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Zitterbewegung is a hypothetical rapid motion of elementary particles, in particular electrons, 
that obey the Dirac equation. The existence of such motion was first proposed by Erwin 
Schrödinger in 1930 as a result of his analysis of the wave packet solutions of the Dirac equation 
for relativistic electrons in free space, in which an interference between positive and negative 
energy states produces what appears to be a fluctuation (at the speed of light) of the position of 
an electron around the median, with an angular frequency of  
 




22mc 1.55268 x 1021 rad/s 

A reexamination of Dirac theory, however, shows that interference between positive and 
negative energy states may not be a necessary criterion for observing zitterbewegung.  
https://en.wikipedia.org/wiki/Zitterbewegung 
 
1. Standard velocity (c) of a free particle 

The operator for velocity in the x direction can be computed from the commutator with the 
Hamiltonian. Using the Heisenberg’s equation of motion we have 
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Similarly, we have 
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Using the Mathematica, we solve the eigenvalue for the velocity for 
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For c2  
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In the Dirac theory, the velocity is c , while in the non-relativistic Pauli theory the velocity 
operator is 
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Such a contradiction may be a good reason to suspect that the whole theory is up the creek. 
However, Foldy and Wouthuysen come to rescue our rescue again. The essential point is that 
these apparently contradictory operators do not actually represent quite the same observable.  
 
((Note)) Sakurai’s comment (Advanced Quantum Mechanics) 

The plane-wave solutions which are eigenfunctions of p are not the eigenfunction of αc . 
Since αc  fails to commute with the Hamiltonian, no energy eigenfunctions are expected to be 
simultaneous eigenfunction of αc . In the second quantization, the quantum field operator )(r  

can be expressed by the superposition of positive and negative energy plane wave solutions.  
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which is time independent, represents the group velocity of the wave packet made of exclusively 
of positive- (negative-) energy plane-wave components. 



 
2. Classical relativistic velocity of a free particle (FW component) 

We continue to use the Heisenberg’s equation of motion for the acceleration operator such 
that 
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We note that 
 

i

j
jij

ij
j

ij

i
j

jji

cp

cp

mccp

mccpH

2

2

}{},{

],[],[

,

2

2













 







 

 
where 
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where i = x, y, and z, the curly bracket denotes an anti-commutator, 
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Thus we get 
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Here we introduce a new variable, 
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Thus we have the first-order differential equation for i  as 
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The solution for this equation is 
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where )(txi  is the position operator at time t. The x-component of the velocity has two parts. The 

second term is the FW term and is associated with the average motion of the particle (classical 
relativistic formula). The first term is the Zitterbewegung which oscillates extremely rapidly.  
 
3. Numerical calculation of zitterbewegung 

The resulting expression consists of an initial position, a motion proportional to time, and an 
unexpected oscillation term with an amplitude equal to the Compton wavelength. That 
oscillation term is the so-called zitterbewegung. Interestingly, the zitterbewegung term vanishes 
on taking expectation values for wave-packets that are made up entirely of positive- (or entirely 
of negative-) energy waves. This can be achieved by taking a Foldy–Wouthuysen transformation. 
Thus, we arrive at the interpretation of the zitterbewegung as being caused by interference 
between positive- and negative-energy wave components. 
 

   
 

Fig. Dirac sea. The energy gap is 22mcE  . The zitterbewegung is related to the transition 

between the upper level with the positive energy 2mc  and the lower level with the 

negative energy 2mc .  
 
The angular frequency of zitterbewegung 
 




22mc 1.55268 x 1021 rad/s 
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where 2mc =0.510997 MeV. The Compton wavelength is defined by 
 

mcC

 2
  = 2.4263102367 x 10-10 cm =0.024263 Å 

 
Note that the amplitude of the oscillation of the zitterbewegung 
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= 1.9308 x 10-11 cm 

 
3. Foldy–Wouthuysen term of the velocity (classical relativistic velocity) 
 

We note that the Heisenberg’s equation of motion is given by 
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for r (velocity equal to the speed of light, c). We note that FWr̂  for the position vector in the 

FW representation is defined by 
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Here we introduce a new operator defined by 
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Corresponding to R̂ , the operator FWR̂  is defined by 
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We also note that 
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Now we consider the Heisenberg’s equation of motion for R̂ : 
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Since rR ˆˆ FW , we have 
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This leads to 
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Note that 
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Now the term REH /ˆ  has eigenvalue +1 for particle wavefunctions and -1 for antiparticle 

wavefunctions. So, dtddtd FW /ˆ/ˆ rR   is just REc /2 p  for particles, which is the classical 

relativistic velocity.  We also note that αr cdtd /ˆ  (standard velocity) 
 
4. Summary 

The standard velocity operator αc gives the electron speed as equal to the speed of light, 

while dtd FW /r̂  leads to a velocity that has a sensible non-relativistic limit. This means that the 

motion of the electron can be divided into two parts. First is the average velocity. Secondary 
there is very rapid oscillatory motion (Zitterbewegung) 
____________________________________________________________________________ 
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