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Here we discuss the hyperfine interaction between the proton and electron in the ground state 
hydrogen atom (1 2S1/2), where both the proton and electron have spin 1/2. Two particle states 

consists of , , , , ,  and , . Because of the hyperfine interactions, these degenerate 

states are split into the singlet state (antisymmetric state) and the triplet state (symmetric state). 
The energy difference corresponds to 1042 MHz, or the wavelength 21 cm wave length. The 
transition between these states is due to the radiation through magnetic dipole, but not an electric 
dipole. The relaxation time is extremely long. We discuss the properties of the 21 cm hydrogen 
H1 line based on the numerical calculations. The magnitude of the hyperfine interaction depends 
only on the probability of the ground state hydrogen at the origin. So the s- electron with zero 
orbital angular momentum. Thanks to this fact, numerical calculations are so exact and can be 
compared with the experimental values. In this sense, the physic of 21 cm H1 line may provide a 
piece of evidence for the quantum mechanics. 
 

 
 

Hendrik Christoffel "Henk" van de Hulst (19 November 1918 – 31 July 2000) was a Dutch 
astronomer and mathematician. 



In 1944, while a student in Utrecht, he predicted the existence of the 21 cm hyperfine line of 
neutral interstellar hydrogen. After this line was discovered, he participated, with Jan Oort and 
C.A. Muller, in the effort to use radio astronomy to map out the neutral hydrogen in our galaxy, 
which first revealed its spiral structure. He spent most of his career at the University of Leiden, 
retiring in 1984. He published widely in astronomy, and dealt with the solar corona, and 
interstellar clouds. After 1960 he was a leader in international space research projects. In 1956 he 
became member of the Royal Netherlands Academy of Arts and Sciences. 

 
1. Introduction 

It is well known in optics that as the wavelength of light increases, attenuation through a 
given material decreases. It is no wonder, then, that radio waves reach us from parts of deep 
space that optical light does not. In particular, clouds of interstellar gas that would other- wise 
hide optical features in our galaxy can reveal much about general galactic structure and dynamics 
if we look in a frequency band around 1420.4 MHz. This is known as the 21 cm line. Emitted by 
neutral hydrogen atoms, this line can be seen with varying intensity coming from all directions in 
the sky, and due to its extremely sharp nature (very little dispersion in energy), is used widely in 
astronomy for spectroscopic velocity measurements. 

A neutral hydrogen (H1) atom has one proton and one electron. Both particles have spin 
angular momentum (spin 1/2). These have the corresponding magnetic moments. There is a 
hyperfine interaction between these magnetic moments. The ground state of the neutral hydrogen 
(H1) is non-degenerate. When the spins of proton and electron are taken into account, the ground 

state is no longer non-degenerate. There are four two-spin states such as  ,  ,  , and 

 . In the state  , the proton is in the z  and the electron is in the z  state. In the 

presence of the hyperfine interaction between the spins of proton and electron, the ground state 
(4 states) splits into the F = 1 states (symmetric state) and F = 0 state (antisymmetric state). The 

energy level of F = 1 state is higher than that of F = 0 state, where 012/12/1 DDDD  . A 

photon is emitted during the transition from the F = 1 state to F = 0 state. The wavelength of the 
photon is 21 cm. Such a transition is a highly forbidden process, with a mean-life of 
approximately 107 years. The Heisenberg’s principle of uncertainty leads one to expect a very 
sharp emission line with small energy dispersion, or line width, in frequency. This feature allows 
for highly accurate determinations of H1 source velocity by simple measurements of the Doppler 
shift of the 21 cm line. 
 
2. Properties of proton and electron 
Here we put the physical data of magnetic moments of electron and proton. 
 
(a) Electron magnetic moment: 
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Physics constants for the 21 cm H1 Line 
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3. Eigenvalue problem 
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The Hamiltonian of the hyperfine interaction between the electron and proton is 
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We introduce the Dirac exchange operator which is defined by 
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The Hamiltonian can be rewritten as 
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So   and   are the eigenkets of 0Ĥ  with the energy eigenvalue 104
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The Hamiltonian is expressed by the matrix 
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under the basis of {  ,  ,  ,  }. In the subspace of {  ,  }, the 

Hamiltonian can be simplified by 
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Fig. Hyperfine splitting in the ground state of hydrogen. Triplet state with energy 0E  (  , 
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4. Zeeman energy 
 
In the presence of a magnetic field along the z axis, 
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4. Canonical ensemble for the one particle 

We consider the system with one particle. The partition function is given by 

E E10

B Oe

0,0

1, 1

1,0

1,1

200 400 600 800 1000

1.5

1.0

0.5

0.5

1.0

E E10

B Oe

0,0

1, 1

1,0

1,1

500 1000 1500 2000

2

1

1

2



 
0

101
 eggZ  

 
where g0 (=1) and g1 (=3) are the degeneracies of the singlet and triplet, respectively. The 
probability of finding the particle at 0  is 
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The probability of finding the particle at 0  is 
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((Wien’s displacement law)) 
 

The equilibrium temperature of cool interstellar HI is determined by the balance of heating 
and cooling. The primary heat sources are cosmic rays and ionizing photons from hot stars. The 
main coolant in the cool interstellar medium (ISM) is radiation from the fine-structure line of 

singly ionized carbon, CII, at max 157.7 m. This line is strongly only when the temperature is 

evaluated from the Wien’s displacement law 
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Suppose that the spin temperature is Ts = 150 K, 
 

547.410 
sBTk

h
x10-4. 

 
Thus we have 



 

310

0

1

0

1   he
g

g

N

N
 

 
Why the magnetic dipole radiation is much important than the dipole radiation? 
What is the reason? 
 
5. M1 transition due to the magnetic moment: 21 cm H1 

Here we introduce a full magnetic dipole operator which is defined as 
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The hyper transition in an atomic hydrogen from F = 1 to F = 0 state at 1420 MHz transition is 

an M1 transition. The M1 transition involves a change in a spin (a) from the state ,1,1  fmF  

to 0,0  fmF , and (b) from the state ,0,1  fmF  to 0,  fmF . 
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The matrix element is given by 
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Note that the magnetic moment of the proton is much smaller than that of the magnetic moment. 

Then Ŝ  is actually equal to the spin of electrons. Using the kronecker product, the spin operator 
of electron are given by 
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The matrix elements can be evaluated as 
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Then we have the transitions 
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(b) 
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Fig. Plot of the frequencies for the transitions 0,01,1   and 0,01,1  . The x-axis: the 

magnetic field B(Oe). The y axis is the frequency (in units of MHz).  
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The enrgy level of the ground state 1 S1/2 state in hydrogen (H) atom. The levels are depicted 
wuth the account for the proton-electron spin system (the total momentum F) and the Zeeman 
splitting. The energy levels resulting from the Zeeman effect are denoted by the states 

1,0,1,1  FmF  and 0,0  FmF . The photons with right hand circular polarization are 

generated during the transition from 1,1  to 0,0 , with the angular momentum  . The photons 

with left hand circular polarization are generated during the transition from 1,1   to 0,0 , with 

the angular momentum  . The photons with the ;linear polarization generated during the 
transition from 0,1  to 0,0 , with the angular momentum 0. 

 
6. Relaxation time 
The spontaneous emission for the magnetic dipole is given by 
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