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Of greater antiquity, but closely related to the WKB approximation, is the eikonal 
approximation. It is by means of the eikonal approximation that geometrical optics is obtained as 
a limiting approximation to physical optics. Here we describe a somewhat simplified from the 
eikonal which has been quite useful in discussing the scattering of very fast particles by smooth 
potential. (Goldberger and Watson, Collision Theory, John Wiley & Sons, 1964)). 

The potential V itself does not need to be weak as long as VE  . The domain of validity is 
different from the Born approximation. Note that eikon means “image” in Greek. 
 
1. Introduction 

The eikonal approximation in quantum mechanics works for processes involving the 
scattering of particles with large incoming momentum and when the scattering angle is very 
small. In the language of differential equations, the main advantage the eikonal approximation 
offers is that the equations reduce to a differential equation in a single variable. This reduction 
into a single variable is the result of the straight line approximation or the eikonal approximation 
which allows us to choose the straight line as a special direction. The early steps involved in the 
eikonal approximation in quantum mechanics are very closely related to the WKB approximation 
in quantum mechanics. The WKB approximation involves an expansion in terms of Planck's 
constant  . The WKB approximation also reduces the equations into a differential equation in a 
single variable. But the complexity involved in the WKB approximation is that this variable is 
described by the trajectory of the particle which in general is complicated. The advantage of the 
eikonal approximation is in the classical trajectory being a straight line. Thus in this manner the 
eikonal approximation is a very stringent semi-classical limit. 

Here we show that the eikonal approximation is valid for processes involving small angle 
scattering and very large incoming momentum. More rigorously the conditions are 
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where a is the range of potential, E and k are the energy and wave number of incident particle. 
The scattering amplitude is given by 
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Q is the scattering vector, 
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2. Eikonal approximation for scattering 
 

 
 
Fig. Schematic diagram of eikonal approximation scattering. The classical straight-line 

trajectory is along the z axis. b( b ) is the impact parameter. 

 
We start with the wave function )()( rk

  given by 
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Here we have 
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The Green's function is defined by 
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When the incident particle enters into the effective range of potential, the wave function is 
supposed to take the form 
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Substituting this form of )()( rk
  into the equation 

 

   )'()'()',('
)2(

1
)( )()(

02/3
)( rrrrrr kk 


 UGdeikz  

 
leads to the equation for )(r , 
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where 
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We introduce  as 
 

kkκ  '  (scattering vector) 
 
or 
 

κkk '  
 
Then we get 
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We note that 
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where ),0,0( kk  and 1)(  x  for 0x and 0)(  x  for 0x . Here we have 
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For 0"z , we use the upper half plane of the complex plane. There is a single pole at ' iz  . 

Using the residue theorem, we get 
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with 0' For 0"z , we use the lower half plane of the complex plane. There is no single pole. 
Using the residue theorem, we get 
 

z'' 0

z'' 0

z i '



0I  
 
___________________________________________________________________________ 
Then we have 
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For simplicity we use the relation 
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The solution of this integral equation is given by 
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Using this relation we get 
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The condition: 
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where a is the scattering region of potential. Note that 
v

a
 is the time for the particle to pass the 

scattering region. 
0V


 is the time during which the potential sufficiently exerts the influence on 

the particle. In the eikonal approximation, there is no limitation for 
v
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sense, the approximation is applicable to the case when 0V  is large. 
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From these two equations, we try to get the correct asymptotic form of )(f . 
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For simplicity, we have replacement of rr ' , '" rr  , leading to 
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We consider the scattering amplitude using the cylindrical co-ordinate. 
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We define the scattering vector as 
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since Q is nearly perpendicular to n; 0 nQ . Then we get 
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Here we note 
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and   is the angle between Q and b. We note that the scattering amplitude is the Hankel 

transform of  
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In the book of Sakurai and Napolitano (Quantum Mechanics), 
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((Definition of the Hankel transform)) 
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3. Partial waves and eikonal approximation 



The eikonal approximation is valid at high energies. Therefore, many partial waves 
contribute. 
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The scattering amplitude is given by 
 





0

)(cossin)12(
1

)(
l

ll
i Pel

k
f l    

 
We have the following substitutions. 
 

 


dbk
l

l

max

0

, 

 

)()(])
2

1
[()(cos 000  kbJlJlJPl    for large l, small  

 
where 
 







2

0

cos
0  

2

1
)( ixedxJ  

 
We use the approximations given by 
 

k

l
b

l b


 |)(  

 
and 
 

)1(
2

1
)1(

2

1
sin )(22   bii

l
i e

i
e

i
e ll    

 

Note that the latter is equal to zero for maxll  . Then we get 
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This agrees with the equation derived above, 
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4. Born approximation 

Here we show that the expression of )(f  in the Born approximation can be derived from 

the eikonal approximation.  
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bQnQbQrQ  z  

 
since Q is nearly perpendicular to n; 0 nQ . 

 
Thus the scattering amplitude can be rewritten as 
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which is the expression for the Born approximation. 
 
5.  Condition for the validity for the eikonal equation 

Landau and Lifshitz: Quantum Mechanics, p.160 
Here we consider the scattering potential as a perturbation. What is the condition for the 

validity of the Born approximation. We start with a differential equation  
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where V is a scattering potential as a perturbation and   is a small real parameter. The energy of 
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For the order of 0  (the 0-th approximation) 
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For the order of 1  (the first approximation) 
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(a) Green function 
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Let us find what conditions must be satisfied by the field V in order that it may be regarded as a 

perturbation. It is required that )0()1(   . Let a be the order of magnitude of the dimensions 

of the region of space in which the field is noticeably different from zero. We shall first suppose 
that the energy of the particle is so low that ka is at most of the order of unity. Then the factor 

)'exp( rr ik  in the integrand is unimportant in an order-of-magnitude estimate. Then we have 
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We notice that the expression on the right has a simple physical meaning; it is the order of the 
kinetic energy which the particle would have if enclosed in a volume of linear dimension a (since, 
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In summary, the condition for the validity of the above discussion is that 
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plays an important part, and markedly reduces the value of the integral. Now we return to  
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We take as x-axis the direction of the unperturbed motion; the unperturbed function then has the 
form 
 

ikxe0  

 
(the constant factor is arbitrarily taken as unity). In Eq.(1), we assume that 
 

feikx1  

 
The substitution of the trial function to Eq.(2) yields 
 

Vxikf 2

2
)('2




  

 
or 
 

 Vdx
ik

xf 2)(



 

 
or 
 

 Vdxe
k

i
fe ikxikx

21


  

 
An estimate of this integral gives 
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where 
m

k
v


  is the velocity of the particle. The condition (3) is weaker than the condition (1). 

The time 
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  is the time when the particle passes through the range of potential. Equation 
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6. Example-I; scattering of particle by black sphere with radius a 
 
We start with 
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corresponding to the assumption that all particles are absorbed by the black sphere with radius a, 
and that and there is no potential for b>a [ 0),( bk ]. Then we get 
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The scattering cross section is 
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Fig. The Diffraction pattern. 2)/(kas  vs Qa .  

 
7. Example-II Repulsive square potential 

We consider the scattering amplitude due to the repulsive potential 
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We note that 
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where 
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Then the scattering amplitude is 
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We introduce a new variable t as atb  . Then scattering amplitude can be rewritten as 
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Using the optical theorem, the total cross section can be obtained as 
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with 
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((Mathematica)) 

Plot of 
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 as a function of 
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aU0  (eikonal equation for the repulsive potential) 
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