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_____________________________________________________________ 
1. Gauge transformations in electromagnetism 

We start with the Maxwell's equations, 
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where 
 

B: magnetic field 
E: electric field 
: charge density 
J: current density 

 
The Lorentz force is defined as 
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The Lorentz force is expressed in terms of fields E and B, which is invariant under the 
gauge transformation (gauge independent). The magnetic field B and electric field E can 
be expressed by  
 

AB  , 
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where A is a vector potential and  is a scalar potential. When E and B are given,  and 
A are not uniquely determined. If we have a set of possible values for the vector 
potential A and the scalar potential , we obtain other potentials A’ and ’ which 
describes the same electromagnetic field by the gauge transformation, 
 

 AA' , 
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where  is an arbitrary function of r. We note that B and E are gauge-invariant; 
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2 Canonical momentum and mechanical momentum 

We now consider the Lagrangian which is defined by 
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where m and q are the mass and charge of the particle. The canonical momentum is 
defined as 
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The mechanical momentum  is given by 
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Then the Hamiltonian is obtained as 
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The Hamiltonian formalism uses A and , and not E and B, directly. The result is that 
the description of the particle depends on the gauge chosen. 
 
3. Change of the wave function under a gauge transformation (by 

Mathematica) 
The Schödinger equation contains the vector potential A. It may imply that the wave 

function may change as the vector potential A and scalar potential  is changed 
according to the gauge transformation, 
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The Schrödinger equation in the gauge (A,  ) takes the form 
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where , A  and   depends on r and t. We note that the charge of electron is denoted as 
q= –e (e>0) 
The Schrödinger equation in another gauge ( 'A , ' ) takes the form 
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where ' , 'A  and '  depends on r and t. The wave function changes as 
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under the gauge transformation. The difference between '  and   is only the phase 
factor. 

We now give a proof for this by using the Mathematica. We show that 
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is equivalent to 
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First we assume that 
 

 )exp(' i  
 
where  is just a parameter to be determined. We will show that 
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((Mathematica)) 
We assume that the electron charge is denoted by –e1 in the program, which means e1>0.  
(i) We need to calculate directly 
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in the Cartesian co-ordinates. This equation reduces to 
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The calculation without Mathematica is too complicated for me. 
 
((Program)) 

Here is a Mathematica program which I made. 
Clear"Global`"; 1  x, y, z, t; ex  1, 0, 0;

ey  0, 1, 0; ez  0, 0, 1; 1  x, y, z, t  1

c
D1, t;

1  x, y, z, t; p :
—


Grad, x, y, z &;

A1  Axx, y, z, t, Ayx, y, z, t, Azx, y, z, t 
Grad1, x, y, z; 1x : ex. p  e1

c
A1  &;

1y : ey. p  e1

c
A1  &; 1z : ez. p  e1

c
A1  &;

H1 :
1

2 m
1x1x  1y1y  1z1z  e1 1  &;

s1  H11   — D1, t  FullSimplify;

rule1 

  01, 2, 3, 4 Exp   1, 2, 3, 4 &;

rule2    0,   01, 2, 3, 4 &;

s2  s1 . rule1  FullSimplify;  
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s3  s1 . rule2  FullSimplify;

eq1    x,y,z,t s2  s3  FullSimplify;

eq2  Solveeq1  0, 1
  e1

c —


  x,y,z,t s2

s3
. eq2  FullSimplify

1

s3


1

2 c2 m
e12 Axx, y, z, t2 0x, y, z, t 

e12 Ayx, y, z, t2 0x, y, z, t 
e12 Azx, y, z, t2 0x, y, z, t  2 c2 e1 m x, y, z, t
0x, y, z, t  2  c2 m — 00,0,0,1x, y, z, t 

 c e1 — 0x, y, z, t Az0,0,1,0x, y, z, t 
2  c e1 — Azx, y, z, t 00,0,1,0x, y, z, t 
c2 —2 00,0,2,0x, y, z, t 
 c e1 — 0x, y, z, t Ay0,1,0,0x, y, z, t 
2  c e1 — Ayx, y, z, t 00,1,0,0x, y, z, t 
c2 —2 00,2,0,0x, y, z, t 
 c e1 — 0x, y, z, t Ax1,0,0,0x, y, z, t 
2  c e1 — Axx, y, z, t 01,0,0,0x, y, z, t 
c2 —2 02,0,0,0x, y, z, t  

 
4 Analogy from Classical mechanics 

The Newton’s second law indicates that the position and the velocity take on, at 
every point, values independent of the gauge. Consequently, 
 

rr '  and vv ' , 
or 
 

ππ ' , 
 

Since Apvπ
c

q
m  , we have 
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ApAp
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q
 '' ,  (Gauge independent) 

 
or 
 


c

q

c

q
pAApp )'(' . 

 
Note that q is the charge and q = -e for the electron. In the Hamilton formalism, the 
value at each instant of the dynamical variables describing a given motion depends on 
the gauge chosen; 
 

 
c

q
pp ˆ'ˆ' . 

 
5. Gauge invariance in quantum mechanics 

In quantum mechanics, we describe the states in the old gauge and the new gauge as 
  and ' . The analogue of the relation in the classical mechanics is thus given by 

the relations between average values. 
 

 rr ˆ'ˆ'     (gauge independent) 

 

 
c

q
pp ˆ'ˆ'   (gauge independent) 

 
This can be rewritten as 
 

 ApAp
c

q

c

q
 ˆ''ˆ' . 

 
This equivalence will be proved later. 

We now seek a unitary operator Û  which enables one to go from   to ' . 

 

 Û'  . 

 
From the condition  '' , we have 

 

1̂ˆˆˆˆ   UUUU  
 
From the condition,  rr ˆ'ˆ'   

 

rr ˆˆˆˆ  UU , 
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or 
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Û  is independent of p̂ . We also get 
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Note that 0]ˆ,ˆ[ Ur , and A is a function of r̂ . 
 

6. Proof of the expression  ApAp
c
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Here we show that 
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c

q
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((Proof)) 
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where 0̂]',ˆ[ AU , since 'A  is a function of r̂ . 
______________________________________________________________________ 
Here we note that 
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leading to the relations 
 

ApAp
c

q
U

c

q
U  ˆˆ)'ˆ(ˆ , 

 
and 
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7. Expression of the unitary operator 

We assert that Û  
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Then we get 
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which coincides with the expression described above.  
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((Note)) We use the notation such that 
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_______________________________________________________________________ 
So we get the gauge transformation for the wave function; 
 

 )]ˆ(exp[ˆ' r
c

iq
U


 . 

 
or 
 

 rrr )](exp['
c

iq


  

 
The phase factor of the wave function depends on the choice of the form of  in the 
gauge transformation. 
 
8. Hamiltonian under the gauge transformation 

We consider the Schrödinger equation given by 
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 UHU
t

i ˆ'ˆˆ 
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
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Thus we have 
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We note that 
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Then we have 
 

22 )'ˆ(ˆ)ˆ(ˆˆ)ˆ(ˆˆ)ˆ(ˆ ApApApAp
c

q
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c

q
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Using this relation we get the new Hamiltonian as 
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or 
 

')'ˆ(
2

1
)'ˆ(

2

1
'ˆ 22 

q
c

q

m
q

c

q

mtc

q
H 




 ApAp . 

 
Therefore the Schrödinger equation can be written in the same way in any gauge chosen. 
 
9. Invariance of physical predictions under a gauge transformation 

The current density is invariant under the gauge transformation. The current density 
is given by 
 

]ˆRe[
1  ApJ

c

q

m
  

 
We note that 
 

 ApAp
c

q

c

q
 ˆ''ˆ'  

 
Here we have 
 

ApAp
c

q
U

c

q
U  ˆˆ)'ˆ(ˆ  

 
Then 
 

JApApJ  ]ˆRe[
1

]''ˆ'Re[
1

' 
c

q

mc

q

m
 

 
Note: after the gauge transformation, 'AA  in the current density operator. This is 
identified from the form of Hamiltonian. 
 

')'ˆ(
2

1
'ˆ 2 q

c

q

m
H  Ap . 

 
We note that the density is gauge invariant under the gauge transformation. 
 

22
''  rr  . 

 
since 
 

)]ˆ(exp[ˆ r
c

iq
U


  
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 rrrrr )](exp[)(ˆ'
c

iq
U


  

 

22
2

)](exp['  rrrr 
c

iq


 

 
10. Aharonov-Bohm effect 

In the best known version, electrons are aimed so as to pass through two regions that 
are free of electromagnetic field, but which are separated from each other by a long 
cylindrical solenoid (which contains magnetic field line), arriving at a detector screen 
behind. At no stage do the electrons encounter any non-zero field B.  
 

 
Fig. Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split 

into two paths that go to either a collection of lines of magnetic flux (achieved by 
means of a long solenoid). The beams are brought together at a screen, and the 
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resulting quantum interference pattern depends upon the magnetic flux strength- 
despite the fact that the electrons only encounter a zero magnetic field. Path 
denoted by red (counterclockwise). Path denoted by blue (clockwise) 

 
 

We assume that q = -e (e>0). In the space when B = 0, we have 
 

0 AB , 
 
or 
 

A , 
 
or 
 

 
r

r

rArr
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d )()( , 

 
where r0 is an arbitrary initial point in the field region. We now consider the gauge 
transformation such that 
 

0)('  AA . 
 
The new wavefunction )(' r  can be written as 
 

)()exp()(' rr 
c
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
 . 

 
The Schrödinger equation for )(' r  is 
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2
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i
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, 

 
where '  is the field-free wave function and the new Hamiltonian is that of free particle; 
 

2ˆ
2

1
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m
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Then we have 
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Incident Electron beams

Screen

Reflector

Reflector

B
out of page

C1

C2

slit-1
slit-2P Q

 
 
Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams 

go into the two narrow slits (one beam denoted by blue arrow, and the other 
beam denoted by red arrow). The diffraction pattern is observed on the screen. 
The reflector plays a role of mirror for the optical experiment. 

 
Let B1  be the wave function when only slit 1 is open. 
 

 
10,1,1 )](exp[)()(

PathB d
c

ie
rArrr


 , (1) 

 
The line integral runs from the source through slit 1 to r (screen). Similarly, for the wave 
function when only slit 2 is open, we have 
 

 
20,2,2 )](exp[)()(

PathB d
c

ie
rArrr


 , (2) 

 
The line integral runs from the source through slit 2 to r (screen). Superimposing Eqs.(1) 
and (2), we obtain 
 

 
20,210,1 )](exp[)()](exp[)()(
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c
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rArrrArrr


  
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The relative phase of the two terms is 
 

B

PathPath

d

dddd
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Ba

AarArrArrAr )()()()(
21  

 
by using the Stokes' theorem. B  is the magnetic flux. Then we have 
 

)]()exp()([)](exp[)( 0,20,12
rrrArr    BPathB c

ie
d

c

ie


, 

 
where the relative phase now is expressed in terms of the flux of the magnetic field 
through the closed path. 
 
When 
 

nd
c

e

c

e

path
Closed

B 2  Ba


 (n =0, 1, 2, 3,…). 

 
The pattern will be the same as without the magnetic field present. 
 
When 
 

)
2

1
(2   nd

c

e

c

e

path
Closed

B Ba
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, 

 
or 
 

)
2

1
(2)

2

1
(

2
0  nn

e

c
B


, 

 
the position of the minimum and the maximum in the pattern will be interchanged. 0 is 
the magnetic flux quanta and is given by 
 

e

hc

e

c

22

2
0 


=2.067833667 x 10-7 Gauss cm2 = 2.067833667 x 10-15 T m2. 

 
((Note)) 
 

1)(0,1
ikrer ,  2)(0,2

ikrer  

 
The condition for constructive interference in the presence of a magnetic field is 
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where l is intergers. 
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k
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The positions of the interference maxima are shifted due to the variation in B , 
although the electron does not penetrate into the region of finite magnetic field. 

(i) When n
c

e
B 2


 

 

)(2
1

21  n
k

rr  . 

 
The pattern is the same as without B.  

(ii) When )
2

1
(2  n

c

e
B 


, 

 

)
2

1
(2

1
21  n

k
rr  . 

 
The pattern is different from that without B. 
 
 
11. Young's double slit experiment for the Aharonov-Bohm effect 
 
 

Electron beams ScreenB

C1

C2

slit-1

slit-2

P Q
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Fig. Young's double slit experiment with the electron beam source. The magnetic 
field is applied just behind the slits. There is no magnetic field around the paths 
(C1 and C2). 
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The phase difference;  
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Since  DDy  tan , we have 
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The intensity I 
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The intensity is described by 
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When the effect of the width of the slit a is taken into account, the intensity is modified 
as 
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Fig. Young's double slits diffraction with Aharonov-Bohm effect. The diffraction 

pattern changes with the magnetic field. red (B = 0). Blue (B=intermediate 
value). Green (B = stronger field). 

 
12. The observation of Aharonov-Bohm effect by Akira Tonomura 
 
 

 
 

Fig. Picture of Dr Akira Tonomura (April 25, 1942– May 2, 2012), who was a 
Japanese physicist, best known for his development of electron holography and 
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his experimental verification of the Aharonov–Bohm effect. 
http://en.wikipedia.org/wiki/Akira_Tonomura 

 
 
_______________________________________________________________________ 
Summary of the article (by A. Tonomura) 
[http://physicaplus.org.il/zope/home/en/1224031001/Tonomura_en] 
 
(i) A toroidal ferromagnet (permalloy) instead of a straight solenoid, which has 

inevitable leakage fluxes from both ends of the solenoid. An ideal geometry with 
no flux leakage can be achieved by the finite system of a toroidal magnetic field.  

(ii) The toroidal ferromagnet is covered with a superconducting niobium layer to 
completely confine the magnetic field. 

(iii) An electron wave is incident to a tiny toroidal sample fabricated using 
lithography techniques. 

(iv) The relative phase shift between two waves passing through the hole and around 
the toroid is measured as an interferogram. A relative phase shift of π is 
produced, indicating the existence of the AB effect even when the magnetic 
fields are confined within the superconductor and shielded from the electron 
wave. An electron wave must be physically influenced by the vector potentials. 
Therefore, it can be concluded that electron waves passing through the field-free 
regions inside and outside the toroidal magnet are phase-shifted by π, although 
the waves never touch the magnetic fields. 
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Fig. Schematic diagram of the Aharonov-Bohm effect (by A. Tonomura group at 

Hitachi). 
 

 
 
Fig. The direction of the vector potential around the solenoid coil. 
 
 
Vector potential around the solenoid 
 

  lAaAaB ddd )(  

 
Then we have 
 

rA  2 ,  or 
r

A
 2


  

 
where the vector potential A is in a two dimensional plane perpendicular to the axis of 
solenoid. eA A . e  is the unit vector along the tangential direction. 
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Fig. The vector potential distribution around the solenoid. 
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http://prlo.aps.org/files/focus/v28/st4/ABeffect_BIG.jpg 
 
Look Ma, no fields. Electrons passing around opposite sides of an electromagnet feel 
negligible magnetic fields (purple), but the electromagnetic potential (green circles and 
arrows) affects them in opposite ways, leading to measurable consequences. Before the 
effect was proposed in 1959, physicists thought fields must interact directly with 
particles to cause measurable electromagnetic effects. 
 
13. Flux quantization in superconductors 

The electrons form a Cooper pairs in superconductors. The wavefunction of the 
Cooper pairs in the absence of a field is given by )(0 r . Then in a presence of a field, it 

becomes 
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A closed path (C) about the cylinder starting at the point r0 gives 
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Since the wavefunction should be single valued, we must have 
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where we use the Stokes theorem, 
 

B

AAC

Bddd   aAaAs  

 
where B  is the total magnetic flux. Then quantized magnetic flux is given by 
 

e
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e
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2
0 


 = 2.06783372 × 10-7 Gauss cm2 
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Mathematica demonstration 
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APPENDIX-I 
Magnetic field distribution 
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Fig. Magnetic field lines of the system of 7 current loops stacked along the z 

axis, which are equally spaced. When the coil is wound tightly and there 
are more loops, the magnetic field inside become larger and more 
uniform. The magnetic field B forms a closed loop. 

 
_______________________________________________________________________ 
APPENDIX-II 
Aharonov-Bohm effect 
The property of the wave function around the cylinder in which an external 
magnetic field is applied. (Sakurai and Napolitano) 
 

We consider a hollow cylindrical shell, as shown in the above figure. We assume 
that an electron of charge (-e) can be completely confined to the interior of the shell with 
rigid walls. The wave function is required to vanish on the inner ( = a) and outer ( = 
b) walls, as well as at the top and bottom. It is a straightforward boundary value 
problem in mathematical physics to obtain the energy eigenvalues. 
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We consider a very long solenoid into the hole in the middle in such a way that no 
magnetic field leaks into the region a  . The boundary conditions for the wave 

function are taken to be the same as before; the walls are assumed to be just as rigid. 
Intuitively, we may conjecture that the energy spectrum is unchanged because the region 
with 0B  is completely inaccessible to the charged particle trapped inside the shell. 
However, quantum mechanics tells us that this conjecture is not correct. 

Even though the magnetic field vanishes in the interior, the vector potential A is 
nonvanishing there; using Stokes's theorem, we can infer that the vector potential needed 
to produce the magnetic field B (= Bz) is 
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where a  is the total magnetic flux penetrating the cylinder along the z axis, 
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We now consider the gauge transformation such that 
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The wave function ( ' )for the free particle satisfies the Schrődinger equation (free 
particle) is given by 
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Noting that 
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When '  depends only on  ( is kept as fixed parameter), we have 
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The solution of this equation is 
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Using the gauge transformation of the wave function, we get 
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20  (quantum magnetic flux, fluxoide) 

 
We use the boundary condition such that 
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30 
 

or 
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where n is an integer; n = 0, ±1, ±2,…. 
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The eigen energy is given by 
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The energy eigenvalue for the ground states is a periodic function of 
02

a  as shown in 

Fig.1  
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Fig.1 The ground state energy as s function of 
02

a .  
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A.3 Approach from the Bloch theorem: Persistent current in conducting 
metallic ring 

This was, in part, anticipated in a widely known but unpublished piece of work by 
Felix Bloch in the early thirties, who argued that the equilibrium free energy of a 
metallic circuit must be a periodic function of the flux through the circuit with period 
hc/e; this was jokingly known as a theorem which disproved all theories of the 
metastable current in superconductors. (from a book written by D.J. Thouless12). 
 

 
Fig. Circular conducting metal wire (one-dimensional along the x axis). The 

coordinate x is along the circular ring. The magnetic field is located only at the 
center (green part) of the ring (the same configuration as the Aharonov-Bohm 
effect). 2L  (  : radius of the metal circular ring). a  is the total magnetic 

flux penetrating the ring at the center. 
 
(a) Bloch theorem and energy band 

We consider a circular metal ring. A magnetic field is located only at the center of 
the ring (the same configuration as the Aharonov-Bohm effect). We assume that q = -e 
(e>0). There is no magnetic field on the conducting metal ring (B = 0). In other word, 
the magnetic flux exists only at the center. The vector potential A is related to B by 
 

0 AB , 
 
or 
 

A . 
 
The scalar potential  is described by 
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where the direction of x is along the circular ring and x0 is an arbitrary initial point in the 
ring. We now consider the gauge transformation. A’ and A are the new and old vector 
potentials, respectively. ’ and  are the new and old wave functions, respectively.  
 

0)('  AA , 
 

)()exp()(' rr 
c

ie


 . (Gauge transformation of the wave function) 

 
Since A’ = 0, ’ is the field-free wave function and satisfies the Schrödinger equation 
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In summary, we have 
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where L is a perimeter of the circular metal wire ring. From these equation we get 
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Here we use the relation 
 

a

Lx

x

dAdxxA  


a)()( , 

 
where a  is the total magnetic flux penetrating the ring at the center. It is reasonable to 

assume the periodic boundary condition 
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for the free particle wave function. Then we have 
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with the wavenumber 
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This equation indicates that (x) is the Bloch wave function. The electronic energy 
spectrum of the system has a band structure. We now consider the case of k+G with 
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since 1)exp( iGL . Therefore we have the periodicity of the energy eigenvalue 
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From the Bloch theory, we can also derive 
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The energy E(k) depends on 
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periodicity 1. 
 

cL

e

L
G


02

2 



, 

 
The magnetization )( aM  is defined as 
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where A (= 2 ) is the total area of the circular ring. This is proportional to the group 
velocity defined by 
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The magnetic moment )( aM  is related to the current flowing in the ring as 
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(b) Derivation of )( aE   

We consider the persistent current system in the ring in the presence of magnetic 
flux. 2L . 
 

 
Fig. Circular conducting ring with radius R = . The magnetic field B is located only 

at the center and is along the z axis (out of the page). 
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Fig. The vector potential A is along the e direction. The magnetic field is along the 

cylindrical axis (z axis) and is located only at the center of cylinder. 
 

An electron is constrained to move on a 1D ring of radius . At the center of the 
ring, there is a constant magnetic flux in the z direction. The magnetic flux through the 
surface bounded by the ring 
 

  aBaA dda )( . 

 
Using Stoke’s theorem, 
 

addd   aBAaA )( . 

 
From the azimuthal symmetry of the system, the magnitude of the azimuthal component 
of A must be the same everywhere along the path (radius ) 
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2
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Now we consider the Schrödinger equation for electron (q = -e) constrained to move on 
the ring, we have  
 

  constant, and z = constant. 
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We use the new vector potential 
 

0'  AA , 
or 
 

0
1

' 



 
 AA , 

 
or 
 

0
1

2
0 












a , 

 
or 
 





2

a
 . 

 
The Hamiltonian is given by 
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The Schrödinger equation is given by 
 

''ˆ  rr EH  , 

 
or 
 

)(')('
1

2
ˆ

2

2

2

2

rrr 


 E
m

H 






, 

 
or 

)(')(' 2
2

2

rr 






, (104) 

 
where 
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Then the wave function is obtained as 
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The old wave function is related to the new wave function (q = -e, gauge transformation) 
by 
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where 
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From the periodic boundary 
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we have 
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Here we define the quantum fluxoid 0 as 
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then we have 
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Then the energy eigenvalue is obtained as 
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The energy eigenvalue of the ground states is shown in Fig.1. 

We now consider the current density J defined by (quantum mechanics) 
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This is compared with 
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Fig. The persistent current density 0/ JJ  as a function of 
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APPENDIX III 

S. Washburn, Aharonov-Bohm effects in loops of gold 
Chapter 1 p.3-36 
B.L. Altshuler, P.A. Lee, and R,A, Webb, Mesoscopic Phenomena in Solids 
(North-Holland, 1991) 

 
The Aharonov-Bohm effect has been confirmed in the conduction phenomena in 
mesoscopic system such as a ring made of gold wire. Washburn et al. (IBM) prepared a 
metal ring with a diameter 1 m, which is made of gold thin wires. An external magnetic 
field is applied along a direction perpendicular to the loop surface. They measure the 
magnetoresistance of the loop of gold. The result of the conductance (reciprocal of the 
magnetoresistance) is shown as a function of the magnetic field (B). The data seems a 
random signal. This signal arises from the interference of electrons flowing on the right 
hand of the loop and the left hand of the loop. This interference is related to the 
magnetic flux passing through the loop. Over the modest ranges of field, the resistance 
oscillates with the flux period 02 . The conductance G can be expressed by 
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The angular frequency of the first harmonics; 
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Then we have the frequency 
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where A is the area enclosed. The sample diamter is 825 nm. The oscillation can be 
analyzed by the Fourier transform. The peak appears at 129.257 (1/T). Since the current 
has a sawtooth shape as a function of B (or a ), the Fourier spectrum has higher 

harmonoics at 2f1, 3f1, and so on, depending on the nonlinearity of the current shape. 
Note that the peak at 2f1 does not show the evidence of the quantum fluxoide ( 0 ). 

 
. 


