2̂  describe pure state. 
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27. 

 

We consider the density operator (4x4 matrix) in the Hilbert space. 

 

)00)(00(ˆ)1(
4

1
ˆ

4   I  

 

where  is a real parameter (0<<1). Show that the system is mixed. 

 

((Solution)) 

We examine the property of the density operator. 

 






































4

1
000

0
4

1
00

00
4

1
0

000
4

1

ˆ










  

 

Thus 

 

 ˆˆ 
 

 

4

31
]ˆ[

2
2 




Tr , 1]ˆ[ Tr  

 

For 10   , we have 

 

1]ˆ[0 2  Tr , 

 

which means that the system is mixed. 

 

28. Two Photons system as example 
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In order to describe the polarization state of the two-photon system shown in Fig., the polarization 

of each photon must be specified. This polarization state is 

 






































0

0

0

1

0

1

0

1
, is xxxx  

 

The symbol   denotes the direct product, which combines state vectors in different Hilbert spaces 

(one for each particle) to create a new vector that specifies the state of the two-particle system in 

an enlarged Hilbert space.  
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0

1

0

1

2

1

0

1

1

1

2

1

][
2

1

45,45

isis

is

xyxx

xx

 

 

where 

 






































0

0

0

1

0

1

0

1
is xx  

 






































0

1

0

0

0

1

1

0
is yy  

 









































i

i

i

RR
is

1

1

2

1

1

1

1

2

1

45,45

 

 

((Note)) 

 











0

1
x , 










1

0
y  
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1

1

2

1
45 , 










1

1

2

1
45  

 











i
R

1

2

1
,  











i

L
1

2

1
 

 

The entangled state 

 























1

0

0

1

2

1

][
2

1
isis yyxx

 

 






































0

0

1

0

1

0

0

1
is yx  

 






































0

1

0

0

0

1

1

0
is xy  

 






































1

0

0

0

1

0

1

0
is yy  

 






































0

1

0

1

2

1

0

1

1

1

2

1
,45,' xxx  
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1

1
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1

1
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1
,45,' yyx  
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1

0

0

2

1

1

1

1

0

2

1
45,y  

 






































i

i

i
R

1

1

2
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1

1

2

1
,45  

 











































i

i

i
L

1

1

2
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1

1

2

1
,45  

 






































1

1

1

1

2

1

1

1

1

1

2

1
45,45  

 

29. HV polarization operator: 

 

0]ˆ,ˆ[ i

HV

s

HV PP  

 












10

01ˆ yyxxPHV , 

 

where 

 

  


















00

01
01

0

1
xx , 
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10

00
10

1

0
yy  

 

((Example-1)) 

Calculate the action of operator 
s

HVP̂ , 
i

HVP̂ , and 
si

HVP̂  on the state 45,V  

 






































1

1

0

0

2

1

1

1

1

0

2

1
45,y  

 









































1

1

0

0

2

1

1

1

1

0

2

1
45,y  












































1000

0100

0010

0001

10

01

10

01
1̂ˆˆ

HV

s

HV PP , 

 











































1000

0100

0010

0001

10

01

10

01ˆ1̂ˆ 2

HVHV PP , 

 













































1000

0100

0010

0001

10

01

10

01ˆˆ i

HV

s

HV PP  

 
























 45,

1

1

0

0

2

1
45,)1̂ˆ( yyP i

s

HV  
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 45,

1

1

0

0

2

1
45,)ˆ1̂( yyPHVs  

 






















 45,

1

1

0

0

2

1
45,)ˆˆ(45,ˆ yyPPyP i

HV

s

HV

si

HV  

 

30. Problems and solutions 

Compare the density operators that correspond to the following two states: (a) a 

superposition that consists of equal parts xx,  and yy,  (assuming a relative phase of zero), 

and (b) a mixture that consists of equal parts xx,  and yy, . 

 

((Solution)) 

 

(a) The state vector corresponding to this pure state is 

 



































































































1

0

0

1

2

1

]

1

0

0

0

0

0

0

1

[
2

1

]
1

0

1

0

0

1

0

1
[

2

1

(
2

1

,,(
2

1

yyxx

yyxx
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Its corresponding density operator is 

 

 








































1001

0000

0000

1001

2

1
1001

1

0

0

1

2

1
ˆ   

 

(b) The density operator corresponding to this mixed state is 

 

   







































































































1000

0000

0000

0001

2

1

]

1000

0000

0000

0000

0000

0000

0000

0001

[
2

1

]1000

1

0

0

0

0001

0

0

0

1

[
2

1

,,
2

1
,,

2

1
ˆ yyyyxxxx

 

 

Clearly these are different; the density operator corresponding to the pure state has two more terms. 

These extra terms, which intermingle the states xx,  and yy,  contributions, contain 

information about the entanglement between the states. 

 

31. Problems and solutions 

For a two-photon system prepared in an equal mixture of states xx,  and yy,  determine the 

probability that the signal photon is measured to be polarized along +45°, given that the idler 

photon is found to be polarized along this same direction. The density operator corresponding to 

this state is given by  
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1000

0000

0000

0001

2

1
,,

2

1
,,

2

1
ˆ yyyyxxxx . 

 

We want to find )45|45( isP  , which is 

 

)45(

)45,45(
)45|45(

i

is
is

P

P
P




  

 

((Solution)) 
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1
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0000

0000

1111

8

1

]

1111
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1111

1111

4

1

1000

0000

0000
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2

1
[

]ˆ45,4545,45[)45,45(



















































































Tr

Tr

TrP isisis 

 

 

where 
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1
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1
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1
45,45  
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1
1111

1

1

1

1

4

1
45,4545,45 isis  
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We also have 

 

2

1

]

1100

0000

0000

0011

[
4

1

]

1100

1100

0011

0011

1000

0000

0000

0001

[
4

1

]ˆ)45451̂[()45(































































Tr

Tr

TrP iisi 

 

 

where 

 






































1100

1100

0011

0011

2

1

11

11

10

01

2

1
)45451̂ iis  

 

  


















11

11

2

1
11

1

1

2

1
4545 ii  

 

Using the values of )45( iP   and )45,45( isP  , we get  

 

2

1

2

1
4

1

)45(

)45,45(
)45|45( 





i

is
is

P

P
P . 

 

((Note)) Bayes’ theorem 

Bayes’ formula is state mathematically as follows.  

 

)|( baP  (conditional probability) is given by 
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)(

)|()(

)(

),(
)|(

bP

abPaP

bP

baP
baP   

 

where a and b are events. P(a) and P(b) are the probabilities of a and b without regard to each 

other. )|( baP , which is a conditional probability, is the probability of observing event a given 

that b is true. )|( abP , which is a conditional probability, is the probability of observing event b 

given that a is true. 
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APPENDIX - I Definition of the KroneckerProduct   

 

(a) 

 











2

1ˆ
a

a
A , 










2

1ˆ
b

b
B  
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22

12

21

11

2

1

2

1

2

1ˆˆ

ba

ba

ba

ba

Ba

Ba

b

b

a

a
BA  

 

(b) 

 











2221

1211ˆ
aa

aa
A , 










2221

1211ˆ
bb

bb
B  

 































2222212222212121

1222112212211121

2212211222112111

1212111212111111

2221

1211

ˆˆ

ˆˆ
ˆˆ

babababa

babababa

babababa

babababa

BaBa

BaBa
BA  

 

_____________________________________________________________________________ 

APPENDIX - II Formula related to the Kronecker product 

 

)ˆˆ()ˆˆ( ABTrBATr   (1) 

 

)ˆˆˆ()ˆˆˆ()ˆˆˆ( BACTrACBTrCBATr   (2) 

 

abbaTr ][  (3) 

 

]ˆ[]ˆ[]ˆˆ[ BbTrAaTrBbAaTr   (4) 

 

)()())((,, 221121212121 dbcadcbadcba i   (5) 

 

]ˆ[]ˆ[]ˆˆ[]ˆˆ[ BTrATrABTrBATr   (6) 

 

)ˆ(ˆ)ˆˆ( 221212 BTrABATr   (7) 

 

)ˆ(ˆ)ˆˆ( 112211 ATrBBATr   (8) 

 

]ˆ)1̂ˆ[(]ˆˆ[ 1221121111   ATrATrA  (9) 
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]ˆ)ˆ1̂[(]ˆˆ[ 1221122222  ATrATrA   (10) 

 

1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2( , , )( , , ) ( , , )a b c d e f g h a b g h c e d f   (11) 

 

_________________________________________________________________ 

Comment on the formula (5) 

 

)()())((,, 221121212121 dbcadcbadcba i   

 

Here we show that 

 

)()(

))((,,

zzxx

zxzxzxzx




 

 

as a part of proof of the above formula. 
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1
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1
zx  

 

     0101
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1
0111

2

1
 zx  

 

 








































0000

0101

0000

0101

2

1
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2

1
)(( zxzx  

 

Note that 
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1
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1
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00

01
01

0

1
zz  

 

Then we have 

 






































0000

0101

0000

0101

2

1

00

01

11

11

2

1
)()( zzxx  

 

______________________________________________________________________ 

Comment on formula (6) 

 

]ˆ[]ˆ[]ˆˆ[]ˆˆ[ BTrATrABTrBATr   

 

((Mathematica)) 

 

 
 

_________________________________________________________________________ 

Comment on Formula (9) and (10) 

 

]ˆ)1̂ˆ[(]ˆˆ[ 122112111   ATrATr  

 

Clear "Global` " ; A1

a11 a12 a13

a21 a22 a23

a31 a32 a33

;

B1

b11 b12 b13

b21 b22 b23

b31 b32 b33

;

h1 Tr KroneckerProduct A1, B1 Factor

a11 a22 a33 b11 b22 b33

h2 Tr A1 Tr B1

a11 a22 a33 b11 b22 b33

h1 h2

0
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We show that 

 

]ˆ)1̂ˆ[(]ˆˆ[ 12212,11111   xxx STrSTrS  

 

where  

 

211 1̂ˆˆ  xx SS , 121
ˆˆ    

 

((Proof)) 

For example, we have the density operator 
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,,ˆ
12 zxzx

 

 

The reduced density operator is 
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2

21

xx

zzTrxx

zzxxTr

zxzxTr
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2
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xxTrzz

zxzxTr
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where 
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1
, zx  

 

We now calculate the average value. 

 

2
]ˆˆ[ 1111

ℏ
 xx STrS   

 

where 
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ℏℏ
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We also calculate 
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[
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ℏ
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or 
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2

2

][
2

]ˆ[

]ˆ[1

ℏ

ℏ

ℏ











xx

xxTr

xxSTr

SxxTrS

x

xx

 

 

where 
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APPENDIX 

A. Partial trace and Kronecker product 

 

[ ]Tr a b b a . 

 

1 2 1 2

1 2 1 2

2 1 2 1

ˆ ˆ[( ) )] [ ]

ˆ ˆ[ ] [ ]

[ ] [ ]

Tr a a b b Tr A B

Tr A Tr B

Tr a a Tr b b

a a b b

  







 

 

ˆ ˆˆ ˆ[ ] [ ] [ ]Tr A B Tr A Tr B  . 

 

ˆ ˆˆ ˆ[ ] [ ]B BTr A B ATr B  . 

 

ˆ ˆˆ ˆ[ ] [ ]A ATr A B BTr A  . 

 

((Note)) Brief proof 
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[ ]
n

n

Tr a b n a b n

b n n a

b a









   (closure relation) 

 

ˆ ˆ[ ]

ˆ

ˆ

n

n

Tr a b A n a b A n

b A n n a

b A a









  

 

11 12 11 12

21 22 21 22

11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

ˆ ˆ
a a b b

A B
a a b b

a B a B

a B a B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

   
     

   

 
  
 

 
 
 
 
 
 

 

 

11 12

21 22

11 12

21 22

11 12

21 22

11 12

21 22

ˆ ˆ[ ] [ ]

[ ]

ˆ ˆ[ ] [ ]

ˆ ˆ[ ] [ ]

ˆ[ ]

ˆ ˆ[ ] [ ]

AB

B B

A

B B

A B

A B

a B a B
Tr A B Tr

a B a B

a B a B
Tr

a B a B

a Tr B a Tr B
Tr

a Tr B a Tr B

a a
Tr Tr B

a a

Tr A Tr B
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11 12

21 22

11 12

21 22

11 12

21 22

ˆ ˆ[ ] [ ]

ˆ ˆ[ ] [ ]

ˆ ˆ[ ] [ ]

ˆ[ ]

ˆ ˆ[ ]

B B

B B

B B

B

B

a B a B
Tr A B Tr

a B a B

a Tr B a Tr B

a Tr B a Tr B

a a
Tr B

a a

ATr B

 
   

 

 
   
 

 
  
 



 

 

((Note)) Formula of Kronecker product 

 

1 2 1 2 1 1 2 2
ˆ ˆ ˆ ˆ( )( )A A A A       . 

 

1 2 1 2 1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )( ) ( )( )A A B B A B A B     . 

 
111 ˆˆ)ˆˆ(
  BABA . 

 

ˆ ˆˆ ˆ( )A B A B
      

 
* * *ˆ ˆˆ ˆ( )A B A B    

 

ˆ ˆˆ ˆ( )
T T T

A B A B    

 

ˆ ˆˆ ˆdet( ) det( )det( )A B A B    

 

ˆ ˆˆ ˆexp( ) exp( ) exp( )A B A B     

 

ˆ ˆˆ ˆA B B A    

 

These relations may be reasonable since the site of the particle related to operator Â  is different 

from those related to B̂ . 

 

REFERENCES: 

A. Graham, Kronecker Products and Matrix Calculus with Applications (Ellis Horwood, 1981) 

 

APPENDIX Mathematica Program of partial trace 
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I make a Mathematica program for the partial trace for 8x8 matrix and 4x4 matrix, by using 

the matrix manipulation (switching between rows, and switching between columns). The programs 

are named as PartialTr81, PartialTr82, and PartialTr83 for the 8x8 matrix, and PartialTr41 and 

PartialTr42, for the 4x4 matrix. 
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((Example)) GHZ state 
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((Example-2)) Another GHZ state 
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