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In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928 and later seen to be an elaboration of the work of
Wolfgang Pauli. In its free form, or including electromagnetic interactions, it describes
all spin-’2 particles, such as electrons and quarks, and is consistent with both the
principles of quantum mechanics and the theory of special relativity, and was the first
theory to account fully for special relativity in the context of quantum mechanics.

It accounted for the fine details of the hydrogen spectrum in a completely rigorous way.
The equation also implied the existence of a new form of matter, antimatter, hitherto
unsuspected and unobserved, and actually predated its experimental discovery. It also
provided a theoretical justification for the introduction of several-component wave
functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac
theory are vectors of four complex numbers (known as bispinors), two of which resemble
the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrodinger
equation which described wave functions of only one complex value. Moreover, in the
limit of zero mass, the Dirac equation reduces to the Weyl equation.

http://en.wikipedia.org/wiki/Dirac equation

http://en.wikipedia.org/wiki/Paul Dirac

((S. Brandt))
The Harvest of a Century Discoveries of Modern Physics in 100 Episodes (Oxford, 2009)



“In 1955 Dirac gave lectures in Moscow. When asked about his philosophy of
physics, he wrote on the blackboard:

PHYSICAL LAWS SHOULD HAVE MATHEMATICAL BEAUTY.

Dalitz, who relates this story, adds that ‘this has been preserved to this day’. It was this
philosophy that Dirac used when he found the equation that now bears his name. Unlike
many results in theoretical physics it was neither inspired by unexplained measurements
nor by physical insight but only by considerations of mathematical ‘beauty’ or, in other
words, simplicity. In the Dirac equation not only quantum mechanics and the special
theory of relativity were married, but also the spin of the electron is contained in it
without any ad hoc assumption. So far, so good. But the equation not just beautifully
described known phenomena, it did more. It predicted the existence of electrons with
negative energy. This was at first held to be a severe problem of the theory but was
finally understood as great progress, because negative-energy electrons could be
interpreted as hitherto unknown particles. Thus, the existence of new particles was
predicted which had all properties of the electron except for the electric charge, which
must be positive rather than negative (positron). These particles were indeed found four
years after the equation. Dirac is often quoted to have said that his equation ‘contains
most of physics and all of chemistry’. This, however, is not the case, although in a paper
on the (non-relativistic) Quantum Mechanics of Many-Electron Systems, quite unrelated
to the Dirac equation, similar words appear: ‘The underlying physical laws necessary for
the mathematical theory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble.” We begin this episode by mentioning
briefly the work, previous to Dirac’s, on the reconciliation of quantum mechanics with
special relativity and with spin, respectively.”

We discuss the relativistic theory of electron which was derived by Dirac. Here we use
the notations

(a) The space-time position four vector (contravariant and covariant):
x* =(ct,r) (contravariant vector)
where
x=ct x'zx, x2=y, x3:z,

x,=g,x =(ct,—x,—y,~2) (covariant vector)



W o =10 0 et tensor)
= = metric tensor
Ew=& Tlo 0 -1 o0
00 0 -1
x*=g""x,

Any time the same index appears in an upper and a lower position summation over the
index is assumed without explicitly noting.

(b)
The one-particle differential operator that represents energy-momentum is given by
E . E
p'=(=,p), Py=8u.0 =(——Dp)
c c
where
0 _ E 1 _ 2 _ 3 _
p _? p _px’ p _py7 p _pz7
(c)
0 1o 0 0 0
8 = - 8 56' — N\ Ao~ oA oA
v = g~ 09 (cat ox’ dy 62)
lo 0 o0 0O
8/4:_: /“/a = 80,61 —\" T T~ s T~
=0, =@ =)
(d)
0 0 £
= ha = h = h _7v = 5
Pu = 1O, =1 ox” : (cat ) (c p)
Note that
n 0
=—V, E=ih—
P=3 or
1 Hamiltonian

In this section, for convenience, we do not use the notation of the contravariant and
covariant vectors. We use the notations



pl:px’ pzzpy’ p3:pz
a=(a,a,a,).

The time dependent Schrodinger equation for the particle is given by

ihLy=—"1"V
8tl// 2m v

We find that the time ¢ and the space position (x, y, z) are treated very non symmetrically.
We need to search for relativistic equation for the particle of first order in ¢, x, y, and z,

where the equation should be symmetrical in space and time coordinates. Thus H is
required to be linear in the momentum operator.

0
h—w =H
th—y =Hy

The form of H is introduced by Dirac as
H =ca- p+ pmc’
By squaring H, we should get the relation from the relativity (the Einstein relation),
(H) = (ca-p+ pmc*)’
= Clpp, s tasa mep e, B+ ')

=m’c* + 02p2
= FE?

which leads to the relations
la, a3 =26;1,, {a,, 5} =0, B =1,
where i = x, y, and z, the curly bracket denotes an anti-commutator,
la,0}=aa,+a,q

Here we do not show how to derive the form of matrices & and S (4 x 4). The matrices
are Hermitian matrices (4x4). Thus the Hamiltonian is also Hermitian. We have the
expressions for the matrices as



0 0 0 1
001 0] (0 o
a = =
o1 0 0| lo, 0
1 0 0 O

0 0 0 —i

0 0 7 O 0 o,
a = =
1o =i 0 0] o, 0
i 0 0

0 0 1 O

0 0 0 -1 0 o,
a = ==
11 0 0 o. 0
0 -1 0

1 0 O

01 0 I, 0
ﬂ: ==
00 -1 0 0 -1,
00 0 -1

Note that we do not use the contravariant and variant form of Dirac matrices.

The Hamiltonian A is described by

H =ca- p+ pmc’

0 : I, 0
=C e P -|-7’}’ZC‘2 :
c-p O 0 -1,

3 mc®  ce-p
c6-p —mc’

or
mc’ 0 cp. c(p, —ip,)
P me’ e(p,+ip,)  —cp.
| dpo-ip)  —md 0

(HY canbe evaluated as



S O = O

where
2
E*=m’c*+c’p

((Mathematica))

S = O O



Clear["Global +"]; ox = PauliMatrix[1] ;

oy = PauliMatrix[2] ;; oz = (é _01);

12 = ldentityMatrix[2];

*

exp_ " :-=
exp /. {Complex[re_, im_] =» Complex[re, -im]};

ax = KroneckerProduct[oXx, oX];

ay = KroneckerProduct[oXx, oy];

az = KroneckerProduct[ox, oZz];

B = KroneckerProduct[oz, 12];
fl=cpxax+cpyay+cpzaz + Bm?c?// Simplify;

gl=Ff1.Ff1// FullSimplify;



y e o (O 1Yy (O -h). _ (1 O},
Clear["Global = ],ox-(1 O),oy-(].l O),C’Z-(O _1)’

12 = ldentityMatrix[2] ;

aX = KroneckerProduct[oXx, oX]; ax // MatrixForm

ay = KroneckerProduct[oX, oy]; ay // MatrixForm
O 0 0 -1
O 0 » O
O -1 00
i O O O
KroneckerProduct[ox, oz]; az // MatrixForm
1 O
-1

0]
0]

O OO

az =
0]
0] 0
1 0
0 -10

B = KroneckerProduct[oz, 12]; B // MatrixForm

10 0 O
01 0 O
00 -1 0
00 0 -1



1 // MatrixForm

c? m? 0 C pz c (px - 1 py)
0 c? m? c (px+ i py) -cpz
cpz C (pX - 1 py) —c?m? 0
C (pX + 1 py) —cpz 0 -c?m?

gl /. {c® (c® m* + px® + py? + pz?) » E1%} // MatrixForm

E12 0 O O
0O E12 0 O
0O 0 E12 0
O O 0 E12

3. The matrices o and S
The matrices & and £ can be expressed in terms of the Pauli spin matrices,

. 0 1 5 0 —i ; 1 0
o =0, = , O =0, =|. , 0O =0, = ,
1 0 ’ i 0 0 -1

and identity matrix

1_10
27lo 1)

Using the Kronecker product, the matrices «', a”, o, and Sare given by

0 0 0 1
o' =a =0'1®0'1=0 0.10) [0 o
! 01 00 g 0

1 0 0 O

QN
Il
N
Il
qb—
®
QN
Il
o o o
o
o o 1
Il
—
o
ql\)
N



0O 0 1 o0
a=a =0c'®c’ = 0 0 0 -l _| 0 o’
: 1 0 0 O o 0
0 -1 0 O
1 0 0 O
O1 0 O I 0
7/0= =U3®12— — 2
0 0 -1 0 0 -1,
00 0 -1
0O 0 01
0 0 1 0 0 o
}/lzﬂal: = | R
0O -1 0 O -o 0
-1 0 0 O
0 0 —i
0 i 0 0 o’
]/Zzﬂaz: = )
0 O -o 0
—1 0 O
0O 01 0
0 00 -1 0 o
73:ﬂa3: = 3
-1 0 O -0’ 0
0O 1 0
0 of
k 0_k k
a = = =
yvi=py [a" OJ
'yt ==ty
((Note)) Hermitian conjugate of y*

0

7= =
=Bty =d pr=at p= A B= gy B=yr Y

where k=1, 2, 3.



Hence we have the very useful quantity
) =1y’
where ©=0,1,2,3,4.

4. Dirac equation
We now have the Dirac equation given by

ih%l/l =Hy
with

H =ca- p+ fmc’
Then we get

in %w (@ p+ oy = ("7 20, + pcly
or

.
in e (a- p+ pmeyy = (=iny"y*o, + y'me)y

where we use the notations

=(ct,x,y,2)
(——) ihd, —zhi zh(— V)
P o aet)
pk:ihgk:_p (kzlaza 3)

0 o
a:(ax,ay,az):(al,az,of):( ]
c 0

(1)



The multiplication of Eq.(1) by »° from the right leads to

ihy° o = (y° f (ihy*0, + meyy = (=ihy*8, + meyy
or
[ih(y* 0, +y"0y) —mcly =0,

where k=1, 2, 3. Thus we have the Dirac equation

0 mc
iy ———y =0

=T =W
or

- (Dirac equation) (2)
where

p, =ihd,

- (Feynman dagger, Feynman slash notation)
5. Probability current density operator

Now we take the adjoint of the Dirac equation

or
since

GH) =77

Multiplying Eq.(3) from the right by »°,



. + mc¢ .
@0 () v =0.
We define
vy =y (Dirac conjugate)

Noting that (70)2 =1, we get
~ o, mC_
0, wy" +71// =0 4)

In order to get a probability current, we multiply Eq.(2) from the left by  and Eq.(4)
from the right by y and add to obtain

V"0, = W+ 0,y + "y =0
or

vyt @ )+ )y =0
or simply

0,(wy'y)=0
The probability four current is given by

J=cwyty =(cp,J)

This satisfies the equation of continuity

0,j"=0
6. Alternative method (Sakurai)
2
f_z —pi= mzcz
E(Op) (op) 5
(——-06-p(——+0o-p)=mc



where

E =i =ine 2
ot ox,

with  xp=ct

This enables us to write a second order equation

(ih&i +iho - V)(ih&i —ihe V)¢ =m’c’¢

Xo Xo

for a free electron. ¢ is now a two component wave function

" = L(z‘hai —ihe - V)@

mc X,

and
# = ¢

(ihai +iho - V)¢(R) = mc¢(”

Xo

Then we have

(—ihai —ihe - V)™ = —mcg™

0

and

(—il‘/’lai +ihe - V)¢ = —mcg™®

%o
((Derivation of Dirac equation))

Taking the sum and the difference of Eqgs.(1a) and (1b)

il V(PP g =ih (3 4 = -me(g ) + 4
X0

(1a)

(1b)



V(@ 4 0) 0 (¢ = ) =g~ 47

Xo
We define
v,= 9"+ g
and
vy =97 —¢"

Thus we have

—ihe -V, —ihil//A =-mcy,
Ox,

0

ihe-Vy +ihail//3 =—mcy,

Xo
—ih i —iho -V
ax() (WA} _ (l//A j
5 =—mc
ihe-V  ih— |\Vs Vs

(WAJ 1s the 4 x 1 column matrix.
Vs

Here note that

0
—ih—— —ihe-V
I 0
% - —ihio( 2 j— ih[

ihe v in o \0 -1
ox,
=—ih70i—ihy-v
ox,
=—ihy“o,
Note that
0 0
0 _ , 0 =—=(—,V
T o~



y* . gamma matrices (or Dirac matrices)

10
L 0 |01
o_p_[" _
r=F [0 —Izj 00 -1
00 0 -1
and
0 0 0 1
l_00'1_0010
IlZs 0)7lo =10 0
10 0 0
0 0 0 —i
, (0 o) 00 i 0
IlZer 01710 =i 0 o0
i 0 0 0
0 01 0
s [0 o) |0 00 -1
"Tllot 0)Tl=1 00 o0
0 10 0
with

Here we define the Dirac spinor (4 x 1 matrix)

4

_(WAJ_ ¥,
V= Vs - Vs
Vs

Using these definitions, we have Dirac equation



(iy“0, - %)z// =0 (Dirac equation)
((Property of ¥ matrices))

o+ 0 0

Y=ty =ty

0

Iy y=riy"+ry" =26"1, (Clifford algebra)

((Note))

Lyt =y + 7

0 o' 0 o’ 0 o’ 0 o'
= _ 1 _ 2 + _ 2 _ 1
o 0 o 0 o 0 o 0

- {c',0’ 0
0 {c', o’

=0
where
{c',0’}=c'c"+c°c' =0
7. Dirac equation of particle in the presence of electromagnetic field

Dirac equation for free particle is given by
, mc
(iy"o, —7)‘// =0

where

0 &

pY =ind" =ih— = (—, p)
Gx# c
. . O £

p,u =1h6# =lhax—ﬂ:(z,—p)
g=ih£ p =—ihV

ot’

In the presence of the electromagnetic field 4* = (A4°, A)



1 e 1 e
p“—p” —;A’, Py Dy —;Aﬂ

where A° is ascalar potential and A is a vector potential,
A" =(4",A4), A,=(4"-4)

The magnetic field B and the electric field E are expressed as

B=VxA (magnetic field)
E=—va -1 (electric field)
c Ot
Noting that
ie ie
0" - 0" +—A4", 0 —0 +—A
ch # “oen

Dirac equation of particle in the presence of the electromagnetic field can be expressed
by

ie mc
v (0 +—A)——w=0.
[iy* (0, g ) h]l//

where e is the charge of the particle (e<0 for electron)

8. Two component wave functions i, and y, under the parity operation
Since

we get



l//'(l’,t) _ (l//A'(rat)]

w,'(r,1)
= 7w (-1,0)

(L0 Yw,(r0)

RUBSIA UAEY)

:(V/A(_rat)]
_l//B(_r:t)

under the spatial reflection [y'(r,t) = ¥ w(-r.t), see the definition in the symmetry of
the Dirac equation]. Then we have

v, (rt)=y, (-r,t) (the same as the non-relativistic case)

l//B'(r’t) = _l//B(_rrt)

The upper and lower components of the wave functions have different behaviors under a
parity transformation. (see the discussion of the parity for the non-relativistic case
below).

This is expected from the following discussion of Dirac equation.

Hy =Ey

W:[WAJ, H=coz-(p—£A)+ﬁmc2
c

Vg

where
P p—EA.
c

Eigenvalue problem:

2 e
Hy - mc ca-(p—ZA) (WAJZE[V/Aj

ca-(p—SA) —mc’ Vs

or



e
co-(p=—AW, - mc'y, = Ey,

Then we have

1 e
r,t)= co-(p——A rt
W (r,1) £+ me? (p c W, (r,1)
Under the parity,
p—>-p, A—>-A,

l//A(rat) - l//A'(r’t) = l//A(_rbt) P

then we get

|l 1 e \l
Vs (l",t)=— 200"(P__A)‘//A (l’,t)
E+mc c

1 e
=— co-(p——A -r,t
E+mc? (P c Wl )

= _I//B(_r:t)
where
l//A'(_r:t) = l//A(rat)

8. Even or odd parity in v, and y,
Suppose that |l,// A> and |1//B> has different parities (even or odd).

Av)=Hw.).  Aws)=FHs,)
(rlAlw ) =(-rlw)=+rly.)

and
(rllws)=(-rlws)=Frlws)

Then we get



0 (L0 Ywaern) ((waenn ) (w0
! ‘”(_”)_(0 —Ij(m—r,r)j‘(— wB(—r,z)J‘i(wg(r,ﬂ]_i‘”(r’t)

or, formally
Yw(=r,0) =4y (r,).
since
w,(-r0) =1y, (r?), We(—r0)=Fy,(r,1).

We assume that y, and y, are the eigenstates of the orbital angular momentum.
W, (=r.t)= (_I)IA W, (r,t)==xy ,(r,t)

(=)= (=D, (r0) = Fy, (r,1)

where /5 and /g are the orbital angular momenta of the two-component wave function
v ,(r,t) and w,(r,t), respectively. Thus we have

(D" = (="

This implies that if y ,(r,f) is a two-component wave function with an even (odd)

orbital angular momentum, then ,(r,?) isa two-component wave function with an odd
(even) orbital angular momentum.

((Example))
We consider the case of a central force.

A=0, A,=9, ed, =V (r)

Vg

V) cop (WAJ_E(WAJ
" ower —mear)vs)

Then we get

V/=(WAJ, H=ca- p+ pmc’ +V(r)

I,VB(V,I): 2(6'p)WA(r9t)

c
E-V(r)+mc



Let us suppose that y ,(r,f) is an %S, state wave function with spinup (/=0,s=1/2)

iEt

1 _iE
wﬂn0=RU{é%’

Then
o 9_,90
—ihc 0z ox oy [R()) -
1) = "
V(1) E-V(r)+mc’ iJrl-ﬁ 0 ( 0 ¢
ox Oy 0z
Note that
O ey dR_zdR.
0z ozdr rdr
0 x dR 0 dR
R ==~ —R(r) =2
0 rdr oy r dr
Then we get
—ihe 1dr( z x—iy)1) -
(//B(I’,t): R . e’
E-V(ry+mc rdr\x+iy -z \O

__ -ihe  1dR( z ) -¥
E-V(r)+mc® r dr\ x+iy

—ihc 1dR_(1 (0),
= >——|z +(x+iy) . |le
E-V(r)y+mc rdr \0 1

Here we note that

Yll=11/isin<9e"¢=l,/ix+ly
2\ 2x 2\2x% r
Koziﬁcosgz 3z

2\« 4z r

i L[5 g L [Bxi
2\ 2x 2\ 2% r




where
x=rsinfcosg, y=rsinfsing, z=rcost

Thus we have

_q 1 0\ _&
wy(r,t)= the d—R[ 477[)/1()( J+ 8_7TY11[1J]6 ’7

E-V(r)+mc® dr 0 3
The first term of the parenthesis is [=1lands=1/2
J=172 (P1n)
The second term of the parenthesis is [=1lands=1/2
j = 3/ 2 (ng/z)
J=172 (P1p)
((Note)) Parity operator xin non-relativistic quantum mechanics
|1//'> = fr|1//> with #7#=1 and #" =%
(W lil) =~(wlslw). ARA =%

(dly)=(xlalw), o P@=p)

Even parity: <x|l,//'> = <x|fr| l,//> = <x|l//> , v =w(x)=w(x)
Odd parity (x[2]w) =~(x|w). v (x) =y (—x) = -y (x)
9. Eigenvalue problem (degenerate case)

We solve the eigenvalue problem using the Mathematica.

mc* —E 0 cp, c(p,—ip,)
H_El - 0 mc’—E  c(p, +ip,) —cp,
1. dp.—ip) -mé-E 0

c(p,+ip,) —cp, 0 —mc* —E



From the condition that det( H —é&l,)=0, we get

where

R=\m’c* +c*p> (>0)
Thus we see that there are four eigenvalues which are degenerate in pairs, i.e.
E=+R,+R, -R, and -R

For simplicity we assume that

p.=p,=0
For E=+R
mc® — R 0 cp, 0 u, 0
0 mc’ — R 0 —cp. u, | |0
cp., 0 -mc® —R 0 u, 0
0 —cp, 0 —mc* =R \u, 0

or

(mc*> = Ryu, +cp.u, =0
(mc® — Ryu, —cp.u, =0
cpu, —(R+mc)u; =0

—cp.u, —(mc® + Ryu, =0

It is clear from the above equations that at the zero momentum limit ( p, — 0) the first
two equations do not give us any information on the unknowns. Thus we need to solve
the second two equations. The two independent solutions, corresponding to the
eigenvalue +R,

c
ur=1,u, =0, u3:L us = 0.

R+mc*’

.

u1=0, u2=1, Uy =O,u4 :—ﬁ.
mc



or

mc’ + R 0 cp. 0 u, 0
0 mc’ + R 0 —cp, Uy | _ 0
cp., 0 —mc® +R 0 U, 0

0 —cp. 0 —mc* + R \u, 0

(mc® + Ryu, +cp.u, =0
(mc* + Ryu, —cp.u, =0
cp.u, —(R—mc*)uy, =0
—cp.u, —(me> = Ryu, =0

It is clear from the above equations that at the zero momentum limit ( p, — 0) the second

two equations do not give us any information on the unknowns. Thus we need to solve
the first two equations. The two independent solutions, corresponding to the eigenvalue -

R,
u, :—Rip};cz =0, u3=1,,us=0.
u =0, u, :ﬁ’ u, =0, u,=1.
((Summary))
For E=R (positive energy)
1 0
R+mc’ cO R+ mc’ 1
2R R —i-pnzac2 2R 2pz ,
0 - R+ mc’
For E=-R (negative energy)



P 0

R+ mc® cp

2 2 z

/R+mc 0 R+ mc R+ mc
2R 1 2R 0

0 1
If p, =0, we have
1 0
0 1
0l 0l
0 0

The non-relativistic spin states. These are degenerate and have energy eigenvalue +R.

S~ O O
— O O O

The nonrelativistic spin states. These are degenerate and have energy eigenvlaue -R.

10. The use of the Mathematica to derive the eigenkets of H
The eigenvalue problem can be solved Using the Eigensystem[H] of the
Mathematica.

((Mathematica))



Clear["Global "%"]; exp_* :=zexp /. {Complex[re_, im ]+ Complex[re, -im]};
ox = (0 1);cy= (0 _i);cz= (1 0 );
10 i 0 0 -1
12 = IdentityMatrix[2]; 14 = ldentityMatrix[4];
aX = KroneckerProduct[oX, oX]; ay = KroneckerProduct[oX, oY];
az = KroneckerProduct[oX, oZ]; 8 = KroneckerProduct[oz, 12];
H=mc?B +cC (aX px +ay py +azpz);

R
_ 2 2 2 2 2 ".
rulel_{\/c m?+ (px* + py? + pz?) _)c}'

2
rule2 = { (px? + py? + pz?) > % -c? mz};

rule3 = {R -)C\/c2 m? + px? + py? + pz> };
Eigenvalue problem of the Hamiltonian of the Dirac free particle
egl = Eigensystem[H] /. rulel // FullSimplify

[{-R, -R, R, R},

c(px-ipy) _cpz cpz ¢ (px+ipy)
-~ 0.1}, {-4 -

» » y — , 1,0,
c?m+R c?m+R 2m+R cZm+R }

{C(pX—ipw CpZR'O'l}'{ c pz C<pX+ipy),1,o}}}

c2m+R T cZm- c2m+R7  -cm+R

Orthogonality
eql[[2, 1]11*-eql[[2, 2]] /- rule3 // Simplify

0

eql[[2, 1]11*-eql[[2, 3]] /- rule3 // Simplify
0

eql[[2, 1]11*-eql[[2, 4]] /- rule3 // Simplify
0

eql[[2, 2]1]1*-eql[[2, 3]] /- rule3 // Simplify
0

eql[[2, 2]1]1*-eql[[2, 4]] /- rule3 // Simplify
0



eql[[2, 3]1]*-eql[[2, 4]] /- rule3 // Simplify
0

Normalization constant

Al =eql[[2, 1]1]1"-eql[[2, 1]1] // Simplify; A1l = Al /. rule2// Simplify

2R
c?m+R

A2 =eql[[2, 2]1]1"-eql[[2, 2]] // Simplify; A21 = A2 /. rule2 // Simplify
2R
cZm+R

A3 =eql[[2, 3]1]1"-eql[[2, 3]] // Simplify; A31=A3 /. rule2 // Simplify
2R

c?m-R

Ad =eql[[2, 4]1]1"-eql[[2, 4]1] // Simplify; A4l = A4 /. rule2 // Simplify

2R
c2m-R

From the Mathematica, the results are obtained as follows. The eigenket of H with £ = R
is not a real eigen ket, while the eigenket of H with £ = -R is a real eigen ket. The reason
for this is that the real eigenkets are the simultaneous eigen ket of both A and helicity

(iZ'p).
P

(a) The eigenstate with positive energy

For  E =R (positive energy), the energy eigenkets are obtained from the mathematica
shown above.

_w, c(p,—ip,)
R —mc? R —mc?
| c(p,+ip,) | e,
vV, = R—mc? Yy = R_mc® |’
1 0
0 1

which are not appropriate solutions, since these states are not the eigenket of the helicity.
The real eigenkets are the simultaneous eigenkets of H and the helicity. These are
expressed by the superposition of these two states.



clap, +b(p, —ip,)]
R—mc’ .
B | d=bp. +a(p, +ip,)]
Vo =ay, +by, = R—mc?
a

b

with constant a and b to be determined. When we choose

__¢p. _clp, +ip)
a= 5> b =5
R+ mc R+ mc
we get the real eigenstate

1
0
cp,
R+ mgz
c(p, +ip,)
R+ mc?

When we choose a and b as

c —1 _
. (P, pzy) ’ 2
R+ mc

- R+ mc?
we get

0
1 .
c(p,—ip,)
R+ mc?
—Cp.
R+mc®

((Summary))

The normalized simultaneous eigenstates are given by



R+ mc?

1

0
p.

2R

For

(b)

E=-R

For

and

c(p,+ip,)

R+ mc?

R+ mc*

E =R (positive energy)

R+mc?
2R

The eigenstates with negative energy

(negative energy)

which are right solutions.

11. Solution of Dirac equation

(@)

Thecaseof p =p =p. =0

0
1

c(p,—ip,)

R+mc?
—Cp,
R+mc?

The Hamiltonian A and the helicity operator (X,) are given by

0 0 O
1 0 O
0 -1 0
0 0 -1

I
P
S = O O




H[1)=mc’|1), H|2) = mc’|2)
H|3)=-mc*3), H|4) =—mc*|4)
=1, %(2)=42)
Z[3)=P3). Z[4)=—4)
where
1 0 0 0
D=} = B} W,
0 0 0 1
We note that
[H,2,]=0.

Note that the helicity operator is defined by

> Py
p
Thus 1>, 2>, 3>,and |4> are the simultaneous eigenkets of A and X,.




S = O O

— o O O

(b) Free motion of a Dirac particle

H =ca- p+ pmc’

o b

D p.—ip,
c-p=o,p.to,p,+0o,p. = .
p.t+ip, —p.
mc®  co- p
H = 5
cG-p —mc
mc’ 0 .  cp,ip)
oo me* c(p+p,)  —cp.
| . cpip)  —mc 0
c(p.tip,)  —cp. 0 —mc?

Eigenvalue problem

Hu=Fu



2 —_— .
det mc” —E c(c)'2 p) 0
cle-p) —-mc —E

The energy eigenvalues:

(E-mc*)E+mc*)—c*(6-p)o-p)=0

or
E* =m’c* +c*p’
where we use the formula

(6-p)o-p)=p°

Then we get
E=+R=+m’c* +c’p* with R>0
For E=R (positive energy solution))

u
The state vector is given by u =( AJ
Up

mc*—R  c(o-p) (uAJ
c(e-p) —mc* =R \uy,

(4 x 1 matrix)

c(e - pu,=(mc* +Ruy,  c(o-puy=(mc’ - Ru,

Suppose that

@ u, =(1j
0



y _c(e-p)

5 R+met
¢ p.  pooip )l
R+mc*\p,+ip, —p. \O
_ c p:
R+mc? p.t+ip,
.. 0
(11) u,= {
_cle-p)

B~ A
R+ mc?

o p.  p.~ip |0
R+mc*\p,+ip, -—p. \1

, E=R
2R R+ mc? ( )

c(p,+ip,)
R+ mc?

0

1
R+mc? c(p, —ipy)
2R R+mc?
—Cp,
R+mc?

(E=R)

The normalization factor (1/4) of the state vector can be determined as follows.



A(pl+p,+p.))

A =1+
(R +mc*)

:1+Lp2

(R+mc*)
B (R+mc*)* +(R+mc*)(R—mc”)

(R+mc*)’
_ R+mc®+R-mc’
R+mc’
2R
R+ mc®

or

l_ /R+mc2
A 2R

For E=-R (negative energy solution)

mc’+R  c(e-p) (uA]
c(e-p) —mc” +R \uy

c(e- puy, =—(mc” + Ru,,

Suppose that

(1) Up = ((1)]



__clo-p)
R+mc? °

A
o p. pomipy |l
R+mc*\p,+ip, —p. \O

___c P:
R+mc*\ p, +ip,

o p: P, |0
R+mc’ p.+ip, -P. 1

Then we have

— D,

R+ mc®

R+mc*| c(p,+ip,)
mc”| P, TIp,

2R R+ mc?
1

0

(E=-R)

_cp,—ip,)
R +mc?
R +mc’ cp,

2R R+mc?
0

1

(E=-R)

12. Helicity operator
The helicity is defined as the relation between a particle’s spin s and the direction of
motion (p), i.e., s-p 1isthe component of angular momentum along the spin.



A=ty P_g P

27 ol |A

This is the component of spin in the direction of the momentum p. The 4D generalization
of the spin vector operator

S:EZ
2

where

o

Suppose that the particle propagates in the z direction.

1 0 0 0

n(o. 0 |0 -1 0 0
As‘:_ =

200 o) |0 0 1 0

0 0 0 -1

When p =0 and p,=0.

R+mc® 0
v =y R cp. | (E=R)

R+mc?
0
Ay, =+y, (helicity: +1, energy: +R)
0
R+ mc? 1
= E=R
v, R 0 ( )
cp.
R + mc?

Ay, =y, (helicity: -1, energy +R)



(1)

—p.

R+mc?
/R-i—mc2 0
=, —— , E=-R
Vs R | ( )

0
Ay, =y, (helicity: +1, energy -R)
0
—-c
V/4=1/RJ;ZCZ R+051;2 (E=-R)
1
Ay, =-y, (helicity: -1, energy -R)

Right helicity

e




Positive helicity (+1): right handed (right helicity). The diection of the spin § is parallel
to that of p.

(i1) Left helicity

= T

" -

Negative helicity (-1): left handed (left helicity). The diection of the spin § is antiparallel
to that of p.

13.  Energy eigenvalue and helicity (Mathematica)



Clear["Global %"];

m c2 0 cpz C (pX -1 py)
H1 = 0 m c2 C (PX + 1 py) -C pz )
c pz C (pX - i py) -m c? 0 ’
C (pX + i py) -c pz 0 -mc?
pz pX - i py 0 0
. 2
51 < 1| px+1ipy -pz 0 0. - NL = R+mc :
p 0 0 pz pX - i py 2R
0 0 pX + i py -pz
1 0 —cpz
R+mc2
0 1 -C (pX+1
Iﬁl = N1 —cpz_ 22 . 2,02 = N1 C (px-1 - ¢3 = N1 R+ m c? s
R+mc R+ m c2 1
C (pX+1i -C pz
R+mc2 R+m02 O
-C (px-i py)
R+mc2
CEZ
¥4 = N1 R+ m c2 >
0
1




H1.21-=1.H1// FullSimplify
{{o, o, o, o}, {0, O, O, O}, {0, 0, O, O}, {0, 0, 0, O}}

hl1=H1.y1-Ryl// Simplify;

R2
hl /. {(pX2+ py? + pzz) - (?

{{0}, {0}, {0}, {O}}

h2 =H1.y2-Ry2 // Simplify;

R2
h2 /. {(pX2+ py? + pzz) - (?

{{0}, {0}, {0}, {O}}

h3=H1.y3+Ry3// Simplify;

R2
h3 /. {(px2+ py® + pz®) - (?

{{0}, {0}, {0}, {O}}

h4 =H1.y4 + Ry4 // Simplify;

R2
h4d /. {(pX2+ py2+ pzz) - (?

{{0}, {0}, {0}, {O}}

—m? cz)} /7 FullSimplify

_m? cz)} /7 FullSimplify

—m? cz)} /7 FullSimplify

—m? cz)} /7 FullSimplify



Ssl1==21.41- y1// Simplify;
sl/. {px->0, py-0, pz- p}// FullSimplify

{{0}, {0}, {0}, {O}}

S2=21.42+ y2// Simplify;

s2/.{px->0, py-0, pz- p}// FullSimplify
{{0}, {0}, {0}, {O}}

s3=21.43- ¢y3// Simplify;

s3/.{px->0, py->0, pz-p} // FullSimplify
{{0}, {0}, {0}, {O}}

s4=x21.y4+ ¥4 // Simplify;

s4/. {px->0, py->0, pz-p} // FullSimplify
{{0}, {0}, {O}, {O}}

sl/. {px->0, py-0, pz-p} // FullSimplify
{{0}, {0}, {0}, {O}}

14 Chirality for the massless particle
(K. Huang)
We consider the Hamiltonian of the massless particle

H=ca-p

Eigenvalue problem:

cla-pu= ic| p|u, or (a-pu= J_r| p|u

op "o L))

or



p "o L))

(6-pluy = i|p|”A 5 (6-pu, = i|p|u3

We consider the matrix

0 010
s (01 0 0 01
"1, 0)7|1 00 0
0100
Note that
[r’,a*]1=0.
Then we get

Y (a-pu=(a-p)y’u==pyu

we can diagonalize »° , whose eigenvalue +1 is called "chirality". The solution with
chirality +1 is called "right-handed", denoted u(p,R); one with chirality -1 is called
"left-handed", denoted u(p,L):

i)  u(p.,R)
7u(p,R)=u(p,R), chirality (+1)
(@ pyu(p,R) = +plu(p,R); energy (+¢|p)),
(i)  u(p,L)
y’u(p,L)=-u(p,L) chirality (-1)
(@ pu(p,L) = plu(p,R): energy (—|p|)

Projection operator:

1 5 111 1 5 11 =1
P,=—,+ =— s P =—(1,- =—
R 2(4 77) 2(1 J I3 2(4 7)) )



Pu(p.R) = %(14 7 )u(p,R) = u(p,R)
Pau(p,L) = %(14 F 7 u(p,L)=0
Pu(p.L) =%(14 Y Yu(p,R) =0

Ra(p,L) = (1 =7 u(p,L) = u(p. L)

15. Conserved current

¥
¥,
Y
V4

l//:

=l v v w))

7=y
10
N AR A 0!
00 —I
00 0 —I
o A AR

In order to obtain the wave equation for i, we start from the Dirac equation

0
ox"

. mc
(lyﬂ _7)1”:0 (/JZO, 1’2’ 3)

We take the Hermitian conjugate of the Dirac equation,

_l‘axiﬂl//+(7y)+ —%l/l+ ~0

or



0 me . _o
a#'//777 hW

Multiplying Eq.(1) by »° from the right, we get

or

or

and

zi + 2 0
P e 5 Y=

Multiplication of Eq.(1) by ¥ from the left leads to

0 ,_ Mo _o
el e

iyy”

Multiplication of Eq.(2) by y from the right leads to

i—— gy 7
ox* fi

The addition of Eq.(1") from Eq.(2") yields

_, 0 0
W‘ax—m (ayw)yw 0.

(1

)

(17)

(2)



or
0
— (wyv* =0
" wy'y)
Thus we see that

S =cyy'y
= (cyy'v.cur'y)
= (v (P w.cor'y)
=(cy v.cuy'y)

0w,
ox”
or
5
V-S§+ cy'y =
oy VY
or

0
—yw+V-§=0
at'//‘//

The flux density S is defined by
St =cyytv=cy'y' Yy =cy'a'y

with

The probability density is defined by
P=YV Y
((Note))

cor'y =cy' 'y =cyta'y ="



where

16.

or

oy =cy (P fw=cvv =cp

a, =7y

Simple solutions: nonrelativistic approximation
In the presence of electromagnetic fields,

. L O e
pu ZZhaﬂ :lhax_#_)p“_zA“

I e
0, —%(PH —;A )

i

where e is the charge (e<0 for electron).
Dirac equation

or

or

or

0 mc i e mc
v —— Y =0->[iy"(—— ——A)-—Jw =0
(iy o W Liy"( h)(pu - W) - |7

p

e
[r*(p, —;Au) —mcly =0

0 —o-(p-4)
C l//+

a(p—%A) 0 0 —u%—§%>



Noting thatand p, = ihi = ih 2

n' ¢ ot
e iho e
A ] (AN e B (AN (2
€ " iho e = mc
c-(p——A) 0 Vs 0 ———+—4) Vg Vs
¢ cot ¢
or
e iho e
—o-(p-S Ay, + (2L L)y, = mey,
c cot c
e iho e
o (p——AW,+(——+—A)y; =mcy,
c c ot c
or
e iho e
6-(p——AWy=(————4,—meo)y,
c cot c
e iho e
—o-(p——Ay,=(——+—4,—mc)y,
c cot c
Assuming that
—iEt/h
V=vy,e
0 0 iE
h—y , =FE or v =——
1 at WA V/A 6t lf//A h l//A
0 0 iE
ih— =F or - - _=
1 at WB lr//B 6t lf//B h WB

Then we have

e 1
a-(p—;A)l//B :Z(E—eA0 —mc )y,

e 1
_0"(1’_;14)‘///1 = _Z(E_eAO +mc )y,

((Note)) We assume that 4, is time-independent.



Wy z[a-(p—fA)]wA

c
- E—ed, +mc

Substitution of this eq. into the first equation

s[o- (p—SA)]wA =%(E —edy, —mc*)y

e C
o A e e

We now assume that £~ mc? and |ed,| << mc”.

Defining the energy measured from mc2, we have

E™ = E—mc?

c _ b 2mc?
E—ed,+mc’ 2m| 2mc* + EY0 —e4,

o
2m 1 + w
2mc?
(NR) _
LI I T
2m 2mc
_
2m

Then we get
—21 [6-(p—<A)lo-(p- Ay, =(EY —ed)w,
m C C

of

eh
2mce

1 e
[%(P—;A)Z - c-B+edly,=E""y,

((Note))

[o-(p—Sle-(p-SA)]=(p-4) +ic-[(p-SA)x(p-<4)]
C C C C C

C C



since

(p-SA)x(p-S4)=-S(px A+ Ax P)
C C C
_lehg 4
C

_leh
c

((Comment))
To zeroth order in (v/c)2, wy is nothing more than the Schrodinger-Pauli two component

wave function in nonrelativistic quantum mechanics, multiplied by exp(—imc’t/h).

wR 1s “smaller” than wy by a factor of roughly | p—eA/ c|/ 2me = v/(2c) if E = mc? and

|eA0| << mc’.

For this reason with mc?, wa and yp are known as the large and small components of the
Dirac wave function w.

Since

e 1
_G'(p_ZA)l//A = _;(E_er +mcz)l//3 =-2mcy,
1 e
Vy=5—0a(p——Ay,
2mce c

17. Approximate Hamiltonian for an electrostatic problem

2

[a-(p—fA)] z[a-(p—fA)]wA = (E —edy—mc )y,

c
E—ed, +mc
For simplicity 4 = 0.

2m 2me? le-py, = (E(NR) —ed)y

or
NR) _ ~(NR)
H"y = Ey,

with



E(NR)

HO = (a pl-E eAO)](a p)+ed, (1)

It might appear that Eq.(1) is the time-independent Schrodinger equation.
However, there are three difficulties with this interpretation.

(1) Normalization

J‘(l//AJrl//A +yy V/B)d3x =1

2)  H™ contains a non-Hermitian term (iiE - p)
3) Since H'"™ contains E M jtself, Eq.(1) is not an eigenvalue equation.
Since

1
yy=—"I (@ -pVv,
2mc

+ + 1
Ve =V, (0' : P)
2mc

Normalization:
+ 1 + 3
.[(l//A Vat g2z Vs (6-py,)d'x=1

to order (v/c)*.

This suggests that we should work with a new-two component wave function ¥ defined
by

Y=Qy,
or

V4 =Q7'Y

where



2

Y4
Q=1+
8m*c?

With this choice

[orvdsx [, ar L 2) ydx

= I(V/A U + 2 2 )V’Ad3
=1

Hy, =E™y,

H(ANR)Q_IIP — E(NR)Q—ILP

or
Qle;Nmel\P: E(NR)Q—2\P
2
Q—IH;NR)Q—I _ 8 2 2)
2
P V4
= (H;NR) - 8mzcz H;NR))(I - mzcz)
=H/(4NR) { 2 =, (NR)}
2
1
_ g _ V4 —pite
A {8m2c2 2mp AO}
where
1 E(NR)
HY =L p*red, -~ (o p)* )@ p)

2
EMQY = EM(1- —4mzcz)\y

Thus we have

2

8m 2 2 2m
E(NR) e 2
——(a p)(TzAO)](G P =E - Ly

b ey (o p e



Note

2 2 4

1 1
e o P A T T W o)

Then we have

4

)4
8m?c?

1,

i + A _
[2m Pres,
+8T[{p2,E(NR) —edy} —2(c- p)(E™™ —ed))](e - p)]¥Y

m c
=EYOY
Here we use the formula
{4°,B}=2ABA+[A,[A4,B]]
When

A=¢-p, B=E"™ ey

A =(e-p)o-p)=p’

Thus we have

{p>.E" —edy} =2(a- p(EM —ed,)(o- p)
+ [(O- : p),[(O’ : p)aE(NR) - €A0]]

or

(P E™ —ed} =2c- p)E™ —e4y)(o- p)=[(a-p).[(c- p).E™ —e4]]

Here

[(o- p),E™™ —ed)]=[(c- p).—ed,]
=—e{(o-p)4,— 4)(c-p)}
= —€O"[p,A0]

=—e0 - EVAO
i
=—iehe - E

Note that 4,0 = 04,



[(c-p).l(c-p).E™ ~ed)]]1=[(c- p),~ieh(c - E)]
=—ieh[(c- p),(o-E)]
=—ieh[(c-p)(c-E)—(c-E)o - p)]

Note that
(6-p)o-E)=p-E+ic-(pxE)
and
(6-EYo-p)=E-p+ic-(Exp)
Then we have
(O'-p)(a-E)—(a-E)(a-p):?V-E—Zio-(Exp)
Finally we obtain
p’ 1

1
{El’z tedy——5—

+ T(—ieh)[ﬁv -E —2ic-(E x p)|}¥ = EM¥
8m ¢~ 8m’c i

or
ved —— = G (Exp)-———V-E¥ = EM¥
4, 2 2 (Ex p) 8m2c? ]

((Physical meaning))

Third term: relativistic correction

2 1 4
= mc?[1+ 2’;’202 —§m€c4 +..]-me’
p2 1 p4

2m Smict

The fourth term (Thomas correction)

Thomas term = —%a -(E % p)



For a central potential

edy = W(r)
1dV
E=-V4 =———r
A rdr
1dV 1dV
Exp=——(rxp)=——FL
P r dr (rxp) rdr

where L is an orbital angular momentum. Then the Thomas term is rewritten as

eh 1dV
e (Exp = (e L
ezzldVSL
2m r dr

(Spin-orbit interaction)

The spin angular momentum is defined by

S=—0c

which is an automatic consequence of the Dirac theory.

The last term is called the Darwin term.

For a hydrogen atom,
V-E=-56(r).
It gives rise to an energy shift

)(Schrodinger) 2

J‘Sm 5(3)(r)‘l//(r)(Schrodmgel) d’x — ‘l//(l‘ o

which is non-vanishing only for the s state.

18.  Free particle at rest
Each component of the four-component wave function satisfies the Klein-Gordon
equation if the particle is free.



. mc
({770, == =0 (D

0 12 0
7/ =
0 -1,

Multiplying Eq.(1) from the left by »“0,
o me
iy"0,(y"0,)y A oy =0

or
iy"'y"0,0w — %7”@1// =0

or
1 v mc
S+ 0.0 - (=)W =0
2 h
Since {y",y“}=2g""1,, we have
w me
g"0,0,yy —(7)21// =0
or
mc
00, (55 y =0 @

Note that Eq.(2) is to be understood as four separate uncoupled equations for each
component of . Because of Eq.(2), the Dirac equation admits a free particle solution of
the type



i
w =u(p) eXp[%(p -r—Er)]
with

E=%|c’p* +m’c*

u(p) is a four-component spinor independent of r and ¢.

((Note)) The following relations are always valid.

., 0 h
ih—y =Ey, —Vy=py
ot i

For a particle at rest (p = 0)

, me
(iy"o, —7)W =0

or
.o 1 0 2 0 3 0 0 0 mc
—ty —ty —+y —)—— ) =0
[i(y PR AR A 8x°) h)l//
Since
/) 2
7V1//=p1//=0, E=1mc
0o 0 _mec, _
[iy o 7 Iy
or
1 E mc
7' ———Jw =0
e

or



mc’ I, 0 Yu,(p=0) _mc u,(p=0)
ne 0 =L \u,(p=0)) 7 \u,(p=0)
or

(uAp=0)]:(wAp=Oq

~u,(p=0)) \uy(p=0)

or
u,(p=0)=0

(i)  For E=-mc2,

_ [MA (p= O)J
u=
ug(p=0)

_mc* (10 Yu,(p=0))_ mc(u,(p=0)
he \0 =1 \uy,(p=0)) 7 \uy,(p=0)

or

(—MAP=4DJ=(%AP=Oi
uz(p=0) ug(p=0)

u,(p=0)=0



So there are four independent solutions

Positive energy solution

1 0

0 ,mczt 1 ,mczt

o || exp(=it ),

0 0

spin up spin down

Negative energy solution

0 0

0 °t 0 ’t

expG=) | lexp )

0 1

The existence of negative-energy solutions is intimately related to the fact that the Dirac
theory can accommodate a positron.

((Note))
Nonrelativistic limit £ = mc2, the upper two component spinor y, coincides with the

—imc*t/h

Schrédinger wave function apart from the factor e

Let us define

1 o’ 0
23:_ 1’ 2 —
2[7 7] [0 03]

The eigenstate of ¥’ is interpreted as the spin component in the positive z-direction in
units of 7/2.



19. Plane wave solutions (p # 0).

% :(WAJ :(uA(p)jeXp[%(p-r—El‘)]

Vs ”B(P)

or

1.0

—(th—=mc* )y, =(6-pyy,

c ot

1.0

—(ih—+mc* )y, =(o-p,

c ot
or

1 2 1 2

(6 pluy :Z(E_mc )7 (6-pu, :Z(E+mc g
or

U, (p)=—— (o puy(p)

A p E—mC2 p B p

uy(p) =——(c- pu,(p)

B p E+mc2 p A p

For simplicity we use

R=,/p’c +m’c*

(1) For E=R>0 (positive energy state)

™ _ 1 (2) _ 0
u, (p)_(OJ: u, (p)_(lJ



c
R+ mc*

u,"(p) = )

p,

R+ mc?

R+ mc?

[

c
R+ mc?

u,” (p)=

c(p,+ip,)

p.tip,

P:
+ ipy

D. 0

c(p,—ip,)

R+ mc*
p,
R+ mc?

Then we have

p.

R+m&
c(p,+ip,)
R+ mc?

c(p,—ip,)

0
1

R+ mc?
cp,
R+ mc?

We take into account of the normalization factor.

For E=—-R<0

wro-(2).

(i)

0

|



MA(I)(p): —— 2[ pz. px_ipyj(lj
R+mc™\ p, +ip, - D, 0
cpz
_ R+ mc?
_cp, +ip,)
R+mc’

e IR W
R+mc”\ p, +1p, —-p, 1
_cp,—ip,)
— R+mc*
b,
R+mc?

Then we have

cp.
R+ mc?
_ |R+mc’ _C(px+lpy)
V2R R +mc?

cp—ip)
R + mc?

) p.
u =
(P) 2R R + mc?

20. Formulation
Since

i

u” (p) exp[% (por=Enl=u"(p)expl— p,x"

satisfies the free-field Dirac equation



. mc
(iy“o, - 7)!# =0,

a%{u“)(p)u(”(p)exp[
X

Since
E
py = (;9 p)

we get

(7" p, +meyu"” (p) =

i

0

regardless of whether £>0 or £<0.

—mc+ p,
0
—(p, +ip,)

y“p, —mcl, =

—mc+—
c

0

—P:

—(p,+ip,)

where

plz_px’ p2=

In summary we have

_py9

0
—mc+ p,
—(p —ip,)

—Ps

0

E
—mc+—

: E
—-(p,—ip,) —me——

—P:

p3 =_pz’

bPs
D tip,
—mc—p,
0

P

p.t+ip,

Py =

) LT PSRRI
o P f=u (p)eXp[h{p r—En|( hp,)

0

—mc— p,
p.—ip,
D.

0

o |




u?(p)=

Suppose thatp=0. R =mc”.

u?(p=0)=

u(p=0)=

1
5 0
R+mc cp,
2R R +m.c2
c(p,+ip,)
R+mc*
0
5 1
R+mc”| c(p, - ip,)
2R R+ mc’
. cp,
R+mc?
.
R+ mgz
_|R+mc?| c(p, +ip,)
2R R +mc?
1
0
_c(p.—ip,)
R+ mc?
R+ mc* cp,
2R R+ mc?
0
1
1
0
o/ Wp=0=
0
0 0
0 0
4) _ _
U =0)=
{ (p=0) 9
0 1

S O = O

(E£>0)

(E£>0)

(E<0)

(E<0)



The first two solutions look like the spin state of the non-relativistic theory. They are
degenerate and have energy eigenvalue E = R. In the same limit, the last two solutions
also look like the non-relativistic spin states, but they belong to the energy eigenvalue
E=-R

21. Dirac's hole theory

21.1. Overview on Dirac's hole theory

Dirac made the astounding suggestion that all the negative-energy states should be
already occupied. This ocean of occupied negative-energy states is now referred to as the
‘Dirac sea’. Thus, according to Dirac, the negative energy states are already full up; by
the Pauli principle, there is now no room for an electron to fall into such a state. But, as
Dirac further reasoned, occasionally there might be a few negative-energy states that are
unoccupied. Such a ‘hole’ in the Dirac sea of negative-energy states would appear just
like a positive-energy particle (and hence a positive-mass particle), whose electric charge
would be the opposite of the charge on the electron. Such an empty negative-energy state
could now be occupied by an ordinary electron; so the electron might ‘fall into’ that state
with the emission of energy (normally in the form of electromagnetic radiation, i.e.
photons). This would result in the ‘hole’ and the electron annihilating one another in the
manner that we now understand as a particle and its anti-particle undergoing mutual
annihilation.

Allowed E=0
me
0 Forbidden
me
Allowed E=<0

Fig. 2mc*=1.02 MeV.

Conversely, if a hole were not present initially, but a sufficient amount of energy (say
in the form of photons) enters the system, then an electron can be kicked out of one of the
negative-energy states to leave a hole. Dirac’s ‘hole’ is indeed the electron’s antiparticle,
now referred to as the positron.

At first Dirac was cautious about making the claim that his theory actually predicted
the existence of antiparticles to electrons, initially thinking (in 1929) that the ‘holes’
could be protons, which were the only massive particles known at the time having a
positive charge. But it was not long before it became clear that the mass of each hole had
to be equal to the mass of the electron, rather than the mass of a proton, which is about



1836 times larger. In the year 1931, Dirac came to the conclusion that the holes must be
‘anti-electrons’—previously unknown particles that we now call positrons.

22.2 The discovery of positron by Carl D. Anderson

In the next year after Dirac’s theoretical prediction, Carl Anderson announced the
discovery of a particle which indeed had the properties that Dirac had predicted: the first
antiparticle had been found!

Carl David Anderson (September 3, 1905 — January 11, 1991) was an American
physicist. He is best known for his discovery of the positron in 1932, an achievement for
which he received the 1936 Nobel Prize in Physics, and of the muon in 1936. Anderson
was born in New York City, the son of Swedish immigrants. He studied physics and
engineering at Caltech (B.S., 1927; Ph.D., 1930). Under the supervision of Robert A.
Millikan, he began investigations into cosmic rays during the course of which he
encountered unexpected particle tracks in his (modern versions now commonly referred
to as an Anderson) cloud chamber photographs that he correctly interpreted as having
been created by a particle with the same mass as the electron, but with opposite electrical
charge. This discovery, announced in 1932 and later confirmed by others, validated Paul
Dirac's theoretical prediction of the existence of the positron. Anderson first detected the
particles in cosmic rays. He then produced more conclusive proof by shooting gamma
rays produced by the natural radioactive nuclide ThC" (***Tl) into other materials,
resulting in the creation of positron-electron pairs. For this work, Anderson shared the
1936 Nobel Prize in Physics with Victor Hess.

\

http://en.wikipedia.org/wiki/Carl David Anderson




Cloud chamber photograph of the first positron ever observed Original caption:
A 63 million volt positron (Hp = 2.1x105 gauss-cm) passing through a 6 mm
lead plate and emerging as a 23 million volt positron (Hp = 7.5x104 gauss-cm).
The length of this latter path is at least ten times greater than the possible length
of a proton path of this curvature.
https://upload.wikimedia.org/wikipedia/commons/6/69/PositronDiscovery.jpg




Fig. Creation of electron-positron pair due to the high energy photon. The
magnetic field is applied (into the page).

Lead sheet

Fig. From Modern Physics, 31 edition, Serway, Moses, and Moyer (Thomson
Brooks/Cole, 2005).



Fig. From R.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (W.H.
Freeman, 2008). The magnetic field in the chamber points out of the page.

22.3. Dirac sea

The Dirac equation for the free particle leads to a negative energy solution as well as
a positive energy solution. The positive energy solutions and the negative solutions are
separated by a gap shown in Fig.1. Classically, no transition is expected between the
energy gap (= 2 mc?). So we can restrict the energy to be positive classically. On the
other hand, in quantum mechanics, it is expected that the transition can occur. Since
electrons are fermions, all the negative-energy levels are filled with electrons, in accord
with the Pauli exclusion principle. The vacuum state (so called Dirac sea) is one with all
negative-energy levels filled and all positive-energy level empty. We note that the Dirac
sea is a theoretical model of the vacuum as an infinite sea of particles with negative
energy (E<-mc?). The positron, the antimatter counterpart of the electron, was originally
conceived of as a hole in the Dirac sea, well before its experimental discovery in 1932
(C.D. Anderson).
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Fig.1 The Dirac sea. Positrons as holes in the Dirac sea of negative-energy
electron states. Dirac proposed that almost all negative energy states of
the electron are filled. Pauli principle prevents an electron from falling
into such a filled state. The electron states with the energy above mc”
(denoted by blue open circles) are empty.

Charge:

Ohote = Orvcram = (= 1€D) = Oy = €]
where QOyacuum 18 infinite but we have seen such infinite renormalization before.
Momentum:

Poe=(Prcn=P) = P =P

where P =0 since for each negative energy state with p there is another

vacuum

with (-p)



Energy:

Ehole = [Evacuum - (_R)] - Evacuum =+R= mZC4 + 02P2
Spin:

Ezhole = (E Evacuum - EE) - Ezvacuum = _EZ

2 2 277 2 2

In summary

The positron is the antiparticle or the antimatter counterpart of the electron.
The positron has an electric charge of +|e|, a spin of !4, and has the same mass as
an electron.

Positive energy R=\m’c"+c*p’

Positive charge le| (>0)
Momentum -p
: n
Spin =2
P 2
Helicity X-p

22.4 Pair production

If sufficient energy (more than 2mc?) is given to the system in the form of
radiation, one of the negative energy electrons is excited into an empty state with
a positive energy. Thus we observe an electron of charge -|e| and energy R, and
in addition a hole in the Dirac sea. This hole (anti-particle) has the same mass as
the electron but opposite charge. This hole is called the positron. The process is
called the pair production. The hole registers the absence of an electron of charge
-le] and energy —R, and would be interpreted by an observer relative to the
vacuum as the presence a particle of charge |e| and energy R.
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Fig.2 The pair production. The supplying of sufficient energy to the Dirac sea
could produce an electron-positron pair: y —>e" +e .

22.5. Annihilation of electron and positron

When a low-energy positron collides with a low-energy electron, annihilation occurs,
resulting in the production of gamma ray photons. An electron falling into a hole would
be interpreted as the annihilation of the electron and the positron, with the release of
energy in the form of radiation
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Fig.3 The annihilation of electron and positron; e- + e+ —y + 7y

23. Orbital angular momentum L
The Hamiltonian of the free particle is given by

H =ca- p+ fmc’

The orbital angular momentum L is defined by



L =x,p; =Xy, L, =x,p, —xp;5, Ly =x,p, = x,p,
We now consider the commutation relation between these operators,

[H,L]=[ca,p; +,Hmcz,x2p3 —X;0,]
=[capy.x,ps —x3p,]
=lea,p,sx,p;]1=[cas s, X5 ]
=ca,[py,%, 1Dy — e ps, X 1p,

ch
= 7(“2!’3 —a3p,)

ch
= T(a X p)

Then we get the Heisenberg's equation;

%:%[H,L]:c(axp).

24. Spin angular momentum 22

Here we note that

k
0 o
k= (GO O'kj =iy'y’ (i, ], k; cyclic)

or, simply,

or, simply,

1 2
a =(a ,a ,aS)



with
[’ ]=0, [B2]=0, [/’.a"]1=0, [B./’]=0
[2,%/]=2i%", Yy =3y =ixk (i, j, and k; cyclic)
[, 2=y 28 - 2/p°5 = 7 [25,2]
((Note))
01 00
21_glo {1000
1o &) 1000 1|
0010

~

0 —i 0 0
22_azo_' 0 0 0
1o &) |0 0 0 —il
0

1 0 0 0
g[8 0|0 —10 0
1o &) |0 1 0/
0 0 -1
001 0
0 1) |00 0 1
S _ 0123 _
yEwrry L J 1000
0100



Then we get

H=ca-p+ pmc’ =cy’s p, + pmc’,
For convenience, we use the notation

a=('a’,e’),  p=(p.p,p.)=(p P D)
We consider the commutation relation,

[H,2']=[cy " p, + pmc, 2]
=cp 728, 2 1+ me’[ B, 2]
=cp, [’ 2 - epi[y'2’, 2]
=ep, 7 [2,2 ]~ ep,y’[27,21]
=2icp,y°Y’ = 2icpy°Y’
=2ic(a’p, — &’ p,)
=2ic(ax p),

which leads to the Heisenberg's equation,

d i i 2c
2y - YH,21=L2ic(ax p)=—E(ax
7 h[ ] - ic(ax p) - (ax p)

26. Total angular momentum J
The time derivative of the total angular momentum J is obtained

%J:%(L—i-gz):c(axp)—c(axp):O

h .
Although L and —2X are not constants of the motion, the total angular momentum J
should be identified with the total angular momentum and is a constant of the motion.
h
L+—o 0
2

J=L+—-X%= P
0 L+—0c
2



As is well known, the constancy of J is a consequence of invariance under rotation.
Hence J must be a constant of the motion even if a central (spherically symmetric)
potential V() is added to the free particle Hamiltonian.

((Note))

WAy =(v|Aly)

or
with

v)=R.lw)
Since

27.  Helicity X - p
We define the helicity operator as

2-p
where p is the unit vector ( p =
c 0
2= .

The eigenstate of helicity with eigenvalue +1 and -1 are referred to, respectively, as the
right-handed state and the left-handed state.

SIS
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p 0 0 P Py —1p,
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p 2R 0 0 Ps
0 0 D t+ip,
D3
1 [R+mc*| P +§p2
- p 2R p -
R+mc
0
D3 by —1p, 0
2 +1 0
(Z-ﬁ)u(z)(p):l R+mc™| py+1p, P
p 2R 0 0 j2
0 0 D t+ip,
-(p, —ip,)
_ 1 R+ mc’ Ps
p 2R 0 2
— Py

D —ip,
—Ps

D —ip,
—Ps

0
j_i_l[o- p3 ’ J
p O P

1

0
Cp;
R+ mc?

c(p, +ip,)

R+mc?

0
1

c(p, —ip,)

R+ mc*
—CP;
R+ mc*




— Py

P P —ip, 0 0 R+ mc>
(E’f))um(p):l R+mc’| p,+ip, — D3 0 0 —c(p, +ip,)
pV 2R 0 0 ps  p—ip,| R +1mc2
0 0 p t+ip, —Ps
0
2
:l R+ md? R+0mc
2R
P P
p t+ip,
. —c(p, —ip,)
P Dy —1p, 0 0 R +1mcz
& pu(p) =L (R Pty mpe 00 L.
p 2R 0 0 Ds p,—ip, R Jromc2
0 0 p t+ip, — D3 1
Oz
cp
1 |R :
1 +mc R mgz
pV 2R | —(p —ip,)
Ps

- p=x’
1
R + mc? 0
2 (p) = cp, |=u"(p)
2R >
R+ mc
0

where

R=./p’c> +m’c*.

Similarly, we have




R+mc? 1
=u®(p) =" o |=-uP).
—cp,
R + mc?
. aps
R+mc?
R+ mc*
2 (p) == O =)
1
0
0
CPs
R+ mc?
Tu?(p)=- R+mc® |=—-u?
su - (p) 7R J (p)
1

28. Plane wave solution
Hamiltonian

H =ca- p+ pmc’

0 of
ak:(ak Oj:707k:_2k75

(v o
ﬂ—74—(0 _J

0,1,2. 3

v =ir'r'r'y’,
> =iy'y’ (i, ], k; cyclic).
lei}/273, 22:l~}/37/1, 23:i71}/2,

H? =[ca- p+ pmc*][ca- p+ fmc’]
=c*(a- p)’ +fim’c* +c(a- p)(Pme’) +c(fmc* ) a- p)



(a-p)a-p)=(a'-p)a’-p;)
Zaiajﬁiﬁj

I
:E((z’a’ +a’a’)p.p;

- %2@1141%151
=p’l,
with
da’ +a'a =1,6,
Note that

(a- ﬁ)ﬂ +p(a- ﬁ) = aiﬁiﬂ + ﬁaiﬁi = (aiﬁ + ﬁai)i)i =0
Thus we have

H*=cp* +m’c*.
We now consider a plane wave given by

i
v =u(p) eXp[%{p r—En)]
H =—iche.-V + Bmc’
. OW
Hy =ih—
e

Left-hand side

(=icha -V + pmc* )y = (—icha -V + pmc”u( p) exp[% {p-r—Et)]

= (ca- p+ pmc )y



right-hand side

maa—‘t”=ihu(p)(—%E)exp[%{p'r—Et>l=E v

or

Hy =Ey
or

Hu(p) = Eu(p)

where

H=ca-p+ fmc’

H?u(p) = EHu(p) = E*u(p)
or

E*=c’p*+m’c’
or

We now discuss

Hu(p) = Eu(p)

Since
H=ca-p+ pmc’ =c(y’y*)p, +y'mc’

[’y ) pi + 7°mc* Ju(p) = Eu(p)

or



("7 P =2 = meu(p) =0
Multiplying this equation by »° form the left
(7' P - %70 +mc)u(p)=0
Noting that
—€7°=—po7°, p=Elc,

we obtain

(p —mc)u(p)=0
where p, = (%rp) = (?—p/{)

29. Simultaneous eigenket of H and X - p.
We show that H is commutable with X' - p.

X 13 =3 Ak
k
0 o
¥= T) o iy'y’ (i, /, k; cyclic)
O k
o = . 0(') :707/k =2k7/5 :7/521(

where
[r°.21=0, [8.Z'1=0, [/’.a"']1=0, {B,7°}=0

Suppose that u(p) is the eigenket of H,



Hu(p) = Eu(p)
with

H =ca-p+ pmc* =cy’s' p, + pmc’
Here we note that

[H,Z p;)=[cy’E p, + pmc*, 2 p,]
=epp, [V’ 2 1+ mc’p [ B,27]
=ep,p,[r°2", 2]

We note that
[°2h, 2] = 22 -3y 5" = (25, 2]
[X,%/]=2i%F, Yy =-¥/3' =ix* (i, ], and k; cyclic)
Then
. . C . C .
[H.2p;]=cpp,y’[Z52]= Epkp,-f[Zk,Z’]+5pjpk75[2’,2k]
or
. C . .
[H,%p,]= Epkpj{yf[xk,zf] + 7722 =0

So we can demonstrate that

This implies that u(p) is a simultaneous eigenket of Hand X' p,

Hu(p)= Eu(p),  [(Z p)ulp)=hi(p)

with  p= p/|p|. Since



(Z-p)(Z-p)=Cp)Tp))

1 iyJj Awl
=S pp, (T + 2T
= p2

or
(Z-p) =1

(X p)’u(p) =h*u(p)=u(p)

h2=1, or h==+l1.

30. Classification of the simultaneous eigenket of H and the helicity
In summary, we have

Hu(p)= Eu(p), (2 pu(p)=hu(p)

with E =+cyp* +m’c’® and h=+1.

A0S S e ey S Py

Eigenket of the helicity

or



(6-plu, _ U,
(6-pluy - Up

or
(6-pu,=hu,, (6 p)uy = huy

with  h==I.

Hamiltonian:

H=ca-p+ pmc’
0 o 1 0
=c P +mc’
c-p O 0 -1
3 mc®  c(o- p)
ce-p) —mc’
Eigenvalue problem:

Hu(p) = Eu(p)

or
( me®  c(o- p)J(uAJ _ E[MA]
co-p) —md \uy)
mc’u, +c(e- pyu, = Eu,,
c(e- pyu, —mc’u, = Eu,
or

c(o-plu, cp .
u,= = c-pu
4 E—-mc? E—mcz( Pl

L _clopu, e

5= =
E +mc? E+mc

2 (aﬁ)uA

)



(1) h=1and E>0
(6-pu,=u,, (G- Py =u,
cp . cp
u,= G- -pu, = u
4 R—mcz( Py R—mc* °
cp A cp
u = o u — u
’ R+mcz( P, R+mc*
We choose
1 p
u,= o) Ug =| R+ mc*
0
or
1
@) 0
u cp
R+ mc?
0
(i1) h=-1and E>0
(6-pu,=-u,, (6 pluy =—u,
cp . cp
u, =——,Io:- u, =— u
4 E—mcz( Py R_mc? B
cp A cp
u, =————I (0 u, =— u
s E+mcz( P, R+mc®
We choose

0 0
uA:(IJ’ uB: - cp
R+ mc?



or

u? = cp

_R+mf
0

(iii) A =1and E<0

(6-puy =uy, (6-pu,=u,
cp R cp
u,=-— G-Plu, =— u
4 R+mcz( P R+mc* °
1 __ @
Up = > Uy, =\  R+mc?
0 0
or
__ ¢
R+mc?
u® = 0
1
0

(iv) h=-1and E<O
(6 pluy=—uy

cp
R + mc?

cp
R + mc?

(6 pluy =

Up

or



31. Foldy-Wouthuysen (FW) transformation

The Foldy—Wouthuysen transformation (FWT) is one of the corner stones of
relativistic quantum mechanics. It presents a straightforward and convenient way to
obtain an adequate physical interpretation for relativistic wave equations. The very
existence of an exact FWT for a considered relativistic problem justifies its quantum
mechanical treatment, inasmuch as in this case transitions between positive and
negative energy states are forbidden.

We start with an eigenvalue problem. Suppose that an> is the eigenket of H with

the eigenvalue E,

H

an>=E

n

a,)

with

We consider the unitary transformation

U

bn> = |an> (U is the unitary operator)

where

v')=[b,)
Then we have

HU|b,)=H|a,)=E,

a,)=EU

b,)

or

U'HU

b,)=E

n

b,)

When we define



H'=U"HU
then we get

H'

b)=E

n

b,)

Then |y/'> = |bn> is the eigenket of H' with the same eigenvalue E,,.

Suppose that
U=e™

with S is the Hermitian operator. Then we have

H'=e" He"
We note that

(w|H|y)={y'|H'|p") (from the definition)
since

Uly')=lv)., W=t

Then we have

(w|H|y)=(w'[U HUp") =(y'|H'|y")

or
H'=U"HU
Suppose that
U — e—iS
) =Uly)=€ly) v)=Ulw)=e"l)

H'=U"HU =e“He ™

We choose S of the form



S=-—p(a-p)o, e” =exp[—f(a- p)f]
p P
0 is a real function to be determined. S is a Hermitian operator.
+ [ + + [ [
S =;(a -p)BO(p) =;(a-p)ﬂ9(p) = —;ﬁ(a‘p)ﬁ(p)

since {a',B}=0.

H'=e"He™
=e"(ca- p+ Pmc)e™
= e[ B(cfa- p)+ pmc*)e™
=e" B(cfa- p+mc)e™
=e” Bee” (cfa- p+mc’)e™

=" e ™ (cfa.- p+mc?)
since [S,fa- p]=0. Furthermore
pe = p
So that
H'=e* B(cPa- p+mc*)=e"(ca- p+ fmc’)

where 3% =1
H'= (c0820 + P2 P Gin 20)(ca - p+ fmc?)
p
= B(mc’ cos26 + cpsin 20) + u(pc 0826 — mc” sin 26)
p

where

(@-p)a-p)=p’

and



e® =co0s26 + Msin 20 (see the Mathematica)
p

R/c

20

mc

If we choose (so that odd terms disappear)

tan26 = A.
mc

2
sin20=—~L P 0820 = mc _mc

Jpemie R’ Jpr+mc R

Then we have
H'= B(mc’ cos26 + cpsin 20)

= Bme’ ==+ cp——L—=)
\/p2+m2c2 \/p2+mzcz
2.2 2
= e+
\/2 2 2 \/2 2 2
p +mc p +mc

= fey p* +m’c* = PR

where



R=cqp* +m’c?

So that, H' is now diagonalized. The eigenstate of /’ is the same as that of £.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
w)=Uly')=e ()
where
cos@ 0 —&siné’ (P, - py)
P p
iy
0 cos@ - (P, zpy) sin @ P- sin @
e—tS _ p p
- (p,—ip,)
&sinH ul Y~ sin @ cosd 0
P P
L
(P, zpy) sin @ - &sin 0 0 cosd
p p
Note that

2
cosd = 1/l(lJrCOSZQ) =1/R+mc
2 2R
_ 2
sin@z‘/l(l—COSZG)zw/R me
2 2R

Then the eigenstate of the original Hamiltonian H is given by

cos@ 1
0 - 0
Lo /R +mc cp,
p 2R R+ mc?
+i +
(p+ip) s c(p, lpzy)
p R+ mc




(p.—ip,)

sin @
p

&sinﬁ

p
0

cosd

((Mathematica))

R+mc?
\ 2R

R+ mc

c(p,—ip,)

0
1

R+ mc*
cp,
R+ mc?

cp,
R+ m02
c(p,+ip,)

2R

R+ mc?

_clp.—ip,)
R+ mc*
cp,

R+mc?
\' 2R

R+ mc?
0

1




Clear["Global «"]; oX =

01\, . (0-i). _ (1O}
10)’°y'(i 0)"’2'(0-1)’

12 = IdentityMatrix[2]; 14 = ldentityMatrix[4];

aX = KroneckerProduct[oX, oX]; ay = KroneckerProduct[oX, oYy];
az = KroneckerProduct[oX, oZ];

B = KroneckerProduct[oz, 12];

H1=cpxaX +cpyay +cpzaz + fm2c? // Simplify;

1
S=-1—B.(aXpPX + ay py + az pz) 6;
P

K1 =

MatrixExp[21S] //. {\/-pxz- py? - pz% »1ip,
1/ (px*+py’+pz) > 1/ p2} /1 ExpToTrig // Simplify;
KIL=KL/. { px*+ py” + p2° » p’} // Simplify;

1
K2 = (Cos[Ze] 14+ —-B.(axpx +ay py + azpz) Sin[26]| // Simplify;
p

K2 // MatrixForm

Cos[26] 0 pz 5'2[2 o] (px-i pyiOSln[z o]
0 Cos[2 9] (px-+i py:DSin{Z el  pz Sig[Ze]
_pz Si;[Z o] (PX-i py)pSin[Z 0] Cos[2 6] 0
_Mw QzSig[zm 0 Cos[26]

K11 - K2 // Simplify
{¢{o, o, o, o3, {0, 0,0, 0}, {0, 0,0,O0}, {O,0,0,0}}

Eigensystem[B]
{{_ls —l, l, 1}1 {{07 01 O, l}s {01 O, l, 0}1 {O, 17 01 O}s {11 O, O, o}}}

MatrixExp[ 1 S].B.MatrixExp[ i S] - B // Simplify
{{o, o, o, o}, {0, 0, O, O}, {0, 0, 0, O}, {O, 0,0, 0}}



K3 =

MatrixExp[ - 1 S] //. {\/—px2 -py?-pz? »>1ip,
1/ (px*+py? +pz?) » 1/ pz} // ExpToTrig // Simplify;
K31 =K3 /. { px* + py’ + pz° » p°} // Simplify;

K31 // MatrixForm

Cos[9] 0 _bpz 5;]” (6] _ (px-i pyp) sIn(e]
0 Cos[6] - M}w plean]
pz Sipn[e] (PX-1 p);)) Sin[e] COS[@] 0
(PX+1 Dyp> Sinfe] _pz S:)n[e] 0 Cos (6]

32. Charge conjugate operator
We start with the Dirac equation for the free particle.
Dirac equation:

. mc
(iy"0, - = =0
n
The replacement of

ie
8“_)8”+c_hA”

leads to the Dirac equation in the presence of the four-potential 4, = (4,,—A4)

ie

mc
A v =0 1
e .4 4 (D

iy*(0,+ =

Hermitian conjugate of Eq.(1):

. ie N - mc
—l(aﬂ—%A,,)t// (") -V =0

Multiplying Eq.(1) by »° from the right, we get

. ie N + mc
—i0, ——— AW () 70—7w y'=0

Noting that



) =77, (' =1,
we get

ie

_la _ A +.0 y_ﬁ + O:O
@, oo VY SV
Here we note that
vy =y,
Then we get
ie mc
i(0 ——A)wy"+—iw =0. 2
@, P VY re (2)

We consider the Dirac equation for the charge conjugate wave function

. ie c mc ¢

iy ——A4 ——w =0. 3

7", . .4 e (3)
We assume that

l//C:Cl/7T
Then we get

ie mc
(0 ——AW'Cy'——Ci"=0 4
0, . DY Cy Pale (4)

Taking the transpose of Eq.(4), we get

. ie _ T mc_

l(éﬂ—%Aﬂ)l//CT]/H _FV/CT =0 (5)
Multiplying Eq.(5) by (C")™' from the right,

. ie _ B mc __
i@, —%A,,)wcw(cf) 1—71// =0 (6)

i@, —%Ay)(—vﬁ”)—%t?: 0 7



Comparing Eq.(6) with Eq.(2), we have

CTy (€T ="

or
-1 T
C }//IC = _y,u
Note that
7/1T:_7/1, 7/2T:72’ 73T=_73’

Then we have
[',C1=0, [¥,C]=0
{’.Cr=0, {,C}=0

The above relations can be satisfied when

0 0 0 -1

, 0 0 1 0
C=rr' =10 1o o
1 0 0 0

ol =i(}/27/0)T =i}/0T7/2T =i}/0}/2 =i}/2]/0 -C

(see the Mathematica program below)

Then we have

y =Cy’
=i’y W'y’
=iy ()
=iy’y'y'y’
=iy’y’

where



iy’ =ifa’=
((Example))

0

R R+mc*| 0

Vi 2R |0

1

0

iy = R+mc*| 0

72U, R 0

1

0

iyt R+mc*| 0

VU3 2R 0

1

0

P R+mc*| 0

VolUy R 0

1

oS O O = S o o = S O O

oS O o =

S O o =

c(p,+ip,)

c(p.—ip,)

p.
R+ mc?

R+mc?

0
1

R+mc?
cp,
R+mc?

—p,
R + mc?

—c(p,—ip,)

R+ mc?

0

—c(p, +ip,)

R + mc?
cp,
R+ mc?

c(p.+ip,)
R+ mc*
_ /R+mc2 —cp,
2R R+ mc?
0
1
cp,
R+ mc?
. R+mc*| c(p.+ip,)
2R R+ mc?
1
0
0
5 1
__ R+mc™| —c(p,—ip,)
2R R+ mc?
cp.
R+mc?
1
. 0
_ |R+mc —p,
2R R+mc.2
—c(p, +ip,)
R +mc?

We note that u;, u,, u3, and uy4 are obtained from the FW transformation




((Mathematica))

1
0
R+mc’ cp,
u, = 5
2R R+m¢
c(p,+ip,)
R + mc?
0
: 1
y. = [RAEme | e(p —ip,)
s Mx FyJ
2R R+mc?
.
R+mc?
.
R+mc?
. /R+mc2 c(p, +ip,)
3 2R R+mc?
1
0
_cp,—ip,)
R + mc?
R+ mc? cp,
U, = 2
2R R+ mc
0
1
When p, =p,=p;=0
0
.10 ) .
Iy, = ol 1y, =-—
1
0
) . 1 ) .
1y =— ol y,uy, =
0

S = O O

S O o =



Charge conjugate C

Cl=1ayul[2].yu[O] 7/ Simplify

{{0,0,0, -1}, {0, 0, 1, O},
{0, -1, 0, 0}, {1, 0, 0, O}}

Cl // MatrixForm

O 0 0 -1
0
-1
0

— O O
O ot
o oo

yu[1l].Cl - Cl.yu[l] // Simplify

{{o, o, o, 0}, {0, 0, 0,0}, {O, 0,0, O},

yul[2] .C1 + Cl.yu[2] // Simplify

{{o, o, o, 0}, {0, 0, 0,0}, {O, 0,0, 0O},

yU[3].C1 - C1l.yu[3] // Simplify

{{o, o, o0, 0}, {0, 0, 0,0}, {O,0,0, O},

yul[0].Cl + C1l.yu[O] // Simplify

{{o, o0, o0, 0}, {0, 0, 0,0}, {O,0,0, 0O},

Transpose[C1*] + C1

{{o, o0, 0, 0}, {0, 0, 0,0}, {O, 0,0, O},

Transpose[C1l] + C1

{{o, o, o0, 0}, {0, 0, 0,0}, {O, 0,0, 0O},

Inverse[C1l] + C1

{{o, o, o0, 0}, {0, 0,0,0}, {O,0,0, O},

{0,

{0,

{0,

{0,

{0,

{0,

{0,

» 0}}

» 0}}

» 0}}

. 0}}

, 0}}

, 0}}

. 0}}

32.

Heisenberg's equation of motion (Heisenberg’s picture)



All operators are given by those in the Heisenberg picture. Here we omit the superscript

(H).

(H)
" = ot

o, P =

H . .
" and B must be regarded as dynamic variable.

The Hamiltonian

H =ca-m+ed,+ pmc’ =ca'x, +ed, + pmc’

with
a=a"=(',a’,a’), ==
nzp—EA,
C
pk:p:(vapy:pz)v Ak:A:(Ax:Ay:AZ)a

my=n=(7,7,7,),

r,=r=(x,y,z)

B=Vxd, E-—14_y,
c ot

Heisenberg equation for the operator in the Heisenberg picture

Lo=tm01+L0
i h o

(a)



d i
El’k zg[Hark]

i . ie I
= el ]+ L]+ 1me ]

i ; e
:Ecaj[p-/ _;A_/,i’k]

or

(b)

d i
— = — ‘i,
dtpk h[ pk]

i . ie I
= %ca’[ﬂj,pk]+;[A0,pk]+%[ﬁmczapk]

1 . e e
:%ca’[pj —ZAj,pk]-i‘%[Ao’Pk]

i e ie
= %Caj Z[pksAj]_;[pkﬁAO]

or

d
[ :ev aA —eVA
dl‘p ( ) 0



(c)

d i 0
L p=t1H,41+2 4
dt " h[ 3 ot

i ; ie i ) 0
:%Caj[ﬂ-jaAk]+;[A09Ak]+%[ﬂmc aAk]+5Ak

i . e ie 0
= %Ca‘/[p_/ _;AjaAk]-i_;[AOaAk]-i_aAk

i ; 0
= c@’lpp Ad+—4

/] I ﬁxj ot

= caj%+ﬁAk
Ox. Ot

J

or
A _ awa+la
dt ot
(d)
de d e
S ip-S4
i~ a? Y
— V(- A)— VA~ Elc(a-V)d+ 2 a]
c ot
10
=e(———A-V4,)+eax(VxA)
c Ot
=e(E+axB)
—e(E+2x B)
c
where
Va-A)—(a-V)A=ax(VxA)
(e)

We note that

a(H —ed,) + (H —edy)a = 2c(p - S A) = 2cn
C



Using this we obtain the a quantum mechanical analogue of the Lorentz equation

a1.,H _fAO)+ el _fAO W=7 =e(E +axB)
C C

dt 2
where
dr
—=ca=v,
dt
d d e
—a=—(p——A)=e(E+axB).
7 dt(P . )=¢( )

If H—ed, ~+mc®, depending on whether the state is made of positive or negative

energy solutions of the Dirac equation, we get the equation of motion under the Lorentz
forc,

miv =*te(E + lv x B)
dt c
((Note))

{a,H —edy} = 2c(p—< A)
C

or
(o', H —edy} ={a'ca' (p, =< 4)) + fmc*)
e
— f g €
_C{a 124 }(p]_ZA/)
=2¢8 € 4
==<C ij(pj_z j)
=2C(pi_EAi)
C
where

{a',py=0, f{a',a’}=25,.

()



%(Z-n):%[H,Z-n]:eZ-E

where
H=ca nt+ed,+ fmc’ =cy’X -m+ed, + fmc’
with
at =y =yt =257 and [y’,ZF]=0.
Then we get
d i
— 2 n)=—[H,2 7
dt( ) h[ ]
:%[0752-n+e/10 + fmc*, X -7
ie
=;[A0,2-ﬂ]
=— zk%
ox,
=eX - FE
where

(8,2 -w]=[B,Zlr, + X271, + X37,]
= [ﬁazl]ﬁl +[ﬂ322]7[2 +[ﬂ,23]72'3
0

(V2 aZ zl=y (2 a)(Z )~ (2 7)y (X -7)

=0
(2) Zitterbewegung ((Free particle))
Suppose that
A,=0.

Then we have

L/ =0 P = constant
dt



The Hamiltonian of free particle is given by
H =ca- p+ pmc’

Heisenberg's equation for the operator e,

d_a ldv

dt cdt
=—[H,a
h[ ]
I

=—(Ha —aH
h( )

= —%(Ha +aH -2Ha)
= —%(cp - Ha)

where

Ha +aH =2cp
((Note))
{(H,a"}=cpla',a"} +mc*{B,a'} = 2cp,

Since H = const., this equation has a simple solution:

da 2i »
—=—H(a—H
i cp)
or
V(t)
=H" cp+exp(—Ht)[a(0) H 'cp]
or

v(t)=H 'S p+ce®™ "a(0)— H 'cp]

This equation can be integrated:

r(t)=r(0)+H '’ pt+ ;l.—[c{(ez’ﬂ”h —D[a(0) - H '¢cp]
i



The first two terms on the right-hand side describe simply the uniform motion of a free
particle. The last term is a feature of relativistic quantum mechanics and connotes a high-
frequency vibration (Zitterbewegung) of the particle with frequency mc’/f and
amplitude 7/(mc), the Compton wavelength of the particle.

(h) Free particles (continued)
For a free particle Hamiltonian,

{B.H}={p,ca-p+pmc’}=2mc’ B> +cpif.a"}=2mc’

and
{y\H}y={y",ca-p+ pmc’}
=cp 4y’ Y +mc*{y°, B
=ep {77 r°2h)
=2cp 2,
Note that
{}/5’7/52/(} — }/5}/52/( + }/52/67/5 — 2}/57/52/6 — 22/(
and

7.By=0

Hence, in a state of energy E, the operator £ has the expectation value

2 2
mc cp
<f>= =+, 1= —
/ E (Ej

Similarly,

cp A
<Ys >:—E<E-p>

where p is the unit vector of p . The operator »° is called the chirality.

(i) Lorentz force

A4,=0, A#0 (vector potential)



The Hamiltonian A is given by
e 2
H=ca-(p——A)+ pmc”.
c

izzi[]-],z]
dt h

a' =3y =y [B,24]=0

>h=iy'y/ (i, ], k: cyclic)
[y°.2"1=0, , [°,a"1=0, {B,y°}=0
[X,2/]=2i%", Yy =-¥/% =i3* (i, and k; cyclic)

[°2, 25 = 722/ —2/p°sk = 2125, 27].
Using the Mathematica, we get
[H,2']=[ca*(p, —SAk) + fmc®, 3]
=l A).2]

. e e
=2icla,(p, _ZA3) —a5(p; _ZAz)]

= 2idax(p-<A)],
c
or
[H,X]=2iclax (p~= A)]
c

leading to the Heisenberg's equation,

a i 2c e
—=—[H,X]=—— ——A
7 h[ ] h[aX(p . )]



So we have

dx dr 2¢2 e e
HZ= + = H=-"TJa-(p—-—A -~ A
T - [a-(p - Nlax(p c )]

+a><(p—§A>][a-(p—§A)]

=2ec2 x B

In the relativistic approximation, H ~ mc”. Then we have

4 _ 2 y.p=CrxB
dt  2mc mc
Since
O
Y =
ﬁ_iaxg
dt  mc

Szza
2
ég——e—SxB=ﬂxB
dt mc
or
u=-"S8= eh_
mc 2mc
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APPENDIX-I
Klein-Gordon equation

((Problem))
The relativistic wave equation for bosons of rest mass m may be obtained by the relation

E2=p202+m204
through the identifications

E—>ih§, p—)EV
ot i

(a) Obtain the wave equation relevant to bosons of rest mass m. This equation is
called the Klein-Gordon equation.

(b) What form does this equation assume for photons?

(c) Suppose that the wavefunction is independent of time ¢ It depends only on r.
Using the spherical co-ordinates; {r,0,¢}, find the differential equation for the

-rla

wavefunction (7). Show that w(r) has the form of w(r)=4

, where 4
r

and a are constants. We assume that /= 0.
(d) Find the expression for the characteristic length a.
(e) Use this equation to show that there is a local conservation law of the form




a—’D+V-j:0

ot
with
. h * *
J=—W Vy-yVy ).
2mi
Determine the form of p(r,t). From this form for p, give an argument for why
the Klein-Gordon equation is not a good candidate for a one-particle relativistic
wave equation in plane of the Schrodinger equation, for which p =y 2%
((Solution))
(a)

We start with

E'y=(p’c +m’cty,

with
E— ihg , P> EV
ot i
Then we have
82
—-n’ yl// =’V +mcty
or
1 62 2.2
2 __267W = mhzc 7 (Klein-Gordon equation)
c

(b) For photon, the mass m is equal to zero. Then we have the wave equation as

1 o°
Viy———w=0
i ¢’ ot i
(c) Suppose that the wavefunction is independent of time . It depends only on 7.

2.2

10 0 m’c
;E(EF)W(F)—h—ZV/



u
We assume that W=—.
r

—u(r) = mhzc u(r)= a%u(r) .

Then we have the

U= Ae—r/a
or
-rla
e
y=A4

(d)

a s the characteristic length and is defined by

(e) The current density is given by

. h * *
J=—W Vy—yVy )

2mi

Vej =S [V V) -V )
mi

h * * * *
=5 (VY Vyty Vi —VyNy' —yViy')

h * *
=— W Viy-yWVy)
2mi

Using the equation of continuity, we have

op ) h v -
- V.j=——— (w V-
Py J 2mi(@// w—yWy)

We use the Klein-Gordon equation

1 62 m202
2 2




Then we get

op ho o . 10 m’c’ 82 mzc2 .
= - - +
o oY GaEv )T Vs caV T v
h . 0* 0*
= 2mc2.(w atzw t//azw)
7 0
- 2mc 5( —V/ W@tl//)

Thus we have

_ih ( « 0 0 8

P me ™ a” Va”
Suppose that

v ly-a+ip

ot

where o and S are real. Then we have

0 ,
R = —
l//atl// i

Then we have

in . Ph
S2iff=———;

mc

~iB)]=

When g >0, the probability density could be negative, which is inconsistent with the

requirement that p should be positive. In this sense, the Klein-Gordon equation is not a
good candidate for a one-particle relativistic wave equation in plane of the Schrodinger

equation, for which p = 2%

APPENDIX-IT
Another way of constructing solutions of the free Dirac equation
Construction by Lorentz transformation

Greiner: Relativistic Quantum Mechanics 3" edition (Springer 2000)
We show that



S(-v) = exp[—%a Pl

cosh 0 ~p.sinh = (p,~ip,)sinh %
0 cosh% —(p.+ zﬁy)sinh% p.sinh 2
) - P. sinh% —(p, - iﬁy)sinh% cosh @ 0
—(p, + ifyy)sinh% D. sinh% 0 cosh2

by using the Mathematica, where p is the unit vector of p. Then we get

0 0 p.  b.—ip,
. 0 0 p.tip,  —p.
a-p= ~ ~ A
D. P —p, 0 0
p.tip,  —p. 0 0

((Mathematica))

Clear["Global ="];

exp * :- exp /. {Complex[re , im_] :» Complex[ze, -im]};

0 0 Pz PX - 1 py
0 0 PX + 1 py -pz
Sl = , H
Pz PX - 1 py 0 0
PX + 1 py -pz 0 0

Al = MatrixExp[; Sl] /7. {p22 ->1- (px2 + pyz) } // FullSimplify;
Al // MatrixForm

Cosh_"—’] 0
L2

-pz Sinh:;’] - (px - ipy) Sinh:;—’]
0 Cosh:g] - (px + 1 py) Sinh:;—’] bz Sinh:;—’]
-pz Sinh:g] - (px - ipy) Sinh:;—'] COSh:%] 0
I\—(pX—ipy} Sinh:;—’] pzSinh:;—’] 0 COSh:?]

We assume that



0] R+ mc 0]
cosh— = —
2 2mce
or
tanh 2 = — c|p| .
2 R+ mc
Then we have
1 0
S(-v) = R+ mc* 0 1
2mc? PiC (p, —ip,)c
R+ mcz R + mc?
(p, tip))c — PiC
R+ mc? R+ mc?
1
1
0 R 2 0
u=S(-v)| _|=, +m;2 P3¢
0 2mc R+ mc?
0 (p, +ip,)c
R+ mc*
0
0
1 R 2 1
u=S(v) | = [BEmE) (P =ipy)e
0 2me R + mc?
0 __Pc
R+ mc?
DPsC
0 R+ mc*
u=S(-v) 0] R+mc*| (p +ipy)c
3 1 B 2mc2 R+ m6'2
1
0
0

. R+ mc? C| p|
sinh— =— > 5
2 2mec® R+mc

DP5C (p, —ip,)c
R+ mcz R+ mc?
(p, +ip,)c P5C
R+ mc? R+ mc?
1 0
0 1




(p, —ipy)c
R+mc?

0
0 /R +mc? PsC
u,=S(-») 0"\ 2me? R+ mc>
0
1
1

APPENDIX III Commutation relation of the helicity operator

. 0 . 0 . 0 . 0
(Z-p.2-p,]= - P c-p, |9 P, o P
0 o-p 0 oD, 0 oD 0 o-p

_((e-p)(o-p,) 0 ]_((G'Pz)(a'pl) 0 j
) 0 CRACEN 0 (e p)@ " p,)
(6-p)o-p,)—(c-p,)o-p) 0 ]
0 (6-p)o-p,)—(6-p,)o-p)
_ io-(p,x p,) 0 j
0 io-(p,x p,)

We note that
(6-p)(o-p,)=p - p,+ic-(pxp,)

(6-p)o-p,)—(o-p,)o-p)=ic-(pxp,)—ic-(p,*xp)
=io-(p xp,)

So that only if p,xp,=0, [X-p,2-p,]=0.

APPENDIX IV

dL
_ = a X
5 c(ax p)

In the Heisenberg picture,

—ihiL:[H,L]
dt

where



H=ca-p+ pmc’ =ca,p, + fmc’
We consider the component L, . We write
Ly =x,p, = x,p,

L d
—ih— L =[H, L]

= [cakpk +ﬂmcz’x1p2 _x2pl]

=[ca,pe.xp,]1-[ca,p,x,p]
=co[pe,xp]1—calpy,x,p]
=coylpisxlp, —calpsx,1py

fi

= 7(Cakp25k,1 - Cakplé‘k,z)
/]

= 7(00{1p2 —ca,p,))

7]
= 70(0‘ X P
This results lead to

%chmxp) (1)

We now consider the operator 2 such that

e

The Heisenberg’s equation of motion:



d

—ih—
dt

> =[H,>]
= [cakpk + ,Bmcz,23]
=cp'la*, 21+ mc*[B,2°]
=ep'[r'zh, 2%
=ep'y’ 24,27
=—cp'y’ 2.2 1+ cpy’[27, 2]
=2icp'y’2* + 2icp”y°%!

or

—ih%E3 = ic(p'a’ - p’a')

= 2ic(ax p),

where

a" :[ 0 ij=;/07k =37 = 7%k

ot 0

[8.2]1=0, [y’,2"]=0

[X,%/]=2i%"
Since

9% axp) @
we have

d

Ayl
" dt 2



EZ is called spin angular momentum and J =L +§2 is called total angular
momentum, and is a conserved quantity. Thus we can conclude that the Dirac particles is

endowed with spin 22 .
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