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Here we discuss the density operator for the two and three-particles system. The concept of the
reduced density operator is significant. The reduced density operator enables one to obtain
expectation values of one subsystem 1’s observables without bothering about the states of the other
subsystem 2. It is formed from the density operator of the entire system by taking the partial trace
over the states of subsystem 2.

1. Kronecker product
A classical bit of information is represented by a system that can be in either of two states, 0,

1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the
state of a two-level system, whose basic components may be written as
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This is the so-called quantum bit of information, or, in short, a qubit. Here we define the
combined state of two qubits as

|l//1> ® |l//2> = KroneckerProduct[y/,, v, ]

Then we have
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2. Calculation of density operator by Mathematica

A classical bit of information is represented by a system that can be in either of two states, 0,
1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the
state of a two-level system, whose basic components may be written as
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This is the so-called quantum bit of information, or, in short, a qubit.

The Kronecker product

|l//1> ® |l//2> = KroneckerProduct[y/,, v, ]



Then we have
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3. Density operators for two-particle system

We consider the two-particle system. Typical example is the two-spin system with spin 1/2.
There are four states,

|+Z,+Z>=|+Z>l®|+2>2, |+Z,—Z>=|+Z>l®|—2>2



[=z42)=[-2), ®[+2),. [=2-2)=|-2), ®]-2),.
In general, the density operator for two particle system can be expressed by

P = 2 [N ALk

Z< k0(4)®|2,)(4.]® ()

jk.l

Z(

jk.l

YA LI

where |¢l> is the eigenket of the particle 1 and ‘ ;(j> is the eigenket of the particle 2. <', o

)

is the density matrix. Here we use the formula
Tri(| )8 D ® (2, )2 Ds = (| #) 2, ) (2 Da = 8 2, ) {2

Tr,(8) ®| 2, D | © (2 D= (2| 2, ) 8) {2 Dy = 5,,(4) (8.,
where

Tr( 4)(4.)), =Z<¢,I¢z><¢k|¢,>
=2 {hld)(4l0)
:<¢k|¢1>

and

T, (2, )2, = Zkl<xk\x_,><zzlzk>
= Zk:<}(1|}(k><lk‘l/>
=(x|x)

4. Reduced density operator p,
The reduced density operator p, describes completely all the properties/outcomes of

measurements of the system 1, given that system 2 is left unobserved (“tracing out” system 2).



This represent the maximum information which is available about the particle 1 alone, irrespective
of the state of particle 2. The reduced density operator p, is defined as

£ =Tr[p,]

Zl< k)8 DTl 2, ) i1
= Zfilpled) ) Dz |2,)
:, < k()83
(1ol

i,j,k

where we use the formula

Trz[(‘)(_/x;(l |] - <Z"Z/> -

Note that
A =[(LIALD +(1, >]|¢1><¢1|
+(L1A2.1)+(1.2|5(2,2)],)(4: |
+(21A[L1)+(2, >]|¢2>< 4|
+(21p >+< ¢2|]
L1|p|L1
‘Qzlp ) o (21 j >>j

><
21)+(2.2

el
A12)  (Llp
(2.1)p

)
{12
1) >

_({Llp >
(@1l +(22 2.2)
for the two-particles system. For simplicity we use the following notation.

_ A [ Pu P Pn Pu| (PutPn Pt Pu
o =Tnlpl= + =
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D=, [12)=12),[2.1)=[3), [2.2)=[4),

where




<++|pl++> <++|p|+-> <++|p|—+> <++|p|-—>

<+=|p|++> <+=|p|+-> <+=|p|-+> <+=|p|-->

<—+|p|++> <—+|p|+—> <—+|p|—+> <—+|p|——>

<-lpl++>  <—lplt->  <—lpl-+>  <——|pl-->

5. Reduced density operator p,

The reduced density operator p, describes completely all the properties/outcomes of
measurements of the system 2, given that system 1 is left unobserved (“tracing out” system 1).
This represent the maximum information which is available about the particle 2 alone, irrespective
of the state of particle 1.

The reduced density operator p, is defined by

Py =Thlp,]

= 2.(ij

i,j.k.l

=2 (i

il

(i.g

Ak 2, ) DTl 48]

ﬁk,l> Z_/><7(1|5i,k
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P Z_/><Zl|
i,j,l

We note that



P =[(L1| A1) +(2.1] 2|2.1)1|24) (1|
+H{L1A[1.2)+(2.1] 5]2.2)]| ) (2.
+(1.2[[1,1)+(2.2[5[2,11 1) (2]
+{L.2|p[1.2)+(2,2] [2.2)1| z2){ 2.
SELIEE ( o
+(L1|p|1,2)+(2,1| p|2 2)](3 (l)j
+(L,2|p|L1)+(2,2| p 2,1)]((1) gj
+(1,2| p|L2)+(2,2|p 2,2>](g (1)}

(L1|p[L1) (L1p[L2)) ((2.1]p]2,1) (2,1]p|2.2)
=[(1,2 ALY (2|5 1,2}}[(2 2|1p]2.1) (2,2]p]2 2)}
(L1 ALY +(2,1 p[2.1)  (L1|p]1,2)+(2,1|p|2,2)
{(1,2 pILD+(2,2|p[2.1) (1,2]|p|1,2)+(2,2|p 2,2}}

for the two-particles system. For simplicity, we use the following notation

P plzj_i_(py p34j=(p11 +P Pn +p34j

P, =Tr[pl= (
Pa Pxn Pz Pus Pt Py Put Pu



<++|p|++> <++|p|+-> <++|p|-+> <++|p|-—>

<+—|p|++> <+-—|p|+-> <+-—|p|-+> <+-|p|-—>

<—+|p|++> <—+|p|+-> <—+|p|-+> <—+|p|-—>

<lpl++>  <—-|plt->  <——|p|-+>  <—|p|-—>
6. Example-1: two spins (independent subsystems)

We consider the state of the composite system 1-2 consisting of independent subsystems

1
1 1[0
Izz/u)=$(|+z,1>+|—z,1>)®|+z,2>=|+x,1>®|+z,2>=ﬁ :
0

The density operator is obtained as

P :|W12><'//12|
=(|+x1)®|+z,2))((+x,1
=( )® (|+2,2)(+ 2,2
=P, ® Py

®<+ z,2
)

)

+ x,l><+ x,1

where p, and p, denote the operators for particle-1 and particle-2, respectively. The matrix form

of p,, is given by



| =

P =

S = O =
S O O O
S = O =
S O O O

The reduce density operators p, and p, are obtained as

a2 L1 O), 11 0 (1 0)_
=1r = — — = =
P2= P50 o) 210 o) lo o) P2

AT[A]111+100111 )
=17 = — — = — =
A== 1) S0 o) 201 1) TP

Note that

[)2 = T’i[[)u] = TrA[[)A ®[)B] = [)BTFA[[)A] = [)B
[)1 = Trz[[)u] = TrB[[)A ®[)B] = [)ATFB[[)B] = [)A
using the formula given in the APPENDIX-II

7. Example-2: Two spins: independent subsystems

We start with the two-particle pure state |l//12> = |+ Z,1> + Z,2> . The density operator is given by

P = (+2,1)®|+2,2))(+z1
= (|+2.1)(+2;1| ®|+z,2)(+2,2
= ﬁA ®ﬁ3

1 0

®<+z,2
)

)

oS O O
oS O O
S O O O
S O O O

under the basis of {|+z> and |—z> }, where
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b=y =[$j<1 0){; 3}

The reduced density is obtained as

5 = Tr[ o] 1 0+0 0 1 0 R
=1r = = =
P 2LPp 0 0 0 0 0 0 P
5 = Tr[ ] = 1 0+0 0 B 1 0 .
Py =1h1Ppl= 0 0 0 0l lo o = Ps

).

8. Example-3: Bell's two-particle entangled state
The Bell’s entangled state is given by

under the basis of {|+>,

‘T12(7)> = LH + Z;1>

V2

- z;2> - |— z;1>

+2;2)]

The density operator (in the pure state) is given by

0O 0 o0 o
A ©) o1 0O 1 -10
P2 _‘\Plz ><lP12 ‘_2 0 -1 1 0
0O 0 o0 o
((Mathematica))

11



Yl2 =

1
—— (KroneckerProduct[¢1l, ¥y2] -

V2

KroneckerProduct[¥2, ¥1]) // Simplify
(o, (2] £} o)

p0 = Y12 .Transpose[y12] // Simplify;
p0 // MatrixForm

0 0 0 O
1 _1

0 . 5 0
11

0 -5 5 0

0 O 0 O

The reduced density operator is obtained as

st (0 O)L 11 0 11 0
=17 = — — = —
AR 17510 o) 210 1
s gl (0 O)L 11 011 0
=17 = — — = —
Pr= A= 10 117 210 o) 2lo 1

under the basis of {|+ z>,

—Z> . Thus for measurements of particle 1 (or 2) the Bell's state

behaves like the mixed states of completely un-polarized ensemble.

((Note))
M.A Nielsen and LL. Chuang, Quantum computation and quantum information, 10™
Anniversary Edition (Cambridge, 2010).

Notice that this state p, (or p,) is a mixed state. This is a quite remarkable result. The state
of the joint system of two qubits is a pure state, that is, it is known exactly, however, the first qubit
is in a mixed state, that is a state about which we apparently do not have maximal knowledge. This
strange property, that the joint state of a system can be completely known, yet a subsystem be in
the mixed state, is another hallmark of quantum entanglement.

9. Density operator for three-spins system

12



In general, the density operator for three particle system can be expressed by

k)0 ) {Lm,

) ®|7 (4| ®(x,

®(n,

)

) () (8D ® ()%,

), ® (| 77k> <77n )3

where |¢l> is the eigenket of the particle 1, and ‘ 4 j> is the eigenket of the particle 2, and |77k> is
the eigenket of the particle 3. <i, J. k| pll,

, > is the density matrix. Here we use the formula

¢1|¢ (‘Z,> Xm )2®(|77k><77n
:51,i(‘?(_;> Xm )z®(|77k><77n 3

Tr(|¢,) (D © (2, ) 2 D2 © () (1, D5

=<zm () (8D @ () (m,)
m /(|¢><¢l |)1 ®(|77k><77n

Tr, (8,)(8 ), ® ( ;) {2 D> @ (1) (m, s

3

7)04.) (8D, ®(2,) (2.
D ®(x,) (2D

=(m,
= nk(

71 (4 ) () ©( 2,) (2 D2 © (1) (1, s

We consider the density operator for the three-spins system (with spin 1/2).

Pu Pa Pz Pu Ps Pe Pi1 Pis
P P Pu Pu P P Pr P
Py Py P Pu Pis P Py Pis
Psi Px Psz P Pss Ps Pa1 Pig
Psi Ps2 Pss Psa Pss Pss Psz Pis
Psi P Pes Pea Pes Pss Po1  Pis
Pn P Pn Pu Pis P Pnrn Pn
Psi Pso Pss Psa Pss Pss Ps1 Pss

Pz =

13



where

pu=(rrer), pam(relies),

Py = (+++pl+—4), Prs = (+++g+--)

,015=<+++|,5|—++>, p16:<+++|,b|_+_>,

p17:<+++|'b|__+>’ p18:<+++|,b|___>
and so on.

10.  Reduced density operator
The reduced density operator p,, is obtained from the full density operator by tracing over the

diagonal matrix elements of particle 1, leading to

Prs =Trp
Pun Pa Pu Pu Pss Pss Ps7 Pss
P P Pix P Pes  Pes  Pe1 Pes
Py P Pz P Pris P P Prs
Pa Px Puz Pu Pss Pss Ps1 Pss
Zn KXo Xz X
Aan Xn Xn Au
X X X X
Xa Xoo Xz Au

The reduced density operator p, is obtained from the full density operator by tracing over the

diagonal matrix elements of particles 1 and 2, leading to
Py =Trp, =T, ,p
_ (7(11 lej +(Zz3 7534j
X X» Xa3  KHaa
We also have the density operator for the three spins and its reduced density operator

14



((Reduced density operator p,,))

2 2 P
P =Tr[p]l= !

<t Pl

<t+—|pl+H++>

<t—t|pl+++>

<t—|pl+++>

<—+t|pl+++>

<—+-|pl+++>

<——+|p]+++>

<———|p|+++>

<trt|plr—>

<tt+-|plH+—>

<t—t|pl++—>

<t—|pl++—>

<—+t|pl++—>

<+-|pl++—>

<——+|p]++—>

<———|pl++—>

Pu P Pi

Pr  Px
Py P Ps
Py Pxn Ps

<t pl—+>

<tt-|pl—+>

<t—t|pl+—+=

<t—|pl+—+>

<—t+t|pl+—+>

<t+-|pl+—+>

<——+|p]+—+>

<———|pl+—+>

((Reduced density operator

2 2 P
P =Tn[pl= 8

<t —>

<t —>

<t—t|pl+—>

<+=-lpl+—>

<—++|pl+—>

<—+-|pl+—>

<——+|p]+—>

<—-lph+—>

£i3))
P P Pis
Pr  Pas
Psi Psy Pss
Ps1 P2 Pes

Pia Pss
Pas + Pes
yZn Pis
P Pss

<t pl -+

<t+-|pl—++>

<t—t|p|l—++>

<t—|p|l—++>

<—++|p|-++>

<—+-|pl-++>

<——+|p|-++>

<———|p|-++>

Pis Ps3
P + Pz
Pss P13
Pess Ps3
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Pss  Ps1 Pss
Pss  Po1 Pes
P P P
Pss  Ps1 Pss

<tt|p|—+—>

<t—|p|—+—>

<t—t|p|—+—>

<t=-lpl-+->

<++|p|—+—>

<——+|p|—+—>

<———|p|-+—>

<tHt|pl——+>

<t—|p|—+>

<t—t|p|—+>

<t=-lpl-—+>

<++|p|-—+>

<—+—|p|—+>

<——+|p|——+=

<———|p|l-—+=>

P Py Pss
Pas  Pa7 Pag
P P P
Psa Ps1 Pss

<t pl——>

<r+-lp|-—->

<+=+|pl-—->

<+—-lpl-——>

<—+-|p|-——>

<—+-|p|l-——>

<——+|p|-—>

<———|p|l-—>



<HHH o+ <Pl <t pl-+

<H—|pl+++> <t+-|pl+t— <o+

<t—Hpl+++> <+—+pl++—> <+—+|p[+-+>

<t—|pl+++> <+—|p|l++—> <+—|p[+—+=

<=+ P+ <—+t[plH—> <—+H|p[+—+>

<—+-|plH++> <—+-|p[++—> <—+-|p[+—+>

<——Hpl+++> <—+pl++—> <—+|p[+—+>

<——|pl+++> <—-|pl++—> <—-|p[+—+>

((Reduced density operator p,))

P Pz Pis
By = Tlg[f)] _ P Pz Pss
Psi Ps3 Pss
Pn P Pis

<tt+t|pl+——>

<t+—|pl+—>

<+—+|p|+-—>

<t——|p|+-—>

<—t++|pl+—>

<=+-lpl+—>

<——+|p|+——>

<———|p|+-->

<+++Hp|-++> <+++|p|—+—>

<t+-|p|—+—=>

<t+-|p|-++=

<t+—+|p|-+—>

<t—+|p|—++>

<+——|p|—++>

<t+—|p|—+—

<—++|p|-++>

<—t++|p|—+—>

<=+-lpl-+->

<=+-lpl-++>

<—+|p|-++>

<—+|p|-—+—>

<———|p|-++> <———|p|-+—>

Pr7 Prn  Pu P P
P37 + Py Pss Pa  Pas
Ps7 Ps2 Pess  Pss  Pes
P17 P2 Psa Pss  Pss
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<tt++|p|—+>

<t+-|p|—+>

<t—t|p|——+>

<t+—|p|—+=

<—t++|p|—+>

<=+-lpl-—+>

<——+|p|—+=

<——|p|——t>

<+ p|l-——>

<t+-|p|——>

<t—t|p|l-——>

<+——|p|-——=

<—++|p|-——>

<=+-lpl-—>

<——+|p|-——>

<———|0|-——>



<HHH| P> <D <HHplH > <H Pl > <HE| o+
<t+-|pl++s <ol <rrplt 4> <r-|plh— <He-|p|—+
<t—t|pltt+s < —+olt+—>  <t—t|plt—+>  <t—t|pl+—>  <+—t|p|—++>
<t—|pl+++>  <t——|pl++—>  <t—|plt—+>  <t—|pl+——> <+——|p|-++>
<—+|plH++> <—+HHP[H—> <P+ <+ pl+——>  <—+H[p]—++>
<—+—|pl+++>  <—+-|pl++—>  <—+|pl+—+>  <—+-|pl+——> <—+—|p|-++>
<—t|plttt>  <—t|pl+t+—  <—t|plt—t+>  <—t|plt—>  <—t|p[-++>

<——|pltt+> <—-|pl++—>  <—pl+—+> <—|pt——> <«——|p|-++>

11. Example-1 Entangled GHS state

1

‘l//GHZ(+)> :$[|+++> +|——_>]

The density operator is defined by

()

Py = ‘ l//GHZ(+)> <l//GHZ

17

<+ p]—+—>

<H+—|0|—+—>

<t—t|p|-+—>

<t+—|o|-+—>

<—++|p]—+—>

<—+—|0|—+—=>

<—+|o|-+—>

<——|p|-+—>

<[ p]l——+>

<H-|p|-——+>

<t—t|p|-—+>

<t—|p|-—+>

<—++|p]——+>

<—+—|p|—+>

<—+|o|-—+>

<——-lpl--+>

<t pl——>

<t++—|0|———>

<t—+t|p|——>

<+——|p|-—->

<—++|pl——>

<—t—|p|——->

<——+lpl—>

<———|p|——>
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The reduced density operators are obtained as

n N 1
Prs =Th[ P13 =§

S O O O
S O O O
- o O O

S O O =

and

. = Tr [ ] 11 O
=1r = —
Ps 12LP123 2lo 1

which is equivalent to a completely un-polarized state,

12. Example-2  Another entangled GHZ state
The entangled GHZ state is given by

_ 1

‘WGHZ(7)> = \/5 [|+ + +> - |_ - _>]
The density operator is defined by

P = ‘WGHZ(7)><I//GHZ(7) ‘

18
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[ I s T i T e O - Y e T e IR
L T s T e I e O e O e T s [
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o T s B e I e (R e Y e TR s [
[ I s T i T e O - Y e T e IR
L T s T e I e O e O e T s [
MlpDDDDDDMIP

I
B |

The reduced density operators are obtained as

n N 1
Prs =Thp15s] =E

S O O O
S O O O
- o o O

oS o o =

and

0, =Tr,[ P12 ] 1o
=Tr —
Ps 12LP123 2lo 1

which is equivalent to a completely un-polarized state,

13. Origin of the collapse of the state vector
This is the origin of the collapse of the state vector. The collapse postulate states that upon the
measurement a system evolves from pure state to mixed state.

1.e., if we are in a state |l//> and we measure 4, we end up in an eigenstate |a> with the probability

(alw)".

1.e. the pure state |l//> evolves to a mixed state

p=Ealv fla

19



where

Y

Aa>:a|a>.

This puzzle is resolved if we keep track of entanglements.

|1//> = the state of system

|E > = the state of measuring apparatus

Measurement:

@) E) > |a)

E,)

where Ea> is the state of apparatus after measuring |a> .

If

v} =2.(alw)la)

a

then by linearity measurement

w)E) > 2laly)la)

E,)

If we do not wish to study the state of our apparatus, we must trace over H .

20



v )| > Tl Qaly)]a) O ENQ (w]a)a|®(E,)
=Tl 2 {alw v |a)(a) ®] B (' ©(E, )
=T 2 {alv Ny a)|aa] ® (2, KE. D
= 2 {alwilvlaMapaDTre( EE,
= ;<all//><w|a'>(la><a'
= ;\<a|lﬂ>\z|a><a

)

)0,

where we use the formula

E,\E,

- o)

- (£ |E.X

a

E,N
a><a'

The state vector is collapsed. They just get entangled. It is when we forgot about quantum density
a'> = 5

a,a'’

Tr, (|a><a' E.)

operator of measuring apparatus that they appears to collapse. Assume that <Ea this is

w)y| > gKaIW\zlaxa

By choosing not to measure £ we have reproduced the apparent collapse of the state vector in a
unitary way.

. 1s the statement that £ is classical.

=5

a,a

The assumption that <Ea

Why are some variable “classical” and some are not.

14. Schrodinger’s cat
14.1 Bipartite quantum system

We consider the state vector in the 4 ® B system. The system A is accessible, while the system
B is inaccessible.

|l//>AB - a(|0>A ®|0>3) +b(|l>A ®|1>3) -

SO O

21



where (0]0), ={11), =1. (0}, = {10}, =0. (00}, =(1}), =1. (0]}, = {10}, =0. and

df +]of =1

Suppose that we measure the system 4 by projecting onto the {|O> " 1> - With the probability

? , we obtain the state |O> ,- The state vector collapses into the state

la
0),,8[0),-

With the probability |b2, we obtain the state |1> ,- The state vector collapses into the state

1,1, .

In either case, a definite state of the system B is picked out by the measurement. If we subsequently

measure the system B, then we are guaranteed to find |O> > and we are guaranteed to find |1> 5o 1f

we had found |1> n
The density operator for the combined system AB is given by

Pap = |W>AB<W|AB
=[d|0), ®[0),, +B[1), ®|1),1a’{0], ®(0[, +5(1], ®(1],]
=[a[*(0) (0], ®[0), (0], +[el (1) (1], @|1) (1],)
+ab’((0) (1], ®0),(1],) +a'b(1) (0], ®|1) (0] )]

The average value of the observable M , ® i » 1n the state |y/> 5 18

(M) =(yuM, @,y )
~[a" (0], ®{ol,)+ &1, © 1],
x[a(M ,|0) ®]0) ) +b(M 1) ®|1) )]
~[af (0} o), + b (13,1},

M,

since
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(MA ®iB)|l//>AB - a(MA|0>A ®|0>B)+b(MA|1>A ®|1>3)

g
: : 0
(Was|=a"(0], ®(0])+6°(1], @1 =| |-
b

We introduce the density operator p, of the system A (which is the reduced density operator),
such that

P =laf|0) (0], + 1) (1],
Then we have

Tr{M ,p,1=Trl|a] M |0) (0|, +|" 1,

=[af*(0}a7,0) , +[of"(1
- <MA>

1)1l
1),

M, M,

So we have the expression
<MA> = T’”[MAlaA]

Note that p, represents an ensemble of possible quantum state, each occurring with a specified

probability. |a|2 is the probability in the state |O> , and |b|2 is the probability in the state |1> n

14.2 Reduced operator
We show that p, is the reduced density operator given by

Pa= TVB[|V/AB><V/AB |] .

In fact
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P =Trallal (0) (0], ®[0), 0],)-+f (1), {1], ®[1),(1],)
+ab’((0), (1], ]0),(1],)+a’>(1) (0], ®|1),(0],)]
=[af"(0),,(01,Trs110), (0, 1+ [1) {1 7rall1) (1)
+ab’(0) (1], 7r51]0),,{1] 1+ a8[1) (0], Tr5[[1),,(0) ]
=(af10),,(01, {010}, +[e[1), (1] {1[1),
+ab’(0) (1], (0]1), +a’8lL) (0] (1]0),
=[af0),,(0] )+ (1), (1,

_[laf 0
0 |pf
p, for the subsystem A is obtained by performing a partial trace over subsystem B of the density
operator for the combined system AB.

((Another method)) The matrix representation.

a
0 # -
|‘/’>AB: ol <V’AB|:(" 0 0 b)
b
2 *
a |a| 0 0 ab
« 0O 0 0 O
|WAB><W|AB: 0 (a 0 0 b): 0 00 0
b ab 0 0 b’

- S G N H
P4 r3[|'//AB><l//AB|] (0 Oj—'— 0 |b| 0 |b|2

Similarly, we have
A 2 0 0 0
Py = T’”A[| WAB><V/AB |] - {kﬂ Oj * (0 |b|2j B [|Cz)| |b|2
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Then we have
Ps=Ps

The reduced density operator p, contains the same information about the system A as the state

vector of the combined system. We now understand how probabilities arise in quantum mechanics,
when a quantum system A interacts with another system B. The systems A and B are entangled,
that is correlated. The entanglement destroys the coherence of a superposition of states of A. so
that some of the phase in the superposition becomes inaccessible if we look at A alone. We may
describe this situation by saying that the state of system A collapses. It is in one of a set of
alternative states, each of which can be assigned a probability.

14.3 Gedanken experiment Schrodinger’s cat)

The Schrodinger cat paradox is a gedanken experiment designed by Schrodinger to illustrate
some of the problems of quantum measurement, particularly in the extension of quantum
mechanics to classical systems. The apparatus of Schrodinger’s gedanken experiment consists of
a radioactive nucleus, a Geiger counter, a hammer, a bottle of cyanide gas, a cat, and a box. The
nucleus has a 50% probability of decaying in one hour. The components are assembled such that
when the nucleus decays, it triggers the Geiger counter, which causes the hammer to break the
bottle and release the poisonous gas, killing the cat. Thus, after one hour there is a 50% probability
that the cat is dead.

Nucleus Geiger Counter Cyanide Cat

((Schrodinger 1935))
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along
with the following device (which must be secured against direct interference by the cat):
in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the
course of the hour one of the atoms decays, but also, with equal probability, perhaps none;
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if it happens, the counter tube discharges and through a relay releases a hammer which
shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an
hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-
function of the entire system would express this by having in it the living and dead cat
(pardon the expression) mixed or smeared out in equal parts. (E. Schrodinger, November
1935).

As an example of the usefulness of the density matrix, we consider Schrodinger’s cat paradox.
Schrodinger imagined placing a cat (the system A) in a box with some radioactive material. After
one hour there is 50% probability that one of the radioactive atoms (the system B) decays, and this
decay triggers a mechanism which kills the cat. Before the box is opened, and a measurement is
performed to determine whether the cat is alive or dead. The apparatus is designed such that there
is a one-to-one correspondence between the un-decayed nuclear state and the live-cat state and a
one-to-one correspondence between the decayed nuclear state and the dead-cat state. Though the
cat is macroscopic, it is made up of microscopic particles and so should be described by a quantum
state, albeit a complicated one. Thus, we expect that the quantum state of the combined system
AB after one hour is described

|l//AB> = %Hcat — alive>A ®|n0 — decay>3) + (|cat — dead>A ® |decay>3)
1
=5119)., ®[0),)+ (1, ®ln,)
which is an entangled state, where

|cat—alive>A =|O> |cat—dead>A = |1>A

A b
|n0—decay>A =|O>B, |decay>A =|1>B
The density operator is given by

bAB =|I/I>AB<I//|AB
—110), ®[0), +[1), ®[1), (0], ® (o], + (1], (1]
1
—1lo) (o], @[0), (o], +[1), {1, ®11), 1,

+10), (1], ®[0),{1], +[1), {0l ®]1),,(0],]
or, using the matrix representation,
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A 1 1
pu=11%00 0 0 1-1

—_— 0 O =
- o o =
oS O O O
oS O O O
-_ o o =

The reduced density operator p, for the system A is

=Tr [|l//AB><l//AB|]

:5(|0>A<0|A + |1>A<1|A)

110
200 1

where

Toy 1y )0 o) = 3 T54100), 0], ©]0), (0], )+ 1) 1], @11, 1],)
00,10, 41,801, +1), 01, 5(0], 80,1
=210, (01, 710} (o] 1+ 1), {1l 7w 1) 1]
1
= 210),(01,(0]0), + 311,41, (111,
1
|0>B< |B+E|I>B<I|B

o)

1
2
1
2

Using the formula,
<MA>: TF[MAbA]

— U0, 0), + (b 1))

We can calculate the probability

(@ M, =[0)o],
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~a 1
TF[MAPA]:E]

(b) M, =11,

N 1
IriM ,p,]==
2
p, represents an ensemble of possible quantum state for the system A (corresponding to the in-

polarized state for the photon system), each occurring with a specified probability. % is the

probability in the state |O =cat — alive> , and % is the probability in the state |1 =cat — dead> .

The reduced density operator p, for the system A is

Py = TrA[|‘//AB><‘//AB |]

1
- E(|O>B<O|B + |l>B<1|B)

_110
200 1

p, represents an ensemble of possible quantum state for the system B, each occurring with a
specified probability. % is the probability in the state |0 = non — decay> , and % is the probability

in the state |1 =cat— dead> 5

((Note)) Maximally entangled state
Maximally entangled state means that when we trace over the system B to find the density
operator p, of the system B, we obtain a multiple of the identity operator

A

Pa= iA

1
2

- N : : : :
(and similarly, Py = El »)- This means that if we measure spin A along any axis, the result

is completely random. We find spin up with probability 1/2 and spin down with probability 1/2.

15. Quantum teleportation
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Alice Bob

measured with |<I>12( ) R, (7)

Entfm_led

Y3 >

EPR pawr

We consider the pure particle state |l//123> which is related to the quantum teleportation. The

density operator for this pure state is given by

Pirs = |‘//123><‘//123|

where
|1//123 ‘1// >[—a|+z> - | ]+ ‘1//(+)>[ a|+z>3+b|—z>3]
+E‘q>1; >[a|— > +b|+z 1+—= ‘®(+)>[a(|—z>3—b|+z>3)
with
0
i) =l 2) -2 2=
0
1
() —L 0
@) = f[|+2>|+2> t=2)|-2))= 7|
+1
Note that



f +of =1.

The density operator p,,, can be obtained as

0 0 0 00 0 0 0
0 laf/2  —lgf/2 0 0 (a2 —(ab)/2 0
0 —laf/2  fof /72 0 0 —@b)2 (ab)/2 0
. o0 0 00 0 0 0
S N 0 00 0 0 0
0 (@b)y2 —(@b)y/2 0 0 p[/2  —p/2 0
0 —(a'b)/2 (@b)y/2 0 0 -pp[/2 /2 o0
0 0 0 00 0 0 0

Tracing out particle 1, the reduced density operators are obtained as

Py = Tr[ prys]

0 O 0 O 0 O 0 0
10 fdT —faf 0| ajo pf - o
200 jaf lf o 200 - B} o

0 O 0 O 0 0 0 O

0 0 0 0
10 a4l - 0
“2\0 —[af -pf |+ o

0 0 0 0

0 0 0 O
110 1 -1 0
200 -1 1 0

0 0 0 O

Tracing over particle 2 furthermore, we have

a2 L1 O),1(0 0)_1[1 0
=17 = — — ——
Py =HaelPasl =710 017510 1) 210 1

which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information
about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until
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he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into

the state |l//> that Alice’s particle was in initially.

((Mathematica))
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Clear["Global +"];

exp *i=exp /. {Complex[re , im ] :» Complex[re, -im]};
[ O (%]
1 1
1 1
vi=— | [ v2=—|]|5
V2 | V2
\ @ } e
(1 )
1
0
1s — ;
¢ o |’
2 \ -1}
(1
1
0
2= —
¢ Sk
-a -a b -b
x1=(_b);x2=(b);x3=(a);x4=(a);
1 1
Y123 = — KroneckerProduct [¥1, x1] + — KroneckerProduct[y¥2, x2] +
2 2
1 1
— KroneckerProduct[¢1, x3] + — KroneckerProduct [¢2, x4] //
2 2
Simplify;
K1 = 123;

K2 = Transpose [¥123] //. {a>»al, b bl};

p = K1.K2 // FullSimplify; o // MatrixForm
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‘8 @ e e e e e e
a aal _aai B a E _ﬂ a
2 2 2 2
p _2al 33l g g _abl 3Bl g4
2 2 2 2
e @ e e e e e e
e © e ©e e @© e ©
) alb _alb e e bbl _bb1 e
2 2 2 2
p _2ab 3lb g g _bbl bbl g4
2 2 2 2
e @ e ©e e @© e e

16.  Average <X 1>

We consider the average value of an operator X, , that acts only on the system 1 in a global

density operator p for the particles 1 and 2;

() =T, [(%, ® 1), = THIR Ty ] = TR,
where

p=Trp
Since p,, = p, ® p,, we have

(%) =Tl(X, ®1)pp]
=Tr[(X, ® 1,)(p, ® p,)]
=Tr[(X,p, ® 1,p,)]
=Tr[ X, p 1T 1,p,]
=Tn[X,/]

and
o =Tnlp ®p,1=pTrlp,]=p
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17.  Schmidt decomposition
((Theorem))

Suppose that |l//> is a pure state of a biparticle composite system, 4 ® B . Then there exist

orthonormal states |i,) for system 4, and |i,) for system, B such that

)= S ),
where 4, = \/p, is known as Schmidt coefficient and is non-negative real number satisfying
YA =1 or ¥p=1

The states |i A> and |i B> are any fixed orthonormal bases for 4 and B (the relevant state spaces are

here of the same dimension).

The density operator is defined by

Note that

Trp* 1= 4"

i

If Tr[p°]1=1 (pure state), A =1 for one and only one i and zero for all others

We consider the simple case.

|‘//> = C11|a1>|b1>+C12|a1>|b2> +C21|a2>|b1>+C22|a2>|b1>

|t//>:\/p71|vl>|wl>+\/p72|v2>|w2>

where p, + p, =1.

The unitary transformation:

34



|vl> = U|a1> = U11|a1>+U21|a2>
|v2> = U|a2> = U12|a1>+U22|a2>

where

UZ(UH Uj 00 =i
UZI U22

We also have
|W1> = I}|b1>: V11 |b1>+V21 |b2>
|W2> = I}|b2> =V, |b1>+V22 |b2>

where

I}:(Vll VIZJ I}Jr
Vau Vo

AN
Il
—>

Then

) =\p v)lw)+ P, 1) )
=P WU, |a)+U,|a) (7, ]b)+ 7, |5,))
D Up| @)+ U | @) W, |B) + 72| 5,)
= UV UL a) b))+ ([ pUVay 30UV @) |b,)
+(P ULV UV )| b))+ 2 UsVay ++ p2Un Vo) @0)]5,)

Then we have

C11:U11\/;1V11+U12 )21 20% C12:U11\/;1V21+U12 DV
C21:U21\/;1V11+U22 .V C22:U21\/;1V21+U22 DV,
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Using the matrix form, we get

A — (Ull U12
U21 U22

Uy

U22

Under the basis of {‘ai,b_ /> =|ai>®‘b_ /i> , where d is a non-negative diagonal matrix, and 2T

the transpose matrix of V.

{F

Thus we have
CC* =UdV"YUdv™y
=(UdV"V*Td"U")
=Udd*U"
U (CCHU =dd*
0 p,
In order to determine the values of p, and p,, we need to solve the eigenvalue problem of ccr,
if CC* isnota diagonal matrix.

Thus we can calculate the Schmidt numbers

Schmidt decomposition
(A® BY(C® D) = (AC)® (BD)
(A®B) =4 ®B"
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(A®B) =4"®B"

(A®B)'= 4" ®B™

vy ®|w,)=Ula)@F b))
=(U®V)|a,)®|b,))

Eigenvalue problem

C(v)®lw, ) =\p5,,(v)®|w)
or

CUOV)|a,)®|b ) =p,5 U V)(a,)®|b))
or

C CU®V)(a,)®|b,))=p,5,,C'(UBV)(a,)®|b,))

(1)
=5, (UBV)(a,)®|b,))

where &, ; is the Kronecker delta. Here we note that
VY =U" V"
UV UV)=U @V )UV)
=(U )W)
=1®l
Thus, Eq.(1) can be rewritten as

U OVY CCU VY a)8|b,)=po,|a)®b) @

When we introduce a new unitary operator,
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Xu,v)=U®V
we get

X @,)CCX w,v)(a)®|b,) = p5, | a) ®|b)
or

é’*é’X(u,v)(| a,~> ®‘b_,~>) = P@,_/X(”’V)|ai> ®‘b;>

under the basis of {|ai> ®‘b /> }. So, we need to solve the eigenvalue problem of matrix C*C

under the basis of |ai> ®‘b />to determine the eigenvalue p,.

((Example-1)) Pure state

) =—=1]00) +/01)]

J2

We construct C and C*C.

~ 111 o 1(11

C=—r ,  C'C==

J210 0 201 1

The eigenvlaue problem of C*C ;

: : 1 (1
eigenvalue; p, =1, eigenket: T( j
21

: : 1 (1
eigenvalue; p, =0, eigenket: T( j
2 —1

So, there is only one nonzero Schmidt coefficient and thus |l//> is a product state.

((Example-2)) Entangled state

38



) =—751100)-+[11)
We construct C and C*C.
ézi(l oj @+@=l(1 oj
J2lo 1) 200 1
The eigenvlaue problem of C*C ;

: 1 :
eigenvalue; p, =7 eigenket:

: 1 :
eigenvalue; p, = eigenket:

So there are two nonzero Schmidt coefficients and thus |l//> is an entangled state.

((Example-3)) Entangled state

) = 1lo1)+[10))

J2

We construct C and C*C.

. 1[0 1 na 1(1 0

C=—1= , cC°C=—

J2l1 0 210 1

The eigenvlaue problem of C*C ;

: 1 :
eigenvalue; p, =7 eigenket:

: 1 :
eigenvalue; p, = eigenket:
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So there are two nonzero Schmidt coefficients and thus |l//> 1s an entangled state

((Example-4))
|w>=%[|oo>+|o1>+|11>]

We construct C and C*C.
A 1(1 1 1(1 1
C_ﬁ(o J’ 5(1 2j

The eigenvlaue problem of C*C ;

(@}
3
(@}

Il

: ) 0.53
eigenvalue; p, =0.873, eigenket: 0.85)"

0.85
eigenvalue; p, =0.127, eigenket: 0 53)

So there are two nonzero Schmidt coefficients and thus |l//> is an entangled state.
((Example-5))

)= 51100) [0}~ 10) [ = 7= o) - I 75]0) - =)

2 V2 2R 2

We construct C and C*C.

@:l( 1 —1} C%@:l( 1 —1J

2(-1 1 2(-1 1
The eigenvlaue problem of C*C ;
2(-1

: : 1 (1
eigenvalue; p, =1, eigenket: T( j
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1 (1
eigenvalue; =0, eigenket: —| |.
g P> g NG (J
So there are one nonzero Schmidt coefficients and thus |l//> is a product state.
((Example-6))

v) =ﬁ[(1+«/€)|oo>+(1—\/€)|01>+(J§—J§)|1o>+(ﬁ+ﬁ)|1 1)]

We construct C and C*C.

A_L 1+\/€ 1—\/6 A+A—l 2 -1
C‘zfé(ﬁ-fs ﬁ+ﬁ}’ €c" ( J

The eigenvlaue problem of C*C ;

: 1 . 1 (1
eigenvalue; p, =—, eigenket: —= j
4 V2

: : 1 (1
eigenvalue; p, :%, eigenket: E J.

So there are one nonzero Schmidt coefficients and thus |l//> is an entangled state.

18.  Schmidt decomposition application
It is very easy to compute the reduced density operator given the Schmidt decomposition

v} =2 i)
The density operator is

p= ;\/?pj|iA>|iB><jA |<jB|
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The reduced density operator is given by

Tra() = 2 Pup; (kalia) il i )|

i),k

:Zpi|iA><iA|

Try(p) = Z\/TIMkAIiAXJAIkQIiBXJBI

i),k

- ol

We note that the spectrum (i.e., set of eigenvalues) of both reduced density operators are the same.

19. Purification

Suppose we are given a state p, of a quantum system 4. It is possible to introduce an
additional system, which we denote R (R has the same dimension as A4) and define a pure state
|AR> for the joint system AR

such that

Py =Try|ARYAR|.

That is, the pure state |AR> reduces to p, when we look at system A alone. This is a purely

mathematical procedure, known as purification, which allows us to associate pure states with
mixed states. For this reason we call system R a reference system: it is a fictitious system, without
a direct physical significance.
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((Proof))

To prove that purification can be done for any state, we explain how to construct a system R
and purification |AR> for p,. Suppose p, has orthonormal decomposition

P, = Z p,.|i ’ ><z A| (mixed state)

To purify p,, we introduce an additional system R which has the same dimension as system 4,

with orthonormal basis states |i R> , and define a pure state for the combined system
|AR> = Z\/;,.|iA>|iR> (pure state)

We now calculate the reduced density operator for the system A4 corresponding to the state |AR>

Try(|AR){AR|) = ;\/;t\/?jTr(|iA>|iR><jA e
S )
-Soln i,
NI
5
Thus | 4R) is a purification of .

Notice the close relationship of the Schmidt decomposition to purification: the procedure used to
purify a mixed state of system A is to define a pure state whose Schmidt basis for system 4 is just
the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root
of the eigenvalues of the density operator being purified.

20. ((Example-1))
Given the density operator

pe bt sl 2ol =2 | )
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construct the density matrix. Use the density operator formalism to calculate <S > for this state. Is

X

this the density operator for a pure state? Justify your answer in two different ways.

((Solution))
L 11 -1
R
THp 1=THpl=1 (pure state)

RS 1=

((Mathematica))
h o1
Clear["Global %"]; Sx = — ( ) ;
2 \1 0
P =
1
— (Outer[Times, {1, 0}, {1, 0}] +
2

Outer[Times, {0, 1}, {0, 1}] -
Outer[Times, {0, 1}, {1, 0}] -
Outer [Times, {1, 0}, {0, 1}])

(TR T

p.po-p // Simplify
{{0, 0}, {0, O}}

21. ((Example-2))
Show that
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.~ 1 1
p= 1+ m{en|+|=m{=n[)=—{+z){+z|+]|-z){-z]]
where
COSE sinE
|+n) = v 0] |—n)= w0
e’ sin— —e'’cos—
2 2
((Solution))

.~ 1 1{1 O
p.=gls el ol-2-ah=3] |]

.1 110
po=stenlfe s -nli-a=3 o V)
Then we have
P =P

Tr[p°]= (for mixed state)

1
2

((Mathematica))
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Clear["Global *"];
expr * := expr /. Complex[a , b ] »» Complex[a, -b];

ypn = {Cos[—Z] , Exp[i ¢] Sin[Z]};

ymn = {Sin[—Z], _Exp[i ¢] COS[Z]};

Outer[Times, ypn, {prn*] +

1
— Outer|Times, ymn, ymn*] // Simplify
2

22 ((Example-3))
Find states |l//1> and |l//1> for which the density operator

.~ 3 1

p=2Jsz)rel 22|
can be expressed in the form

b=l |+ v )|

r 2 2

((Solution))

Assume that

PARE-IFE I RS

¥3
2
1
2
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Then we have

3
ST T IO PR R PV
p_zl//1l//1 2‘//21//2_4 4 _01'
4
with
5
Tr[p*]1==
r[p°] 2
((Mathematica))

Clear["Global *"];
expr * := expr /. Complex[a , b ] »» Complex[a, -b];

o e 220

2 2

14

2 2

1
Outer[Times, yl, wl*] +—2 Outer[Times, v2, zlr2*] //

Nk

Simplify

23. ((Exmple-4))
An attempt to perform a Bell-state measurement on two photons produces a mixed state, one

in which the two photons are in the entangled state
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x,x>+

v.9)]

L,
72

with probability p and with probability (1— p)/2 in each of'the states

X, x> and |y, y> . Determine

the density matrix for this ensemble using the linear polarization states of the photons as basis
states.

((Solution))
1
1 110
|l//1>:ﬁ[xax>+ yay>]:_2 0 D
1
1 0
0 0
e =lx) =[O, ) =ls) |
0 1

The density operator:

. I- -
p= ) [+l s |+ =P lvs) )

I 0 0 p
1 0 0 0 O
200 0 0 0
p 0 0 1
where
Trp]=1
n l+p2
Tr[p*]=
rlp7] >
((Mathematica))
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Clear["Global *"];

expr * := expr /. Complex[a , b ] »» Complex[a, -b];

1

Yyl =— {1, 0, 0, 1}; y2 ={(1, 0, O, O};
V2

d’3= {OI 0/ 0/ 1]’/

p:

l1-p

p Outer[Times, yl, yl] + Outer[Times, Y2, Yy2] +

l-p
—— Outer[Times, Y3, ¥y3] // Simplify
2

o // MatrixForm

Nl o oN ke
o O o o
o O o o
NI O oN o

24. ((Example-5))
Use the density operator formalism to show the probability that a measurement finds two spin-
1/2 particles in the state |+ x,+x> differs for the pure Bell state,

‘ CD(+)> = %H +z,42)+|—z,-2)]

for which,

D, = ‘q)(+)><q)(+)
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and for the mixed state
P :l|+z +z><+z +z|+l|—z —z><—z —z|
2ol ’ 2 7 ’

Thus, the disagreement between the predictions of quantum mechanics for the entangled state and
those consistent with the views of a local realist are apparent without having to resort to Bell
inequalities.

((Solution))
The Bell state ‘CI)(+)> is given by

R
o) =7

—_ 0 O =

and, the first density operator is

b, = ‘ CD(*)><CD(*) —

1
2

—_ 0 O =
oS O O O
oS O O O
—_— 0 O =

for the Bell state.
Tr(ﬁlz) =1

which means that p, is the density operator for the pure state.
When
1
1|1
|+ x,+x) =51l
1
the projection operator is given by
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A

)= )+ x| =

A=

[+x,+x

—_ e
—_— e
—_
—_

Then we have

n N 1
Tr[f‘)+x,+x>p1] = E *

The probability of finding the system in the state |+ x,+x> is 1/2.

We now consider the second density operator given by

R 1 1
D, = 5| +z4z)(+ 2,4z |+ 5| —z,~z)(—z,~Z|
0

S O o O
S O o O

1
1|0
200

0

- o O

Since
” 2 1
Tr(p,)) = (<D).

p, is the density operator for the mixed state. We have

~ n 1
Tr[f‘)+x,+x>p2] = Z *

The probability of finding this system in the state |+ x,+x> is 1/4.

((Mathematica))
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Clear["Global «"]; expr * := expr /. Complex[a , b ] » Complex[a, -b];

wxpT:«/_l? {1'1};¢xp=«/_1? (T): 6z = ()i 0zm= ()

Yyll = - (KroneckerProduct[¢zp, ¢zp] + KroneckerProduct[¢zn, ¢zn]) ;
V2
Y1l = Transpose[y11][[1]]; ¥21 = KroneckerProduct[¢xp, ¢xp]; ¥2 = Transpose[y21][[1]];
¥3pl = KroneckerProduct [¢zp, ¢zP]; y3P = Transpose[y3p1l][[1]];
¥3nl = KroneckerProduct[¢zn, ¢zn];
¥3n = Transpose [¢3nl][[1]];

Y1l // MatrixForm

Sk oo S

Y21 // MatrixForm

NSRRI TN O [
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pl = Outer[Times, y1, y1] // Simplify; pl // MatrixForm

NP O ON
o O O (@)
o O O (@)
NP O ON

H
H
Ie)
=
Ie)
=

=

PX = Outer[Times, y2, Yy2] // Simplify;

PX // MatrixForm

[T e - W~ =
[T e - W~ =

~

[T e N - ST~ =
[T e - W~ =

Tr[PX.pl]

1
Outer[Times, ¥3p, ¥y3p] +— Outer[Times, ¥3n, ¥3n] ;
2

ko)
N
||
N R

p2 // MatrixForm

1 00 0
2
000 0
000 0
000 2
\ 2

Tr[p2.p2]

-

2

Tr[PX.p2]

-

4
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25. ((Example-6))
Prove that the state of the form

0
ny
W) = Calx) ®Ly), + Coly), @), =|
»x
0
where
2 2
ny +ny =1

and both coefficients are non-zero, cannot be written as a Kronecker product state

) =lv), @l
with
)= el ),
CRYIERVINR
((Solution))
ap,
O
a,p,

Suppose that |l//'>1 , = |l//>l ,- Then we have

axﬁx:O7 ayﬁyz()’ nyzax Yy nyzayﬁx

Then we get
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nycyx = axlByalex = axlealey = O

This is not consistent with the assumption that both C, and C ,, are non-zero.

34

26. Example ((Townsend))
Consider the state vector

1
V), =5 1), ®x), +[x), @), +]v), ®]x), +]v), ®]¥), 1,
describing the polarization of two photons. Show that the reduced density operators

[)1=TI’2[[)12], /32 =TI’1[[)12]

describe pure states, where
Pi= |‘//>1212 <‘/’|

((Solution))
The density operator:

P1=

NG
f— f— f— f—
f— f— f— f—
f— f— f— f—
f— f— f— f—

The reduced density operators:

AT[A]lll AT[A]_lll
P = rzplz—zl ik Py = ”1/912—21 1

Since

o, 1(1 1 R A2_111_A
p1—21 l_pl’ p2_21 1_p2

the reduced density operators p, and p, describe pure state.
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27,

We consider the density operator (4x4 matrix) in the Hilbert space.

p= %(1 —&)l, +&(0)®|0)((0] ®(0])

where ¢1s a real parameter (0<e<l). Show that the system is mixed.

((Solution))

We examine the property of the density operator.

e+—% 0 0 0
4

0 I_Tg 0 0

P= 1-¢
0 0o —%

4
0 o o L=¢
4

Thus
5 5

e 14387 n

Irlp°]= R Irp]=1

For 0< & <1, we have
0<THp <1,

which means that the system is mixed.

28.  Two Photons system as example
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Mg

(ﬂp

{t}‘;

In order to describe the polarization state of the two-photon system shown in Fig., the polarization
of each photon must be specified. This polarization state is

1
oo
0

The symbol ® denotes the direct product, which combines state vectors in different Hilbert spaces
(one for each particle) to create a new vector that specifies the state of the two-particle system in
an enlarged Hilbert space.

x,x> =
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where

((Note))

) ol
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29,

where

1 1
ety (o[} -3

HYV polarization operator:

[p;V’P;}V]:O

Ao =l = ) )
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((Example-1))
Calculate the action of operator 25, P\, and P:, on the state |V,+45°>

10 0 0
B _p ®i=(1 oj (1 o}z 01 0 0
e 0 -1) (o 1) [0 0 -1 0}
00 0 -1
1 0 0 0
2 _iep {1 OJ@(I sz 0 -1 0 0
HV oo 1) lo -1) |0 0o 1 o0
0 0 0 -1
1 0 0 0
Py _(1 Oj (1 sz 0 -1 0 0
e o -1) oo —-1) o -1 0
0 0 0 1
0
(ﬁ,;y®i)y,+45°>=i |- ,+45°)
i \/5 _1

-1

61



n A 1
1. ®P ,+45°%) =— =|y,—45°
(s HV)y > ﬁ 1 y >
-1
0
f)l;ll/ y’—i_450>=(},\)1;V<>9f)1f1V)y’—i_4'50>=L ’ =_y’_450>
V2|1
1

30. Problems and solutions
Compare the density operators that correspond to the following two states: (a) a

superposition that consists of equal parts x,x> and |y, y> (assuming a relative phase of zero),

and (b) a mixture that consists of equal parts x,x> and |y, y> .

((Solution))

(a) The state vector corresponding to this pure state is

L

)= ) )

.
= (=) ®lx)+])])
1
V2

oo (1)o[1)

S O O = O =
_ o O O
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Its corresponding density operator is

o o o O
o o o O
—_— 0 O

(b) The density operator corresponding to this mixed state is

[)=% x,x><x,x +% y,y><y,y
1 0
1/0 0
_5[0(1ooo)+ O}(ooom
0 1
1 000) (0000
~1/0 0 0 0[]0 000
=280 0 0 0/*o 0 0 of
0000/ (00071
1 000
_1/0 0 0 0
“2l0 0 0 0
000 1

Clearly these are different; the density operator corresponding to the pure state has two more terms.
These extra terms, which intermingle the states

x,x> and y,y> contributions, contain

information about the entanglement between the states.

31. Problems and solutions

For a two-photon system prepared in an equal mixture of states x,x> and |y, y> determine the

probability that the signal photon is measured to be polarized along +45°, given that the idler
photon is found to be polarized along this same direction. The density operator corresponding to
this state is given by
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~ 1 1 1
p=5 x,x><x,x +5 y,y><y,y —5

S O O O
S O O O
- o o O

S o O =

We want to find P(+45°_|+45°,), which is

P(+45°, | 4457, = PO H450)
: P(+45°)
((Solution))
P(+45°, +45°) = Tr+ 45°, 1457+ 45°, +45° ]
1 000 1111
1[0 0 0 Of|1]1 1 1 1
:Tr[— - ]
2010 0 0 Of[4[1 1 1 1
0001 1111
1111
1.0 0 00
=—Tr
810 0 00
1111
_1
4
where
1
1 (1 1
+45°,+45°>=l ®f |-+
2\1) 1) 2|1
1
1 11
1 11
$45°, +45° )+ 450, 445° | =< [0 1 1 1)=1
: : 401 411 1
1 11
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We also have

P(+45°) = Tr{(1, ® |+ 45° )(+ 45° ) p]
1 11
1

=—Tr[

0
0
4 1
1

1
0
0

oS o =

=—Tr[

S O O = O O O

S O O = O O O O
—_ o O O O O o O
- o O o = O O O

N | =

where

L efrase)+ase =1 b e[t T|=L
2l0 1)°01 1)72

O O = =
O O = =

o 4]

Using the values of P(+45°) and P(+45° ,+45°)), we get

1

5

P(+45°, | 4450 = PO H45%)
| P(+45°,)

N | = | —

((Note)) Bayes’ theorem
Bayes’ formula is state mathematically as follows.

P(a|b) (conditional probability) is given by
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P(a,b) _ P(a)P(b|a)

Plalby==24) P(b)

where a and b are events. P(a) and P(b) are the probabilities of a and b without regard to each
other. P(a|b), which is a conditional probability, is the probability of observing event a given

that b is true. P(b|a), which is a conditional probability, is the probability of observing event b
given that a is true.
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APPENDIX -1 Definition of the KroneckerProduct ®

(a)
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a,b,

~ o~ (a b, a,B a,b,
A®B= ® = =
a, b, a,B a,b,

a,b,
(b)
2:(‘111 alzJ ~ :(bn blzj
a, 4y b, b,

anb, a,b, a,b, a,b,
ey - a,B a,B| ab, a,b, a,b, a,b,
ayb, ayb, ayb, ayb,

ayb, ayb,, ayb, ayb,

APPENDIX - 11 Formula related to the Kronecker product

Tr(AB) = Tr(BA) (1)
Tr(ABC) = Tr(BCA) = Tr(CAB) )
Tr{|a)(b|] = (b|a) 3)
Tr[aA + bB] = aTr[ A+ bTr[B] (4)

|al’b2><cl’d2| = (| a1> ®|b2>)(<cl | ®<d2 |) = (|ai><cl |)1 ® (|b2><d2 |) (5

Tr[A® B =Tr[B® A= Tr[A|Tr[B] (6)
Tr,(4, ® B,) = ATr,(B,) (7)
Tr(4, ®B,) = B,Tr(4) ®)
(4)=Tr[4,5]=Tr,[(4 ®1,)4,] ©)
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(4,) =Tr[4,,1=Tr,[(1, ® 4,)/,,] (10)

(|a1,b2><cl,d2 |)(| e1afz><g1ahz |) = (| al,b2><g1,h2 |)<Cl|el><d2 |fz> (11)

Comment on the formula (5)
|a1,b2><cl,d2| = (| a1> ® |b2>)(<cl | ® <d2 |) = (| ai><cl |)1 ® (|b2><dz |)
Here we show that

|+ x,+z><+ x,+z| = (|+ x> ® |+ z>)(<+ x| ® <+ z|)
= (|+ x><+ x|) ® (|+ z><+ z|)

as a part of proof of the above formula.

1
1 (1 1 110
|+x>®|+z>=$[lj®[0j=—2 1
0
1 1
<+x|®<+z|—$(l )®(1 0)_3(1 0 1 0)
1 1010
110 110 0 0 0
(+x) @+ 2+ x[@(+2[ =2 | | 1 o1 0):51 01 o
0 0000

Note that

eaead=2{ 0 0-1()
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eafeal=(o o =g o]

Then we have

111 1 0) 1
<|+x><+x|>®<|+z><+z|>:5[1 J®[O OJ:E

S = O =
o o o o
S = O =
o o o o

Comment on formula (6)
Tr{A® B]=Tr[B® A= Tr[A|T+[B]

((Mathematica))

a2l a22 a23
a3l a32 a33

all al2 al3
Clear["Global *"]; Al = ] ;

b21 b22 b23

bll bl2 bl3
Bl = [ ];
b3l b32 b33

hl = Tr[KroneckerProduct[Al, B1]] // Factor

(all+ a22+ a33) (bll+b22+ b33)

h2 = Tr[Al] Tr[B1]

(all+a22+ a33) (bll +b22+ b33)

hl - h2
0

Comment on Formula (9) and (10)

Trl[‘al/al] =Tn, [(21 ® iz )P1,]
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We show that

<Sx1> = T’ﬁ[gxl/sJ = T’ﬁ,z[(gxl ® iz)/sn]

where

((Proof))

For example, we have the density operator

D = |+ x,+z><+ x,+z|

1
_19 (1 o1 0
2|1
0
1 010
110 0 0 0
201 0 1 0
0000

The reduced density operator is

o, =Tr, [| + x,+z><+ x,+z|]
= Tr[(|+x){+ X)) ® (|+ z)(+ z[]
= (| + x><+ x|)Tr2[| + z><+ z]|

= |+ x)(+ x|
i
201
P, = Tr1[|+ x,+z><+ x,+z|]

= (| + z><+ z|)Tr2 [| + x><+ x]|

e 2)e
{0 J
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where

el

We now calculate the average value.
A& h
<Sx1> =TrlpS.]= E

where

~~ 1(1 Ya(0 1) &
Sy == by =
211 1)2{1 O 4

We also calculate

<Sx1> = Tr[ﬁlZ(S‘xl ®iz)]
1 0 1
/]

0
=—1T1r]
4 1

0

—_ O

0
0
0
0

|

S = O O

(e}

0

0

0
0
Aol
0

O = O =
S = O =
o O o O

Mo | =

or

1
0
1
0

11
11

- o O O

|

S O O =

S O = O
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(S,.) =Trf]+ x){+x[S,]
= Tr[§X|+ x><+ x|]

=§Tr[|+x><+x|]
=§<+x|+x>
_n
2
where
0 01 0
Aﬁ@izzﬁ(o 1}@(1 0}@0 00 1
2(1 0 0 1) 2/1 0 0 O
0 1 0O
APPENDIX
A. Partial trace and Kronecker product
rilja) (b)) = (b]a).
(| a,)(a, ) ®|b,){b, )] = Tr{A® B]
= TH[A|TH{B]
= Tr[| a1><a2 |]Tr[| b1><b2 |]
=(a,]a)(b,|h)

TrH{A® B] =T AIT¥[B] .
Tr,[A® B]= ATr,[B].
Tr[A® B]= BTr,[A].

((Note)) Brief proof
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Tra) (b)) =2 (n|a){b|n)

- Z <b | n> <n | a> (closure relation)

- (tlo)

Tra){p] 1= 3 (n] ) (b] 4]n)
= 2{b|4|n)(na)

=(b| 4|a)
12[®l§= ap a12j®[b11 blzj
a, 4y b, by
_ a,B a,B
a, B a,B

anb, a\b, a,b, a,b,
ayb, a,by, a,b, a,b,

ayb, ayb, ayb, ayb,

ayb,, ayb,, ayb, a,b,

> D [al 1B alzBJ
Tr{A®B]=Tr| ]

a,B a,B
a.B a.,B
:TrAB[[ 11 12 j]
a,B a,B

[allTrB[é] alZTrB[é]J
=Tr, R R
a,Iry[B] a,Tr,[B]

a a N
=%(”11MW]
ay A4y

= Tr,[A]T7, [ B]
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~ - allB alzB
Tr,[A® B]=Tr,[ ]

a, B a,B

:(allTrB[lg’] anTrB[l;’]J
a,Irg[B] ay,Tr,[B]

= (a” iz j TrB[lg’]
ay 4y
= ATr,[B]
((Note)) Formula of Kronecker product

(4@ 4)(|w,)®w,) =4|v)®4|w,).

(4 ® 4,)(B,®B,)=(4 ®B)(4,®B,).

det(A ® B) = det(A)det(B)
exp(A® B) = exp(4) ® exp(B)
ARB#B® A4
These relations may be reasonable since the site of the particle related to operator A is different

from those related to 5.

REFERENCES:
A. Graham, Kronecker Products and Matrix Calculus with Applications (Ellis Horwood, 1981)

APPENDIX Mathematica Program of partial trace
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I make a Mathematica program for the partial trace for 8x8 matrix and 4x4 matrix, by using
the matrix manipulation (switching between rows, and switching between columns). The programs
are named as PartialTr81, PartialTr82, and PartialTr83 for the 8x8 matrix, and PartialTr41 and
PartialTr42, for the 4x4 matrix.
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Program for the partial trace for 8x8 and 4x4 matrix

PartialTr81, PartialTr82, PartialTr83
p12=Tr3[p123], p23=Tr1[p123], p13=Tr2[p123],

PartialTr41, PartialTr42
Tri[p12], Tr2[p12]|

Clear["Gobal "];

PartialTr4l[eo1 ] := Module[{Al, K1, K2, K12}, Al = po1;
K1=AL1[[{1, 2}, {1, 2}]]; K2=AL1[[{3, 4}, {3, 4}]];
K12 = K1 +K2];

PartialTr42[eo1 ] :=

Module[ {Al, K1, K2, K12}, Al = oI;
A1[[All, {2, 3}]] = AL[[All, {3, 2}]];
AL[[{2, 3}1] = AL[[(3, 2}]];
K1 =A1[[{1, 2}, {1, 2}]1];5 K2=A1[[{3, 4}, {3, 4}11;
K12 = K1 + K273
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PartialTr81l[o1 ] := Module[{Al, K1, K2, K12}, Al = o1;
Al=p1; K1 =A1[[{1, 2, 3, 4}, {1, 2, 3, 4}]1;
K2 =A1[[{5, 6, 7, 8}, {5, 6, 7, 8}]]; K12 =K1 +K2];
PartialTr82[01 ] :=
Module[{Al, A2, K1, K2, K12}, Al = o1}
A2 = p1; AL[[All, {3, 5}]] = A1[[All, {5, 3}]11];
A1[[All, {4, 6}]] = A1[[All, {6, 4}]];
AL[[{3, 3}]] =AL1[[{5,3}]];
AL[[{4, 6}]] =AL[[{6, 4}]];
A2[[All, {3, 5}]1] = AZ[[All, {5, 3}]1];
A2[[All, {4, 6}]] =A2[[All, {6, 4}]];
AZ[[{3, 5}]1]1 =AZ[[{5, 3}]1];
AZ[[{4, 6}]] =AZ[[{6, 4}]];
K1=A1[[{1, 2, 3, 4}, {1, 2, 3, 4}11];
K2 = A2[[{5, 6, 7, 8}, {5, 6, 7, 8}]]; K12 =K1 +K2];
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PartialTr83[o1 ] :=
Module[ {Al, A2, K1, K2, K12}, Al = o1;
A2 = p1; AL1[[All, {2, 3}]] = AL[[ALlL, {3, 2}]];
A1[[All, {3, 5}]] = A1[[All, {5, 3}]1];
A1[[All, {4, 7}]1] = AL1[[All, {7, 4}]]:;
AL[[{2, 3}]1] =AL[[{3, 2}]1];
AL[[{5, 3}]1]1 =AL[[{3, 5}]1];
AL[[{6, 4}]] =A1[[{4,6}]];
A2[[All, {6, 7}]] = A2[[All, {7, 6}]1];
A2[[All, {2, 5}]] = A2[[All, {5, 2}]];
A2[[All, {4, 6}]] = A2[[All, {6, 4}]1];
AZ[[{6, 7}]] =AZ[[{7, 6}]];
AZ[[{4, 6}]] =AZ[[ {6, 4}]1];
AZ[[{2, 5}]] =AZ[[{5, 2}]];
K1=A1[[{1, 2, 3, 4}, {1, 2, 3, 4}11];
K2 = A2[[{5, 6, 7, 8}, {5, 6, 7, 8}]]; K12 =K1 +K2];

((Example)) GHZ state
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Transpose [¢]

3 YH

-0 0000
s
I

=)

}

}

1
*\,-"3

.—JEJBJ BJBJBJBJ

1
L *-.,"12

!

!

Y.¢H; o // MatrixForm

2=

| &

0 6 0 @

5
% O T I I

| e

8@ 00 @0 0 8 0
0@ 00 0O 0O 0 O
0@ O 0 @O 0O 0 O
0@ 0000 0 0 0O
8@ 00 @0 0 8 0

©000080 |

| e
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pl2 = PartialTr83[p]

% 0, 0, :a}, 0,0,0,01, (0,0,0,0), {B, 0, 0, %H

P13 = PartialTr82[p]

% 0,0,0/,0,0,0,0},0,0,0,0],{0,0,0, %H

p23 = PartialTr8l[p]

% 9, 0, :a}, 9,0,0,0), (0,0,0,0), {B, 9, 0, %H

Pl = PartialTr42[pl2]
1 1

TSSO
p2 = PartialTrd42[pl2]

-1 . 1
g0 105l

((Example-2)) Another GHZ state

80



GHZ sate Density operator, Partial trace

; YH = Transpose[y] /. {a » al, B - pl}

yH. ¥

[Taol + 3A1})
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p=y.yH; p // MatrixForm

o ol o Bl a 51 ool ararl a 831 a 81 ool
4 4 4 4 4 4 4 4
ol 8 A Bl 351 ol 3 ol 3 281 581 al B
4 4 4 4 4 4 4 4
ol B BBl 551 ol 5 ol 5 881 581 al B
4 4 a4 a4 a4 a4 4 4
ool o Bl a Bl ool ool a /1 a 81 a ol
4 4 4 4 4 4 4 4
ool o Bl a Bl ool ool a /1 a 81 ool
4 4 4 4 4 4 4 4
ol 8 881 881 ol 5 ol 8 Bl 8 el ol 8
4 4 4 4 4 4 4 4
ol 8 881 881 ol 5 ol 8 Bl 8851 ol 8
4 4 4 4 4 4 4 4
o ol o Bl a Bl o ol ool o 31 a 81 ool
4 4 4 a a a 4 4
p23 = PartialTr8l[p]
I’QDil Diﬂl“l I’ E-,Sl 2 A1 B*l
L 2 - L 2 2 T
[o, BEL BBL ,y roal ool |
L 2 9 J 1 2 ? 2 1)

p3 = PartialTr4l[p23] // Simplify

[
L1

—t—,

pl = PartialTr42[p23] // Simplify

=
L2

—r|:x|:x1|,n'“,81 ol

= (aal+BR1),

JJ‘

ol
JJ‘

L

L

la,

(o,

1
S (eal+ g p1)

} {aol 4 ,SIBI‘JI1
2 "1
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