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Of greater antiquity, but closely related to the WKB approximation, is the eikonal
approximation. It is by means of the eikonal approximation that geometrical optics is obtained as
a limiting approximation to physical optics. Here we describe a somewhat simplified from the
eikonal which has been quite useful in discussing the scattering of very fast particles by smooth
potential. (Goldberger and Watson, Collision Theory, John Wiley & Sons, 1964)).

The potential V itself does not need to be weak as long as E >>V . The domain of validity is
different from the Born approximation. Note that eikon means “image” in Greek.

1. Introduction

The eikonal approximation in quantum mechanics works for processes involving the
scattering of particles with large incoming momentum and when the scattering angle is very
small. In the language of differential equations, the main advantage the eikonal approximation
offers is that the equations reduce to a differential equation in a single variable. This reduction
into a single variable is the result of the straight line approximation or the eikonal approximation
which allows us to choose the straight line as a special direction. The early steps involved in the
eikonal approximation in quantum mechanics are very closely related to the WKB approximation
in quantum mechanics. The WKB approximation involves an expansion in terms of Planck's
constant 7. The WKB approximation also reduces the equations into a differential equation in a
single variable. But the complexity involved in the WKB approximation is that this variable is
described by the trajectory of the particle which in general is complicated. The advantage of the
eikonal approximation is in the classical trajectory being a straight line. Thus in this manner the
eikonal approximation is a very stringent semi-classical limit.

Here we show that the eikonal approximation is valid for processes involving small angle
scattering and very large incoming momentum. More rigorously the conditions are
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where a is the range of potential, E and k are the energy and wave number of incident particle.
The scattering amplitude is given by

k o
f(0)=—|d*pe' 2’ 1
0=-—] [ ]

or



() =ik [ bdbd (Qb)[e”** —1]
0
where
(k)= ——— sz'U(b+ Z'n)
A= o J ’

is the scattering vector,
0 g
0
=2ksin—.
Q 2

2. Eikonal approximation for scattering

Fig.  Schematic diagram of eikonal approximation scattering. The classical straight-line
trajectory is along the z axis. b (= |b|) is the impact parameter.

We start with the wave function y\” (r) given by
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The Green's function is defined by
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When the incident particle enters into the effective range of potential, the wave function is
supposed to take the form
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Substituting this form of w " (r) into the equation

Vi) =€ =[G U ()

(27[)3/2

leads to the equation for ¢(r),
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We introduce x as

k=k'-k (scattering vector)
or
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where k =(0,0,k) and ®(x) =1 for X>0and ®(x) =0 for X<0. Here we have
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For z"> 0, we use the upper half plane of the complex plane. There is a single pole at x, =ig'.

Using the residue theorem, we get
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with &'— OFor z"< 0, we use the lower half plane of the complex plane. There is no single pole.
Using the residue theorem, we get
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Using this relation we get

v (r) = wﬁco(r)e‘“

1 . i
= Wexp[lkz R Idz'U (X,y,2"]

1 . i
= Wexp[lkz — J.dZ'V (X, y,2"]

The condition:
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where a is the scattering region of potential. Note that — is the time for the particle to pass the
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scattering region. [\/ | is the time during which the potential sufficiently exerts the influence on

the particle. In the eikonal approximation, there is no limitation for (a/v)/(x/ [\/ |) [V | . In this

sense, the approximation is applicable to the case when [\/0| is large.
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From these two equations, we try to get the correct asymptotic form of f (0).
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For simplicity, we have replacement of r'—>r, r'"— r', leading to
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We consider the scattering amplitude using the cylindrical co-ordinate.
r=b+1n
We define the scattering vector as
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and ¢ is the angle between @ and b. We note that the scattering amplitude is the Hankel

transform of
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In the book of Sakurai and Napolitano (Quantum Mechanics),
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((Definition of the Hankel transform))
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3. Partial waves and eikonal approximation



The eikonal approximation is valid at high energies. Therefore, many partial waves
contribute.
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The scattering amplitude is given by
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We have the following substitutions.
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This agrees with the equation derived above,
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4. Born approximation
Here we show that the expression of f (&) in the Born approximation can be derived from

the eikonal approximation.
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since @ is nearly perpendicularton; Q -n~0.

Thus the scattering amplitude can be rewritten as
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which is the expression for the Born approximation.

S. Condition for the validity for the eikonal equation
Landau and Lifshitz: Quantum Mechanics, p.160
Here we consider the scattering potential as a perturbation. What is the condition for the
validity of the Born approximation. We start with a differential equation
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where V is a scattering potential as a perturbation and A is a small real parameter. The energy of
the incident particle is given by

We assume that
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The substitution of this equation for i into the original differential equation yields to
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For the order of A’ (the 0-th approximation)
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For the order of ' (the first approximation)
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Let us find what conditions must be satisfied by the field V in order that it may be regarded as a
perturbation. It is required that ‘1//“)‘ << ‘(//(O)‘. Let a be the order of magnitude of the dimensions
of the region of space in which the field is noticeably different from zero. We shall first suppose
that the energy of the particle is so low that ka is at most of the order of unity. Then the factor

exp(ik|r - r'|) in the integrand is unimportant in an order-of-magnitude estimate. Then we have
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We notice that the expression on the right has a simple physical meaning; it is the order of the
kinetic energy which the particle would have if enclosed in a volume of linear dimension a (since,

by the Heisenberg’s principle of uncertainty relation, its momentum would be of the order of E
a
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When AX~a,we have p > Zi , leading to the condition
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The kinetic energy is
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In summary, the condition for the validity of the above discussion is that
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For large energies, when ka >>1, the factor exp(ik|r - r'|) in the integrant
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plays an important part, and markedly reduces the value of the integral. Now we return to
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We take as X-axis the direction of the unperturbed motion; the unperturbed function then has the
form
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(the constant factor is arbitrarily taken as unity). In Eq.(1), we assume that
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The substitution of the trial function to Eq.(2) yields
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Since |w1| ~ #Ma << |w0| =1, we have the condition
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where v = LS is the velocity of the particle. The condition (3) is weaker than the condition (1).
m

The time Az = a is the time when the particle passes through the range of potential. Equation
\'

(3) indicates that
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6. Example-I; scattering of particle by black sphere with radius a

We start with
f(0)= —ikjbde (Qb)[e ™ —1]
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Suppose that
e”®® —1 for b>a, and e**® =0 for b<a

corresponding to the assumption that all particles are absorbed by the black sphere with radius a,
and that and there is no potential for b>a [ y(k,b) =0]. Then we get
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Fig. The Diffraction pattern. o, /(ka)* vs Qa.

7. Example-Il Repulsive square potential
We consider the scattering amplitude due to the repulsive potential
V, r<a
0 (r>a)
We note that
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We introduce a new variable t as b = at . Then scattering amplitude can be rewritten as
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Using the optical theorem, the total cross section can be obtained as
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((Mathematica))
Plot of O-Lt;' as a function of Yea (eikonal equation for the repulsive potential)
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