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1. Derivation
Free particle wave function y satisfies the Schrodinger equation

w
—zv y=Evy,

where g is the mass of particle,

'k’

E =
k 24

5

is the energy of the particle, and k is the wave number. This equation can be rewritten as
(VP +k )y =0.
This equation is solved in a formal way as

l// = ¢k/zm(r’95¢) = <r9¢|k€m>

1 L
2P+ =500, (,00) = B4, (r,0,9)

(separation variables), where L is the angular momentum:

Pun(1,0,9) = R, ()Y, (6,9),

with
LZIQm (0,9)= R0+ 1Y, (6,9).
Since p, = Elir , we have
iror
hl1o hlo 1 o2
PRy (r) = —=—r(==—PR, (r) = =h* = [rR,, ("],
iror iror r or
or
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LT R, DR, () = KR ),
ror?

or

l6_22[7'ka(’”)] + [k2 —sz(ﬂ +D]R,,(r)=0.
i r

((Note))
In the limit of » —0, we have
62
?[FRM(V)] + kz[rsz(r)] =0
Then we get

+ikr

R, = (outgoing and incoming spherical waves)
r

Now we put x =kr (dimensionless)

2 2
i 8x8 kg, 0 —k—( _) k262
or ar ax ox or’ ox Ox Oox

[—ﬁk2 i ( )+ kz ((L+DJR=K’R

or
1 0°
- ——(xR) +—€(€ +1)R=R
x ox’
or
1 1
——[xR"+2R'|+—({+1)R=R
X X
or
2 1
R'+—R +H1- UChs )]R 0 (Spherical Bessel equation)
X
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where
R(x)= sz(’”)

Note that the differential equation has of the Sturm-Liouville-type,

d—zz(sz') +[x* =Ll +D]R=0.
dx

Suppose that
R=L2.
df ldf (+)°
Sl x} 1f =0.

The solution of this equation is the Bessel functions;

Sx)=J,,,(x), Nopn(x).

Then R(x) is expressed by the spherical Bessel functions;

(1) Spherical Bessel function,

e
]/(x)—\/;J/H/z(x)a

(i)  Spherical Neumann function,

n,(x)= \/gNM/z(x) .

Since the spherical Neumann function #,(x) diverges at x =0, it cannot be chosen as a

kol m) = ,/%J; (k)Y,,(0.9)

and

solution. Finally we get

¢k£m(r’9a¢) = <V:H’¢

with
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Ee= 2m
and

<k'l'm‘|klm> =0(k—£k")0,,0,,
((Mathematica))

Clear["Global "] ;

eql = X* D[R/[X], {X, 2}] +2XD[R/[X], x] + (X* - ¢ (¢+1)) Re[x];

J[#] _
rulel = {R(—» («/? &]}

eqll =eql /. rulel // FullSimplify

(4x% - (1+27)2) I[X] +4 X (J[X] +XxI"[X])

4~/x

DSolve[eqll == 0, J[X], X]

{{J[x] N BesselJ[; (1+27), x] C[1] + BesselY % (1+27), x] cm}}

2 Recursion relation
() l=0
First we consider the case of /= 0. The differential equation is given by

2

%(xR)+xR:0.
X

So that the solution of 7R are

xR =sinx, or cosx,
or
cosx e +e™ siny " —e™
R = = , Or = -
X 2x X 2ix
(b) ?+#0
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Next we consider the case of ¢/ # 0
d ., 2 _
— @R )+[x =Ll +D]R, =0
dx
where we know the solution R, = j,(x). When we put

R, =x"y7,(x)
we have the differential equation,
xy,"(xX)+20+ )y, (x)+xyx,(x)=0.
If we differentiate this equation with respect to x, we obtain

2a+@ za+@

2.7 00) + 2 () +[1-—=="17' (x)=0.

By the substitution

X' ()= xx,,(x)

202+ )

Z€+1"(x)+ léﬂ' (X) + Z(Jrl(x): 0

which is in fact the equation satisfied by y,,,(x). Thus the successive function y,,,(x)is
related by

X (x)
Z/H-l(x): -
X
or
R(H—l 1 d R/
e
X xdx x'

Since R, ~ j,(x), we have the spherical Bessel function as

1d fsmx

Ji(x) = (—X)( )

X
Similarly we define the spherical Neumann function as

, COSX

1, (x) =—(—x>f<§%>

X
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((Mathematica))

1
Clear["Global "%"]; OP1 :=— D[#, X] &;
X
I Sin[x]
JIl ., x 1 2= (-x) " Nest[oP1, —— , |]

X

Table[{l, J[I, X1}, {1, 0, 7}1 // Simplify // TableForm

0 Sin[x]

X
1 -x Cos[x]+Sin[X]

2

3XCOS[X}+(—3+X2) Sin[x]

2 - 3
X
3 X (715+x2) Cos[x]+3 (572 xz) Sin[x]
&
4 5x (-21+2 x2) Cos [X] + (105-45 x2+x4) Sin[x]
5
~x (945-105 x2+x*4) Cos[x]+15 (63-28 x2+x*) Sin(x]
5 NG
5 21 x (495-60 x2+x4) Cos [X] + (~10395:4725 x2-210 x4x8) sin[x]
7
. x (-135135+17325 x2_378 x4+x6) Cos [x] -7 (-19305+8910 x2_450 x4 .4 x6) Sin[x]
8

1 : Cos[x]
OP2 := = D[#, x] &; H[1 , X ] 1= - (-X) Nest[opz, ——, |]

X X

Table[{I, H[I, x]}, {1, 0, 7}] // Simplify // TableForm

0 _ Cos[X]
1 _Cosx{x1+xSin[x1
2
5 [-3+x?) Cos [x] -3 x Sin[x]
3
3 3 (—5+2 x2) Cos[X]+X (—15+x2) Sin[Xx]
&
4 (105745 x2+x4) Cos[X]+5Xx (2172 xz) Sin[x]
_ 5
5 15 (63-28 x2+x#) Cos [x] +x (945-105 x2+x4) Sin [x]
N3
5 (-10395:4725 x2-210 x4+x6) Cos [x]-21 X (495-60 x2:x4) Sin(x]
7
. 7 (-19305+8910 x2-450 x4 +4 x| Cos[x] +x (-135135+17325 x?-378 x*+x6 ) Sin[x]

%8
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3. Spherical Hankel functions
We define the spherical Hankel functions as

h"(x) = \/%Hgl(x) = j,(x)+in,(x)

B, ()= J%Hjﬁ (x) = j, (x) = in, (x)

where the spherical Bessel function and spherical Neumann function are given by

|
]n (x) - 2x Jn+% (x)
T n 1
R0 =N W=D

1.0 -
i jn[x]
0.8f n=
0.6
0.4:— \

L 2 3

0.2? \

0.0} ‘ — ‘ g
—02}

Fig. ju(x)withn=0,1,2,3,4,5,and 6.
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0.4

0.2+

0.0

-02F

—04l

Fig. ny(x) withn=0,1,2,3,4, and 5.

4 Rayleigh formulas

. 1d._,sinx
J(x) = (<1 (L Ly S
x dx X

n, (x) = (-1« (L Dy €8T

' x dx x
B () = i1y (L

’ xdx’ x
12 = i1y w2y

' xdx x

5 Asymptotic forms
The asymptotic values of the spherical Bessel functions and spherical Hankel
functions may be obtained from the Bessel asymptotic form.

. 1. Iz
Ji/(x) = —sin(x ——),
X 2

n,(x)= —lcos(x - l—ﬁ) s
) x 2
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i(x—Iz/2)

h((l)(x) ~—i (outgoing spherical wave)
—i(x—Ix/2)
h((z)(x) Rj——— (incoming spherical wave)
X
6. The behavior near the origin
n
J(x) = 20 0 forxl.
(21+1)!
@n! 1
n,(x)=— STy o for x«l1.
7. Energy eigenvalue of particle in an infinite spherical well (spherical quantum
dot

We discuss the wave function of a particle in an infinite spherical well in three
dimensions. The wave function is given by

R(r) = Aj,(kr)
with
J,(ka)=0
or
J1+l(x =ka)=0
2
The energy eigenvalue is dependent on the value of /. Suppose that x(/, n;) is the n,-th

zero points where j)(x) becomes zero, where n, = 1, 2, 3, ..... (integer). The energy
eigenvalue is

B~ 2 b))

2
a
or

2m
E:?#W%meﬁ

r
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Spherical Bessel function

—02F}

Fig. The plot of j,(x) as a function of x. The values of x when j,(x)=0 are denoted
by the blue arrows.

The energy levels of the infinite spherical well is shown for each / (=0, 1, 2, 3, 4,...)
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£, A ny=3
n,.=2
100
n.=3
n,=1
nr—z
=1
n,=2 r
50
n,=1
n,=2
”,:1
n,=1
n,=1
0

[=0 [=1 [=2 [=3 I=4 [=5

Fig. The energy levels of the infinite spherical well. E, = E(/, nr)il—’?az =[x(l,n)]’.
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E, A n.=3
n,=2
100
n,.=3
2dop "=l
”I’_2
—1e(18
n=21 ~_,,
<P
50 — (1Y)
=
nr:2 A Y223
ZS(Z)
1d(10
n.=1
ne=111n(6)
nrzl 1l
TS(Z)
0

[=0 [=1 [=2 [=3 I=4 [=5

8. Nuclear shell model: Magic number for nucleus

We consider one particle on the spherical shell. It is just like a quantum box for the
one dimension. The particle is free inside the spherical shell. Outside the shell, the
potential energy is infinite. We consider either proton or neutron. As the first
approximation, there is no repulsive Coulomb interaction. These particles are both spn-
1/2 particles. These particles obey the Pauli’s exclusion principle. First we determine the
energy eigenvalues for the one-particle system. This problem is just like the quantum box
for the one dimension. According to the Paili’s exclusion principle, there are two states in
the ground state with the spin-up state and spin-down state. When the two states are
occupied, the first excited state will be occupied next.

In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the
atomic nucleus which uses the Pauli exclusion principle to describe the structure of the
nucleus in terms of energy levels. The first shell model was proposed by Dmitry
Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following
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independent work by several physicists, most notably Eugene Paul Wigner, Maria
Goeppert-Mayer and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for
their contributions.

The shell model is partly analogous to the atomic shell model which describes the
arrangement of electrons in an atom, in that a filled shell results in greater stability. When
adding nucleons (protons or neutrons) to a nucleus, there are certain points where the
binding energy of the next nucleon is significantly less than the last one. This observation,
that there are certain magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which are more
tightly bound than the next higher number, is the origin of the shell model.
(http://en.wikipedia.org/wiki/Nuclear_shell_model).
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2d
B 302
Zd — < - 197f2

2ds /2

) COBI =

199 /2

) 2Dy /2

2p —— < ——— Lf5/9
2pg /2

= =

 1f7/5 8[28

o~ ldg;5 4|20

2s - 3/2

1d — 251}(2 2
o ldg,lfg 6

e T 1p1f2 28
P ipye

ls ——————— 1815 2|2

((Our model))

We now try to make a nucleus by filling the energy levels with protons and neutrons.
Protons and neutrons are both spin 1/2 particles (fermions). According to the Pauli's
exclusion principle, there are more than two particles in each energy level. Suppose that
we fill the levels with just protons. The first level is a (1s) level where 2 protons can
occupy. The second level is a (1p) level where 6 protons can occupy. The third level is a
(1d) level where 10 protons can occupy. In such a way, we see that the energy levels will
be completely filled when the number of protons is
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(1s)? 2

(1p)° 2+6=38

(1d)"° 2+6+10=18

(2s)? 2+6+10+2=20

(1n* 2+6+10+2+14=34

2p)° 2+6+10+2+14+6=40

(1g)"® 2+6+10+2+14+6+18=58
2d)"° 2+6+10+2+14+6+18+10=68

with a similar sequence of neutrons. Note that real nuclei exhibits the magic numbers
such that

2,8, 20, 28, 50, 82, and 126.

The difference between the observed magnetic numbers and those in the simple model
arises there is a strong inverted spin-orbit coupling that shifts the energy levels.

((Maria Goeppert-Mayer, nuclear shell model))

Maria Goeppert-Mayer (June 28, 1906 — February 20, 1972) was a German-born
American theoretical physicist, and Nobel laureate in Physics for proposing the nuclear
shell model of the atomic nucleus. She is the second female laureate in physics, after
Marie Curie.

Goeppert-Mayer's model explained why certain numbers of nucleons in an atomic
nucleus result in particularly stable configurations. These numbers are called magic
numbers. She postulated that the nucleus is a series of closed shells, and pairs of neutrons
and protons tend to couple together in what is called spin orbit coupling.

http://en.wikipedia.org/wiki/Maria_Goeppert-Mayer
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((Note))
Magneic number:

o 2
8=2+6
20=2+6+12

28=2+6+12+8

50=2+6+12+8+22

82=2+6+12+8+22+32
126=2+6+12+8+22+32+44
184=2+6+12+8+22+32+44+58

N: the number of neutron
Z: the number of proton.

These are fermion with spin 1/2, obeying the Pauli exclusion principle.

Either N or Z equal to the magic number
Both N and Z are equal to the magic number (double magic number)\

THe:N=2,7Z=2 (double magic number)
LO:N=8,Z=8 (double magic number)
WCa:N=20,Z=20 (double magic number)
W Sn:N=69,7Z=50 (magic number)
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M
{Humber o° Neulmons)

{Humber o° Probons)

Fig.  Graph of isotope stability
http://en.wikipedia.org/wiki/Magic_number %28physics%29

((Mathematica-1))
The roots [zero point, x(/, n;)] of the spherical Bessel function for /=0, 1, 2, 3, 4.

Jl ,(x)=0; k=1 (first zero), k = 2 (second zero), k = 3 (third zero),...
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Clear["Global *"];
Table[{k, N[BesselJZero[1/2, k]1}, {k, 1, 9}1 //
TableForm

3.14159
6.28319
9.42478
12.5664
15.708

18.8496
21.9911
25.1327
28.2743

OCO~NOUTA,WNLE

Table[{k, N[BesselJZero[3/2, k]1}, {k, 1, 9}]1 //
TableForm

4.49341
7.72525
10.9041
14 .0662
17.2208
20.3713
23.5195
26.6661
29.8116

OCooO~NOOUTDAWNPE
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Table[{k, N[BesselJZero[5/2, k]1}, {k, 1, 9}]1 //

TableForm
5.76346
9.09501
12.3229
15.5146
18.689
21.8539
25.0128
28.1678
31.3201

OCoo~NOOAP~WNER

Table[{k, N[BesselJZero[7/2, kK]1}, {k, 1, 9}]1 //
TableForm

6.98793
10.4171
13.698

16.9236
20.1218
23.3042
26.4768
29.6426
32.8037

OCoo~NOOPA~WNE
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Table[{k, N[BesselJZero[9/2, k]]1}, {k, 1, 9}1 //
TableForm

8.18256
11.7049
15.0397
18.3013
21.5254
24 _.7276
27.9156
31.0939
34.2654

©Coo~NOOUTA,WNE

7 Plane wave expression
The wave function i can be described by

v (r0.0)=3 Y a,Y"(0.6)j,(kr)

1=0 m=—1

We consider the plane wave ", which is one of the solution of the Schrédinger
equation.

o = i Zalel”’(@,¢)jl(kl”)

1=0 m=—[
We choose the direction of k along the z direction.

k =(0,0,k), K-r=krcos@

We note that ™" =¢e""**’ is independent of . Y"(6,¢) is independent of ¢ only for m
=0.

2[+1
V4

10,9 = = =B (cos0)
Then we get
€ik~r = eikrcosg = ZCJPI(COS H)]l(kr)

=0
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where
¢, =i'(21+1)

((Proof))

'[eikrcosﬁg (cos @) sin GdO = z c.j, (kr)'[ P.(cos@)P(cosO)sinGdo,
5=0 0

0

or

2

— ).
s 10 T o D)

J' zkrcosBP(cose)Slnéutg ZC ]b(kl")

0 s=0

Differentiate / times with respect to x = kr.

dl T 1X COS 2 dl
E}[e ’P(cos@)sin GO = —— T dl]]()
or
]{(icosG)ZeiXCOSHP(Cose)sinﬁdG— 2 c d J,(x)
! Y IR AN >
d 20+1 " dx!
Note that
2'N N
~ , forx«l
T o A
d'j,(x) _ 2')
' QI+
When x =0,
2 2 ! 2@y
¢ Icos OP (cosO)sinGdl =i Ig P(g)ds =i ————,
20+1 QI+ 0 2/ +1)!
or

¢ =i'(2[+1),

Vector analysis 21
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or

e =" =321 +1)B(cos ) j, (kr) (Rayleigh's expansion)

1=0

This formula is especially useful in scattering theory. For kr>>1, we get

MS

i'(21 + l)P(k F)Jj,(kr)

=0
" _ sin(kr - l—ﬂ)
=@+ DAK P2
— kr
. _ cos[kr— w]
=Y.'+ 1)B(k-F)
kr

~
Il
(=}

ilr (”1)”) _i(kr_w)

zz_z{e QI+DPK-De 2 +e 2]

ikr o —ikr
= Z(21+1)P,(k-f)—ek > @I+1)=1)B(K- )
7 =0
—ikr
=2 sk ) - k)
ikr
where
Iz-f:ﬂ:cosé?
kr
and
(njnY=8(n-n")= ZleP(n-n'),
8 Bessel-Fourier transform

eikrcos@ — 211(21 + I)B(COS H)J[(kl")

=0

J.e”‘”"SBPI (cosO)sinad O = Z i'(2s +1)j, (kr)j P.(8)F (cosB)sinad g
s=0 0

0
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J‘ zkrcosHP(COSH)SlnedH Zl (2S+1)J (k}") 1 _2l Jl(kr)

0 s=0

or
Jilkr) = L ][‘eikmsgP (cosO)sindO = L je” *P(x)dx
! 2i' 0 ! 24 ° !

This means that (apart from constant factor) the spherical Bessel function j,(kr) is the
Fourier transform of the Legendre polynomial Pi(x).

9 Green's function for the spherical Bessel function
We consider the Green's function given by

(V2 +EkH)G(r,r")y==5(r-r"),
The solution of the Green's function is given by

eik|r—r'|

Gr,ry=—
(r.r) 4z |r—r'|
with the boundary condition

G(r,r')—>0 forr— 0 and for » — .

where r is the variable and r' is fixed.

Within each region (region I (0<r<#') and region II (»'<r), we have the simpler equation
(V2 +EH)G(r,r)=0

The solution of the Green's function is given by the form

Grr) = S 4, (.0 . )Y (0.9)

1=0 m=—1

Then the differential equation of the Green's function is given by

Z[la—zmlm)ﬂkz s

I'm'

Ay 17 0.0 =~ 2256 - 9030
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Note that

8,18, = [ Q' m'|m){n|1,m) = [[sin GdGdgY,"" (0.9)Y" (0.9)
where
dQ =sinGdd .
Then
3 [aox @, I a0 LED
——[aar 0.2 ”5(¢ )5t~ 1)
or
1o , I+
S5 )+ D4, 15,5,
——[aar 0. T o9~ 9)5(u-u)
or

1 0%
_7(rAln1)+[k

im

=0y, -2 oy 0,0 - )5 (u )

Sy 0| duadgo g - )5 )

- 5(” Ny 0. 9)

Since Y, (6',¢") is constant, we put

A]m(l",l" 90' ¢)

G/(r,r') =
Y (0.4
Then we get
10 I(1+1 S(r—r
e L
r o r r
24 9/3/2017
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The possible solutions of Gy are j(kr), ni(kr), W), h{V(kr), or a linear combination of

these functions.

G,, = 4j,(kr), for r<#' (region I)

G

L

= Bh,(l) (kr), for r>r' (region 1)

where 4 and B are constant. Note that If we use the positive sign for G(r, I'), we need to

choose h,(l) (kr);

i(kr—=Im/2) ikr
1 . € e
hO Gy~ —iS——— 2
' kr r

(1) The continuity of G;at r =7
Aj,(kr'"y = BR" (k")
or

A _ B B
B krty (k')

(i)  The discontinuity of dG,/dr atr=r".

T{d—Z(rG,)ﬂkzr—l(l”)]G,}dr - [,

r r

or

d , 1

. G r'+£ — -,

[d]/‘ (r [)]r —& }"'
or

dG, .., 1

G + _l r'+a:__’

( ! r dl" )|r —-& ]"'

dG" (k,r,r) ] _dG/ (k,r,1")

dr rre dr

or

Vector analysis

(outgoing spherical wave)

1

= R

9/3/2017



1

er :

kCLj, (kY (k'Y = J, (kY (') ] = —

We need to calculate the Wronskian

Jikr) -y (kr")
AGCORAGY)

i

k2r|2

((Note)) We can calculate /7 by using Mathematica.

Wronskian[ {SphericalBesselJ[Il, x],
SphericalHankelH1[l, X]}, X]
i

X2

Thus we get
C=ik.

In general, we have

Gr) =ik 3 j (ke HO (ke )T (O, T (0.

1=0 m=-1

This means that

r< =r . .
' in the region I (r<r")
ro=r
ro=r . )
in the region II (r'<r)
r.=r
We also get
et SN ) m =
PRt WWICALLCR A GRS
o 1=0 m=-1
APPENDIX
Mathematica
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Bessel functions

Bessell[n,z] for Ju(2)
Bessell[n,z] for I(z)
BesselK[n,z] for K(2)
BesselY[n,z] for Ny(z) (or Yy(2))

Hankel functions

HankelH1[n,z] for H,""(2)
HankelH2[n,z] for H,*(z)

Spherical Bessel functions

SphericalBesselJ[n,z] for ju(z)
SphericalBessell[n,z] for in(2)
SphericalBesselK[n.z] for ky(2)
SphericalBesselY[n,z] for ny(z)

Spherical Hankel functions

SphericalHankelH1 [n,z] for 1, (z)
SphericalKankelH2[n,z] for h,?(2)
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