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1. Hamiltonian of He atom 

The nucleus of a He atom consists of two protons and two electrons. There are two 
electrons in orbit around the nucleus. Here we neglect the motion of the nucleus, 
assuming it to be infinitely heavy. An idealized classical picture of the system is shown 
below. 
 

 
 
Fig. Co-ordinates used in the formation of the Helium Hamiltonian 
 
The Hamiltonian of He atom, in a frame where the nucleus is at rest, is given by 
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where e>0, me is the mass of electron, 1̂r  and 2̂r  are the position operators of the two 
electrons. There are attractive Coulomb interactions between protons (2e) and electron (-
e), and repulsive Coulomb interaction between two electrons. This Hamiltonian is 
separated into two parts; the unperturbed Hamiltonian as 
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and the perturbation Hamiltonian as 
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We note that both 0Ĥ  and 1Ĥ  are independent of spins.  

 

2. Simultaneous eigenstate of 0Ĥ , spaceP12
ˆ , and spinP12

ˆ  

Because 0Ĥ  contains no interaction between the individual electrons, it represents a 

Hamiltonian of two isolated electrons, each under the influence the same nucleus. The 

Hamiltonian 0Ĥ does not contain the spin operators. The Schrödinger equation is satisfied 

by each component of the wave function; in other words, the wave function of the system 
can be expressed in the form of a product, 
 

spinspace   . 

 
Note that the Schrödinger equation essentially determines only the space function 

space , the spin function spin  remaining arbitrary. The exchange operator can be 

expressed by 
 

spinspacePPP 121212
ˆˆˆ  , 

 

where the operator spinP12
ˆ  inter-exchanges the spin states of the two electrons and spaceP12

ˆ  
inter-exchanges the position coordinate. We have the commutation relations, 
 

0]ˆ,ˆ[ 120 spacePH , 0]ˆ,ˆ[ 120 spinPH , 0]ˆ,ˆ[ 1212 spinspace PP . 

 

So we can find the simultaneous eigenket of 0Ĥ , ,1̂2
spaceP and ,1̂2

spinP  

 
spinspace   , 

 
such that 
 

spinspinspinP  12
ˆ , spacespacespaceP  12

ˆ , 

 

 00
ˆ EH   

 
Note that 
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The eigenket spaceP12
ˆ  for the eigenvalue +1 is  
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The eigenket spaceP12
ˆ  for the eigenvalue -1 is  
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1space
a . (anti-symmetric) 

 
spinP12

ˆ  is the Dirac exchange operator and is defined by 
 

)ˆˆ1̂(
2

1ˆ
2112 σσ spinP . 

 
We note that 
 

spinP12
ˆ  (   is the eigenket of spinP12

ˆ  with eigenvalue +1). 

 

spinP12
ˆ  (   is the eigenket of spinP12

ˆ  with eigenvalue +1). 

 
Since 
 

spinP12
ˆ  

 

spinP12
ˆ  

 

under the basis of   and  , spinP12
ˆ  can be expressed as 
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The eigenket of x
spinP ̂1̂2   is given by 
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  for the eigenvalue (+1), 

 
and 
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2

1
  for the eigenvalue (-1). 

 

In summary, the eigenket of spinP12
ˆ  for the eigenvalue (+1) is 
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1spin
s . (symmetric) 

 

The eigenket of spinP12
ˆ  for the eigenvalue (-1) is 
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2

1
spin

a . (anti-symmetyric) 

 
3. Commutation relations for the total orbital and spin angular momentum 

We consider the Hamiltonian 
 

10201
ˆˆˆˆ HHHH   

 

Note that 01Ĥ , 02Ĥ , and 1Ĥ  are central fields, where the interactions depends only on the 

distances between the two particles. The angular momentum 111 ˆˆˆ prL   commutes with 

01Ĥ . 

 

0]ˆ,ˆ[ 101 LH . 

 
We note that all observables relating to one of the particles (particle 1, in our case) 
commute with all those corresponding to the other one (particle 2, in our case).  
 

0]ˆ,ˆ[ 102 LH . 

 
which means that 
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0]ˆ,ˆˆ[ 10201  LHH , 

 
Similarly, we get 
 

0]ˆ,ˆ[ 201 LH ,   0]ˆ,ˆ[ 202 LH  

 
which means that 
 

0]ˆ,ˆˆ[ 20201  LHH  

 
Then we have 
 

0]ˆ,ˆˆ[ 0201  LHH  

 
where 
 

21
ˆˆˆ LLL  . 

 

How about the commutation relation on 0]ˆ,ˆ[ LH ? We note that 
 

]ˆ,ˆ[]ˆ,ˆˆˆ[]ˆ,ˆ[ 110201 LLL HHHHH   

 
Using the Mathematica, we show that 
 

0]ˆ,ˆ[ 1 LH . 
 
or 
 

),()(),()(]ˆ,ˆ[, 2121121211121 rrrrrrrrrr   HLLHLH zzz  

 
where 
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),,( 1111 zyxr , ),,( 2222 zyxr . 

 
((Mathematica)) 
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Clear"Global`";

R12  x1  x22  y1  y22  z1  z22 ; H3 
e12

R12
;

L1z :
—


x1 D, y1  y1 D, x1 &;

L2z :
—


x2 D, y2  y2 D, x2 &;

Lz : L1z  L2z &;

1  x1, y1, z1, x2, y2, z2;

H3 Lz1  LzH3 1  Simplify

0  
______________________________________________________________________ 
Then we have the commutation relation 
 

0]ˆ,ˆ[ LH , 
 
or 
 

0]ˆ,ˆ[ xLH , 0]ˆ,ˆ[ yLH , 0]ˆ,ˆ[ zLH  

 
From these relations, we have 
 

0]ˆ,ˆ[ 2 LH , and 0]ˆ,ˆ[ zLH  
 
Similarly we have 
 

0]ˆ,ˆ[ 2 SH , 0]ˆ,ˆ[ zSH  
 
Here  
 

0]ˆ,ˆ[ ji SL  

 
The total angular momentum is defined by 
 

SLJ  . 
 
We note that 
 

0]ˆ,ˆ[ LH , 0]ˆ,ˆ[ SH , 0]ˆ,ˆ[ 2 LH , 0]ˆ,ˆ[ 2 SH , 
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From this relation we find that 
 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[  SLJ HHH . 
 
leading to 
 

0]ˆ,ˆ[ 2 JH , 0]ˆ,ˆ[ zJH  
 

In summary, there is a simultaneous eigenket of the operators 2L̂ , 2Ŝ , zL̂ , and zŜ . So the 
total angular momentum and the total spin angular momentum are good quantum 
numbers which denote the resulting states. 
 

4. Spin state for the total Hamiltonian Ĥ  
From the above discussion, we have 

 

0]ˆ,ˆ[ zSH , 0]ˆ,ˆ[ 2 SH , 0]ˆ,ˆ[ 12 HP spin . 
 

0]ˆ,ˆ[ 2 zSS  
 

So we have the simultaneous eigenket of spinP12
ˆ , 2Ŝ , and zŜ . 

(i) S =1 
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(ii) S = 0 
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0,0  s

spin
a MS . (anti-symmetyric) 
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5. Orbital state for the total Hamiltonian Ĥ  
We need to choose the unperturbed states that diagonalize the perturbation (Cardinal 

rule). So the best way we can do is to choose the state 
 

2211 ,;,;, lnlnML  = the superposition of the kets 111 ,, mln  and 222 ,, mln with the 

Clebsch-Gordan co-efficients 
 
with 
 

21 mmM  ,  212121 ,...,1, llllllL  , 

 
where L and M are the good quantum numbers. Here we use the following notation. 
 

)1(22  LLL , MLz  , 
 
with 
 

'21 mmM   
 
where 
 

1m  = l1, l1-1, l1 -2, …. ,- l1, 
 

2m  = l2, l2- 1, l2-2, …. ,- l2. 
 
7. Eigenstates 2211 ,;,;, lnlnML  (Cohen-Tannoudji)) 

 
)(

12
)(

1212
ˆˆˆ spinspace PPP  , 

 

S
spinspace

S

MSlnlnMLPPc

MSlnlnMLPc

,,;,;,)ˆˆ1̂(

,,;,;,)ˆ1̂(

2211
)(

12
)(

12

221112




, 

 
where c is a normalization constant, and 2211 ,;,;, lnlnML  are formed of the 

superposition of the kets 111 ,, mln  and 222 ,, mln with the Clebsch-Gordan co-efficients. 

 

S
S

S
spin MSMSP ,)1(,ˆ 1)(

12
 . 

 
where 
 

SSS
spin MSMSMSP ,1,1)1(,1ˆ 2)(

12   (symmetric) 
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0,00,0)1(0,0ˆ 1)(
12  SSMSP S

spin  (antisymmetric) 

 
The symmetrizer operator and antisymmetrizer operator are defined by 
 

]ˆ1[
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)( spacespace PS   

 
(i) 2211 ,, lnln   
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spaceS MSlnlnMLPc ,,;,;,)ˆ)1(1̂[ 2211

)(
12
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When S = 1 (symmetric)  
 

S
space

S
space

MSlnlnMLAc

MSlnlnMLPc

,,;,;,ˆ2

,,;,;,)ˆ1̂(

2211
)(

2211
)(

12




. 

 
When S = 0 (antisymmetric), 
 

S
space

S
space

MSlnlnMLSc

MSlnlnMLPc

,,;,;,ˆ2

,,;,;,)ˆ1̂(

2211
)(

2211
)(

12




 

 
(ii) 2211 ,, lnln   

 

S
spaceS MSlnlnMLPc ,,;,;,)ˆ)1(1̂[ 2211

)(
12

1   . 

 
We use the formula, 
 

22112211
)(

12 ,;,;,)1(,;,;,ˆ lnlnMLlnlnMLP Lspace  , 

 
only for 2211 ,, lnln   (the same state such as 

21
11 ss , 

21
22 pp ). This will be shown 

later from the discussion of the Clebsch-Gordan coefficients. Then we have 
 

S
SL MSlnlnMLc ,,;,;,))1(1̂[ 2211

1   . 

 
When SL  = even,  
 

SMSlnlnMLc ,,;,;,2 2211  . 

 
((Example)) Two electron systems with spin 1/2 
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S = 1 (symm) and L = 1 (antisymm) 
S = 0 (antisymm) and L = 0 (symm). 

 
When L + S = odd,  
 

0 . 

 
Here we show the Clebsh-Gordan coefficients for the two particles in the same or the 
different orbital states. 
 
Clebsh-Gordan coefficients 
 
(1s)(1s), (1s)(2s), (1s)(3s), (2s)(2s) 
 
L = 0 (symmetric) 
 

21

2211

0,00,0

0,00,00,0



 mlmlML L
 

 
(1s)(2p), (1s)(3p), (2s)(2p) 
 
L = 1 
 

21
0,01,11,1  LML , 

 

21
0,00,10,1  LML , 

 

21
0,01,11,1  LML . 

 
(2p)(2p), (2p)(3p) 
 
L = 2 (symmetric) 
 

21
1,11,12,2  LML , 

)1,10,10,11,1(
2

1
1,2

2121
 LML , 

)0,10,121,11,11,11,1(
6

1
0,2

212121
 LML , 

)1,10,10,11,1(
2

1
1,2

2121
 LML , 

21
1,11,12,2  LML . 
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L = 1 (anti-symmetric) 
 

)1,10,10,11,1(
2

1
1,1

2121
 LML , 

)1,11,11,11,1(
2

1
0,1

2121
 LML , 

)0,11,11,10,1(
2

1
1,1

2121
 LML . 

 
L = 0 (symmetric) 
 

)0,10,11,11,11,11,1(
3

1
0,0

212121
 LML . 

 
(2p)(3d), (3p)(3d) 
 
L = 3 
 

21
2,21,13,3  LML , 

2121
2,20,1

3

1
1,21,1

3

2
2,3  LML , 

212121
2,21,1

15

1
1,20,1

15

2
20,21,1

5

2
1,3  LML , 

212121
1,21,1

5

1
0,20,1

5

3
1,21,1

5

1
0,3  LML , 

212121
2,21,1

15

1
1,20,1

15

2
20,21,1

5

2
1,3  LML , 

2121
2,20,1

3

1
1,21,1

3

2
2,3  LML , 

21
2,21,13,3  LML . 

 
L = 2 
 

2121
1,21,1

3

1
2,20,1

3

2
2,2  LML  

212121
2,21,1

3

1
1,20,1

6

1
0,21,1

2

1
1,2  LML , 

2121
1,21,1

2

1
1,21,1

2

1
0,2  LML , 
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212121
0,21,1
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3
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1,2  LML , 

2121
1,21,1
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1
2,20,1
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2
2,2  LML . 

 
L = 1 
 

212121
2,21,1

5

3
1,20,1

10

3
0,21,1

10

1
1,1  LML , 

212121
1,21,1

10

3
0,20,1

5

2
1,21,1

10

3
0,1  LML , 

212121
2,21,1

5

3
1,20,1

10

3
0,21,1

10

1
1,1  LML . 

 
6. Ground state 

Here we discuss the eigenvalue and eigenfunction of the system. The unperturbed 0Ĥ  

is just the sum of two independent Coulomb Hamiltonians. Thus we can express the 

eigenstate of 0Ĥ as simultaneous hydrogen eigenstates: 

 

222111 ,,,, mlnmln  . 

 
On the other hand, the full Hamiltonian Ĥ  is too complicated to solve directly. So we 
must resort to approximation methods. 

Let us start with the ground state of 0Ĥ . Since  

 

ss

mlnmlnspace

11

0,0,10,0,1




, 

 
is symmetrical (space part), the spin part should be anti-symmetric, 
 

],,[(
2

1
spin   (S = 0, singlet). 

 

Then the ground state of the two electrons is given by spinspace  . 

 

eVeVZcmssE e 8.108)6.13(8)
2

1
(2)1,1( 222)0(   , 

 
where Z = 2. The ground state wave function is given by 
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The first-order shift in the ground state 
 

eVcZmssHssssE e 0.34
8

5
1,1ˆ1,1)1,1( 22

1
)1(   , 

 
with 
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2
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1 1001001,1ˆ1,1
r

e
rdrdssHss rr . 

 
Then we get 
 

eVssEssEssE 8.740.348.108)1,1()1,1()1,1( )1()0(  , 
 
in comparison with the experimental result: -78.975 eV. 
 
Here we note 
 

2
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with 
 

R = 13.60569253(30) eV 
 
Fine structure constant; 
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Bohr radius: 
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((Note)) 
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Fig. First we fix the direction of r1 in the z axis.  is the angle between r1 and r2. 
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Clear"Global`"; n_, {_, m_, r_, _, _ :

1 n  { 
21{ a{ 3

2 
Z1 r

a n n{ 2 Z1{ 3
2 r{ n  {  1

LaguerreL1  n  { , 1  2 { , 2 Z1 r a n
SphericalHarmonicY{ , m, , ;

1sr_ : 1, 0, 0, r, , ;

2sr_ : 2, 0, 0, r, , ;

f1 
e12

r12  r22  2 r1 r2 Cos
;

eq1  Integrate2  Sin f1, , 0,  
Simplify, r1  0, r2  0, r1  r22  0 &;

f11  eq1  Simplify, r2  r1 &; f12  eq1  Simplify, r2  r1 &;

g11  r22 1sr22 f11 ; g12  r22 1sr22 f12 ;

a1  Integrateg11, r2, 0, r1  FullSimplify;

a2  Integrateg12, r2, r1,   FullSimplify, ReZ1

a
  0 &;

a12  a1  a2  Simplify; a3  a12 4  r12 1sr12 ;

Integratea3, r1, 0,   FullSimplify, ReZ1

a
  0 &

5 e12 Z1

8 a  
 
7. Variational method 
 
Suppose that the wave function of the ground state is given by 
 

02/3
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)(100 a
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r . 

 
The Hamiltonian is given by 
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Here we calculate the expectation value  HE ˆ  
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Then 
 

]
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5
)(42[
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1ˆ 222 ZZZZZcmHE e   , 

 
We find the minimum energy from the derivative of E  with respect to Z , 

 
222222
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)165(
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1
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When Z = 2, 
 

222 )
16

5
(2

2

1
 ZcmE e  =-2x13.60569253 eV x 2)

16

5
2(   = -77.4563 eV 

 
where 
 

6875.1
16

5
 ZZ . 

 
This result of E is comparable with the experimental result: -78.975 eV. 
 
 
((Mathematica)) 

Clear"Global`"; r_ :
Z1

a0

32 1


ExpZ1

a0
r;

g1 

Integrater12 4 
r12

r1
4  r22 e12 Z1  Z r22,

r1, 0,   Simplify, ReZ1

a0
  0 &;

Integrateg1 , r2, 0,  
Simplify, ReZ1

a0
  0 &

e12 Z1 Z  Z1
a0

Minimum energy determination: Z1 = x. x is changed as a variable. z  is fixed as z = 2 
for He.  
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h1  2 x2  4 x x  z  5

4
x  Simplify

1

4
x 5  8 x  16 z

h2  SolveDh1, x  0, x
x 

1

16
5  16 z

h11  h1 . h21  FullSimplify


1

128
5  16 z2

27.2 z 
5

16

2
. z  2

77.4563  
 
___________________________________________________________________ 
8. First excited state  

We consider the (1s)(2s) electron configuration, where one electron is in the 1s state 
and the other is in the 2s state. We note that the addition of the orbital angular momentum 
leads to  
 

L = 0.  (the total orbital angular momentum) 
 
Here we do not use the Clebsch-Gordan c-efficient to find the wave functions. 
 
(1) 
 

 ,]1221[1221
21212121

ssssssss . 

 
(2) 
 

 ,]12,211221
21212121

ssssssss . 

 
(3) 
 

 ,]12,211221
21212121

ssssssss . 

 
(4) 
 

 ,]1221[1221
21212121

ssssssss . 
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Eq.(2) + Eq.(3): 
 

],]12,21[],]12,21[
21212121

 ssssssss , 

 
which is equal to 
 

2

,,
]1221[

2121


 ssss . 

 
Eq.(2) - Eq.(3): 
 

],]12,21[],]12,21[
21212121

 ssssssss , 

 
which is equal to 
 

2

,,
]1221[

2121


 ssss . 

 
________________________________________________________________________ 
The zero-th order wave function for the first excited state 
 
(i) The antisymmetric orbital state; 
 

A

ssss




2

1221
2121 , 

 
where the spin state is symmetric (S = 1, triplet state) 
 
(ii) The symmetric orbital state; 
 

s

ssss




2

1221
2121 , 

 
where the spin state is anti-symmetric (S = 0, singlet state). 

Here we use the notation s   for the symmetric state and the notation 

a   for the antisymmetric state. 

 

]1"2'2"1'[
2

1
)",'(",' ssss rrrrrrrr    . 

 
Now we calculate the matrix element 
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]1"2'2"1'[

)",'(]1"2'2"1'["'
2

1

)",'()",'()",'("'ˆ

1

****33

1
*33

1

ssss

Hssssdd

rrHddH

rrrr

rrrrrrrr

rrrrrr









  

 

 
Calculation of the matrix elements: (perturbation for the degenerate system) 
We assume that 
 

"'
)",'(

2

1 rr

e
H


rr . 

 
Then we have 
 

2

2

]1"2'2"1'[

)",'(]1"2'2"1'["'
2

1

)",'()",'()",'("'ˆ

*

22211211

1

****33

1
*33

1

KK
J

VVVV

ssss

Hssssdd

rrHddH















 

rrrr

rrrrrrrr

rrrrrr 

 

 

2

2

]1"2'2"1'[

)",'(]1"2'2"1'[
2

1

)",'()",'()",'("'ˆ

*

22211211

1

****

1
*33

1

KK

VVVV

ssss

Hssss

rrHddH















 

rrrr

rrrrrr

rrrrrr 
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2

2

]1"2'2"1'[

)",'(]1"2'2"1'[
2

1

)",'()",'()",'("'ˆ

*

22211211

1

****

1
*33

1

KK

VVVV

ssss

Hssss

rrHddH















 

rrrr

rrrrrr

rrrrrr 

 

 

2

2

]1"2'2"1'[

)",'(]1"2'2"1'["'
2

1

)",'()",'()",'("'ˆ

*

22211211

1

****33

1
*33

1

KK
J

VVVV

ssss

Hssssdd

rrHddH















 

rrrr

rrrrrrrr

rrrrrr 

 

 
where 
 








)",'(2"1'"'

2"1')",'(2"1'"'

1

2233

1

**33
11

rrrrrr

rrrrrrrr

Hssdd

ssHssddV
 

 

]1"2')",'(2"1'"' 1

**33
12 ssHssddV rrrrrrrr  

 

ssHssddV 2"1')",'(1"2'"' 1

**33
21 rrrrrrrr  








)",'(1"2'"'

1"2')",'(]1"2'"'

1

2233

1

**33
22

rrrrrr

rrrrrrrr

Hssdd

ssHssddV
 

 
When K is real, we have the matrix of H1 under the basis of {  , } ; 

 














KJ

KJ
H

0

0
1 , 

 
where 
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)
2

1
2(

81

17

81

17 22

0

2

2211 cmZZ
a

e
JVV e = 11.42 eV, 

 

)
2

1
2(

729

16

729

16 22

0

2

2112 cmZZ
a

e
KVV e  = 1.19 eV, 

 
with 
 

eVRcmcm
a

e
ee 2.272

2

1
2 2222

0

2

  . 

 
This implies that 
 

   )(ˆ
1 KJH ,    )(ˆ

1 KJH . 

 
For s   the first-order energy correction is given by  

 

KJE )1(
1   for S = 0 (singlet). 

 
For a   the first-order energy correction is given by  

 

KJE )1(
1   for S = 1 (triplet). 

 
9. Heisenberg’s ferromagnet model 

Here we introduce an effective spin Hamiltonian: 
 

21
2

21
2

2
2

1
2

21
22 ˆˆ2

2

3ˆˆ2ˆˆ)ˆˆ(ˆ)1( SSSSSSSSS   SS , 

 
or 
 

2

3
)1(ˆˆ2

1
212

 SSSS


. 

 
When S = 1 (triplet),  
 

2

1ˆˆ2
1

212
 SS


, ( 1ˆˆ 21 σσ ), 

 
or 
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1)ˆˆ1̂(
2

1ˆ
2112  σσP . 

 
When S = 0 (singlet), 
 

2

3ˆˆ2
1

212
 SS


, ( 3ˆˆ 21 σσ ), 

 
or 
 

1)ˆˆ1̂(
2

1ˆ
2112  σσP . 

 
Then the effective spin Hamiltonian can be rewritten as 
 

 

212

21

211

ˆˆ2
1̂)

2

1
(

ˆˆ
2

1
1̂)

2

1
(

)ˆˆ1̂(
2

1
1̂ˆ

SS

σσ

σσ








KKJ

KKJ

KJH eff

. 

 
When K is positive, we say that the interaction between spins is ferromagnetic. If K is 
negative, the interaction is antiferromagnetic. This Hamiltonian is called the Heisenberg 
model, which was first proposed by Heisenberg. 
 
((Note)) 
 

We note that  effH1  is expressed by 

 































KJ

JK

KJ

KJ

KIKJ

KKJH

zzyyxx

eff

000

00

00

000

)ˆˆˆˆˆˆ(
2

1ˆ1̂)
2

1
(

ˆˆ
2

1
1̂)

2

1
()(

21212122

211



σσ

 

 
under the basis of  ,  ,  ,  }. We can solve the eigenvalue problem for 

 effH1 . Of course we have the eigenvalues, 
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(J - K) for S = 1 state and (J + K) for S = 0 state.  

Eigenvalue: )( KJ    Eigenstate :  , )(
2

1
 ,   

 

Eigenvalue: )( KJ    Eigenstate: )(
2

1
  

 
((Note)) Dirac exchange operator 
 

  121
ˆ1̂ˆ PKJH eff   

 
where 
 

)ˆˆ1̂(
2

1ˆ
2112 σσ P  

 
Thus we have 
 

   )()ˆ1̂(ˆ
121 KJPKJH eff  

 

   )()ˆ1̂(ˆ
121 KJPKJH eff  

 

   KJPKJH eff )ˆ1̂(ˆ
121  

 

   KJPKJH eff )ˆ1̂(ˆ
121  

 
 
((Note)) 
The excited state thus obtained are characterized by L, S, and J as follows. 
 
(1) L = 0,  S = 1,  J = 1  1

3 S  

(2) L = 0,  S = 0  J = 0  0
1S  

(3) L = 1,  S = 1,  J = 2, 1, 0 2
3 P , 1

3 P , 0
3 P  

(4) L = 1,  S = 0,  J = 1  1
1 P  

 
where J is the total angular momentum, L is the orbital angular momentum, S is the total 
angular momentum of the system. 
 
((Mathematica)) Solving the eigenvalue problem of effH )( 1 ; 
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Clear"Global`"; S  1  2; —  1;

exp_  :

exp . Complexre_, im_  Complexre, im;

x  PauliMatrix1; y  PauliMatrix2;

z  PauliMatrix3; I2  IdentityMatrix2;

I4  IdentityMatrix4;

H1 

J I4 
1

2
K KroneckerProductI2, I2 

KroneckerProductx, x 
KroneckerProducty, y 
KroneckerProductz, z  Simplify;

H1  MatrixForm

J  K 0 0 0
0 J K 0
0 K J 0
0 0 0 J  K

eq1  EigensystemH1
J  K, J  K, J  K, J  K, 0, 0, 0, 1,

0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0  
________________________________________________________________________ 
10. Evaluation of J and K 
((Mathematica)) 
 

0

2/3

0
1

1
1)( a

Zr

s e
a

Z
s














 rr , 

 

)2(
24

1
2

0

2

2/3

0

0

a

Zr
e

a

Z
s a

Zr














r , 

 

"'
)",'(

2

1 rr
rr




e
H , 

 

Z
a

e

Hssdd

ssHssddV

0

2

1

2233

1

**33
11

81

17

)",'(2"1'"'

2"1')",'(2"1'"'










rrrrrr

rrrrrrrr
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Z
a

e

d
e

drssrdrssr

ssHssddV

0

2

0 21

2

0

2

*

22
2

2

0

11

*

1
2

1

1

**33
12

729

16

sin221214

]1"2')",'(2"1'"'











 


rr

rrrr

rrrrrrrr

 

 

Z
a

e

d
e

drrsdrsr

HssddV

0

2

0 21

2

0

2
2

2

2

2

0

1

2

1
2

1

211

2

2

2

12
3

1
3

22

81

17

sin2124

),(12











 


rr

rr

rrrrrr

 

 
11. Mathematica 
(a) Calculation of V12 
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Clear"Global`"; n_, {_, m_, r_, _, _ :

1 n  { 
21{ a{ 3

2 
Z1 r

a n n{ 2 Z1{ 3
2 r{ n  {  1

LaguerreL1  n  { , 1  2 { , 2 Z1 ra n
SphericalHarmonicY{ , m, , ;

1sr_ : 1, 0, 0, r, , ;

2sr_ : 2, 0, 0, r, , ;

f1 
e12

r12  r22  2 r1 r2 Cos
;

eq1  Integrate2  Sin f1, , 0,  
Simplify, r1  0, r2  0, r1  r22  0 &;

f11  eq1  Simplify, r2  r1 &; f12  eq1  Simplify, r2  r1 &;

g11  r22 1sr2 2sr2 f11 ; g12  r22 1sr2 2sr2 f12 ;

a1  Integrateg11, r2, 0, r1  FullSimplify;

a2  Integrateg12, r2, r1,   FullSimplify, ReZ1

a
  0 &;

a12  a1  a2  Simplify; a3  a12 4  r12 1sr1 2sr1 ;

Integratea3, r1, 0,   FullSimplify, ReZ1

a
  0 &

16 e12 Z1

729 a  
 
(b) Calculation of V11 
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Clear"Global`"; n_, {_, m_, r_, _, _ :

1 n  { 
21{ a{ 3

2 
Z1 r

a n n{ 2 Z1{ 3
2 r{ n  {  1

LaguerreL1  n  { , 1  2 { , 2 Z1 ra n
SphericalHarmonicY{ , m, , ;

1sr_ : 1, 0, 0, r, , ;

2sr_ : 2, 0, 0, r, , ;

f1 
e12

r12  r22  2 r1 r2 Cos
;

eq1  Integrate2  Sin f1, , 0,  
Simplify, r1  0, r2  0, r1  r22  0 &;

f11  eq1  Simplify, r2  r1 &; f12  eq1  Simplify, r2  r1 &;

g11  r22 1sr22 f11 ; g12  r22 1sr22 f12 ;

a1  Integrateg11, r2, 0, r1  FullSimplify;

a2  Integrateg12, r2, r1,   FullSimplify, ReZ1

a
  0 &;

a12  a1  a2  Simplify; a3  a12 4  r12 2sr12 ;

Integratea3, r1, 0,   FullSimplify, ReZ1

a
  0 &

17 e12 Z1

81 a  
 
12. Summary 
 
Orthohelium: 

For spin triplet (symmetric spin part), we have an anti-symmetric space part )(a
space  with 

energy I - J. 
 

E1
(0)  E(1,0,0)  E(n,l, m), 

 
E1

(1)  I  J . 
 
Parahelium: 

For spin singlet (antisymmetric), we have a symmetrical space part )(s
space  with energy I 

+ J. 
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E1
(0)  E(1,0,0)  E(n,l, m) 

 
E1

(1)  I  J  
 

 I

J

J  
 
 
 

 
 
Fig. Schematic energy level diagram for low-lying configurations of He atom. 
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Fig. An energy-level diagram of the first excited states of He (Townsend, Quantum 

Physics) 
 
13. Orthohelium and parahelium 

In the helium energy level diagram, one electron is presumed to be in the ground state 
of a helium atom, the 1s state. An electron in an upper state can have spin antiparallel to 
the ground state electron (S=0, singlet state, parahelium) or parallel to the ground state 
electron (S=1, triplet state, orthohelium).  

It is observed that the orthohelium states are lower in energy than the parahelium 
states. The explanation for this is: 

1. The parallel spins make the spin part of the wavefunction symmetric. 
2. The total wavefunction for the electrons must be anti-symmetric since they are 

fermions and must obey the Pauli exclusion principle. 
3. This forces the space part of the wavefunction to be anti-symmetric. The 

wavefunction for the electrons can be written as the product of the space and spin 
parts of the wavefunction. 



32 
 

4. An anti-symmetric space wavefunction for the two electrons implies a larger 
average distance between them than a symmetric function of the same type. The 
probability is the square of the wavefunction, and from a simple functional point 
of view, the square of an antisymmetric function must go to zero at the origin. So 
in general, the probability for small separations of the two electrons is smaller 
than for a symmetric space wavefunction. 

5. If the electrons are on the average further apart, then there will be less shielding of 
the nucleus by the ground state electron, and the excited state electron will 
therefore be more exposed to the nucleus. This implies that it will be more tightly 
bound and of lower energy. 

This effect is sometimes called the "spin-spin interaction" and is addressed by Hund's 
Rule . It is part of the understanding of the ordering of energy levels in multi-electron 
atoms. 
 
14. A simpler approach to the Heisenberg’s model on ferromagnetism 
(a) Comment on the commutation relation 

For the sake of clarity, here we use the perturbation Hamiltonian as 
 

21

2

ˆˆ
ˆ

rr 


e
V  

 
We have the following commutation relations, 
 

0]ˆ,ˆ[ 2 LV , 0]ˆ,ˆ[ zLV  

 

0]ˆ,ˆ[ 2
0 LH , 0]ˆ,ˆ[ 0 zLH  

 

0]ˆ,ˆ[ 2 LH , 0]ˆ,ˆ[ zLH  

 
where 
 

VHH ˆˆˆ
0  . 21

ˆˆˆ LLL   

 

L̂  is the total orbital angular momentum. 
 
((Merzbacher)) 

The unperturbed energy levels are degenerate exactly as in the hydrogen atom, but the 
interaction between the two electrons removes the l-degeneracy. The unperturbed 
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eigenfunctions of s1100   and nlm  are used as the unperturbed eigenfunctions for 

the degenerate perturbation treatment. Due to the perturbation potential, the resulting 

eigenfunctions are the combination of s1100   and nlm , forming the symmetric 

state and the antisymmetric state. Note that the total angular momentum is conserved. 
Two different exchange symmetry cannot mix. 
 

01000100ˆ
21211  nlmnlmLz   

 

21212 100100ˆ nlmmnlmLz   

 

21212121
100100)ˆˆ(100ˆ nlmmnlmLLnlmL zzz   

 
Similarly 
 

21212121
100100)ˆˆ(100ˆ nlmmnlmLLnlmL zzz   

 
(ii) 
 

)ˆˆˆˆ(ˆˆ2ˆˆ)ˆˆ(ˆ
2121212

2
1

2
21

2
  LLLLLL zzLLLLL  

 
Noting the formula given by 
 

1 ,)1)(( ,ˆ  mnlmlmlmnlL   

 

1,)1)((,ˆ  mnlmlmlmnlL   

 
we have 
 

21212 1 ,100)1)((100ˆ  mnlmlmlnlmL   

 

01 ,100ˆ)1)((100ˆˆ
2112121   mnlLmlmlnlmLL   

 

21212 1 ,100)1)((100ˆ  mnlmlmlnlmL   

 

01 ,100ˆ)1)((100ˆˆ
2112121   mnlLmlmlnlmLL   
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leading to 
 

21

2

212121212
2

121

2

100)1(

100)]ˆˆˆˆ(ˆˆ2ˆˆ[100ˆ

nlmll

nlmLLLLLLnlm zz



 



LLL
 

 
Similarly 
 

21

2

212121212
2

121

2

100)1(

100)]ˆˆˆˆ(ˆˆ2ˆˆ[100ˆ

nlmll

nlmLLLLLLnlm zz



 



LLL
 

Both 
21

100 nlm  and 
21

100nlm  are the eigenkets of 2L̂  and zL̂  with the eigenvalues 

)1(2 ll  and m , respectively. 

 
(b) Selection rule 

We use the commutation relations; 
 

0]ˆ,ˆ[ zLV , 0]ˆ,ˆ[ 2 LV  

 

212121
100ˆ100ˆˆ100ˆˆ nlmVmnlmLVnlmVL zz   

 

21

2

21

2

21

2 100ˆ)1(100ˆˆ100ˆˆ nlmVllnlmVnlmV  LL  

 

Both 
21

100ˆ nlmV  and 
21

100ˆ nlmV  are the eigenket of 2L̂  and zL̂  with the 

eigenvalues )1(2 ll  and m , respectively. 

 
(c) Permutation operator 
 

21

2

ˆˆ
ˆ

rr 


e
V  

 

VPVPPVP ˆˆˆˆˆˆˆ
1212

1
1212   

 

1̂ˆ 2
12 P , 1

121212
ˆˆˆ   PPP  
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We now consider the matrix of the perturbation Hamiltonian V̂  under the basis of 

}1 ,2 ,2 ,1{ ssss ; 

 

21
212 ,1 ssss  , 

21
121 ,2 ssss   

 
Note that 
 

21211212 1221ˆ2 ,1ˆ ssssPssP   

 

121221
ˆ21ˆ2112 PssPssss    

 
We define the matrix elements 
 

ssVssJ 2 ,1ˆ2 ,1  

 

ssVss

ssPVss

ssVss

ssVssK

1 ,2ˆ2 ,1

2 ,1ˆˆ2 ,1

1 ,2ˆ2 ,1

1 ,2ˆ2 ,1

12









 

 

K

ssVss

ssPVss

ssVPssssVss









1 ,2ˆ2 ,1

2 ,1ˆˆ2 ,1

2 ,1ˆˆ2 ,12 ,1ˆ1 ,2

12

12

 

 

JssVssssPVPssssVss  2 ,1ˆ2 ,12 ,1ˆˆˆ2 ,11 ,2ˆ1 ,2 1212  

 

Then we have the matrix of V̂  under the basis of }1 ,2 ,2 ,1{ ssss  as 

 

xKJKJ
JK

KJ
V ̂1̂

01

10

10

01ˆ 

























  

 
The eigenvalue problem: 
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xKJxKJxV x  )()ˆ1̂(ˆ   

 
where 
 

]1 ,22 ,1[
2

1
ssssx    (symmetric orbital state; antisymmetric spin state ) 

 
with the eigenvalue KJ   

 

xKJxKJxV x  )()ˆ1̂(ˆ   

 
where 
 

]1 ,22 ,1[
2

1
ssssx    (antisymmetric orbital state; symmetric spin state) 

 
with the eigenvalue KJ   

 
We note that the permutation operator is expressed by  
 

)ˆˆ1(
2

1ˆ
2112 σσ P  

 

ssP  12
ˆ ,  aaP  12

ˆ  

 
where 
 

 ,,[
2

1
s  (corresponding to ]1 ,22 ,1[

2

1
ssss  ) 

 

 ,,[
2

1
a  (corresponding to ]1 ,22 ,1[

2

1
ssss  ) 

 
Then we have a spin Hamiltonian defined by 
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212

21

12

ˆˆ2
1̂)

2
(

)ˆˆ1̂( 
2

1̂

ˆ 1̂ˆ

SS

σσ









KK
J

K
J

PKJV

 

 
leading to the Heisenberg’s exchange interaction between spins. 
 
((Note)) 

The spin Hamiltonian of the Heisenberg model is expressed in the form 
 





ji,

ji
ˆˆ 2ˆ SSJH  

 
where the sum is over the nearest neighbor pairs of atoms. J is the exchange integral 
(units of energy) and is related to the overlap of the charge distributions of atoms i and j. 

iŜ is the spin operator (dimensionless). 

 
15. Origin of ferromagnetism: Weiss model 

The exchange field gives an approximate representation of the quantum-mechanical 
exchange interaction 
 





ji

jiex JE
,

2 SS , (28) 

 
where the sum is over nearest neighbor pairs. J is the exchange interaction and is related 
to the overlap of the charge distribution of spins i, j. This equation is called the 
Heisenberg model. The interaction related to the i-th spin is given by 
 

)()(2| igJzE iBiex BSSS   , (29) 

 
where z is the number of nearest-neighbor spins and B(i) is the exchange field seen by the 
i-th spin, 
 

 SB
Bg

Jz
i


2

)( . 
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B+Bi

Si

 
 
Fig. Mean field B(i) applied the spin Si (at the center in this Fig), arising from the 

exchange interaction with the surrounding spins (in this case, z = 4). B is the 
applied magnetic field. 

 
The magnetization M is given by 
 

 SM AB Ng . 
 
Then the exchange field is 
 

MM
M

B A
Ng

zJ

Ngg

Jz
i

ABABB




 22

2

)(

2
)(


, 

 
which means that 
 

AB Ng

zJ
A 22

2


 . 

 
In the presence of a mean field, the molar magnetization can be described by 
 

][ AMB
T

C
M M   

 
where CM is the Curie constant and is given by 
 

B

BA
M k

SSgN
C

3

)1(22 



 

 
From this equation M can be derived as 
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B
CAT

C
M M


  

 
The corresponding susceptibility is 
 







T

C

ACT

C

B

M M

M

M
M   (Curie-Weiss law) 

 
The Curie-Weiss temperature  is given by 
 

)1(
3

22

3

)1(
22

22




 SS
k

zJ

Ng

zJ

k

SSgN
AC

BABB

BA
M 


. 

 
where the Curie-Weiss constant is defined by 
 

B

BA
M k

SSgN
C

3

)1(22 



 

 
Note that  is positive for ferromagnetic exchange interaction ( J >0) and  is negative 
for antiferromagnetic interaction ( J >0). From this equation J  is expressed in terms of  
as 
 

)1(2

3





SzS

k
J B . 

 
From this expression, one can evaluate the value of exchange interaction between the 
nearest neighbor interactions. 
 
((Example)) C. Kittel Introduction to Solid State Physics 
 
For Fe,  K1043 . g = 2 (Landé g-factor). S = 1. 
 

710EB G = 103 T. J = 11.9 meV. 

 
16. Origin of ferromagnetism (Heisenberg: 1926-1928) 
L. Hoddeson et al, edited, Out of the Crystal Maze: Chapters from the History of 
Solid-State Physics (Oxford, 1992). 
 

Heisenberg's article closely followed the lines of his correspondence with Pauli in 
both 1926 and 1928. After noting that neglect of electron interactions leads, according to 
Pauli, to paramagnetism or diamagnetism, he described the basis of his theory: "The 
empirical phenomenon that ferromagnetism presents is very similar to the situation we 
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met earlier in the case of the helium atom." The clue was the splitting of the two-electron 
helium atom into singlet and triplet terms by the exchange interaction. He continued, "We 
will try to show that the Coulomb interaction together with the Pauli principle suffice to 
give the same result as the molecular field postulated by Weiss. Only very recently have 
the mathematical methods for treating such a complicated problem been developed by 
Wigner, Hund, Heitler and London." Recalling the Heitler-London expression for the 
exchange integral, and explaining how the exchange energy can tend to align spins, he 
then launched into a very formal calculation of the energy levels in terms of the 
characters of the permutation group, finally specializing to nearest neighbor interactions 
with a common exchange integral and introducing the Gaussian approximation. His 
resulting version of the Weiss formula implied that a spin must have at least eight nearest 
neighbors for the system to become ferromagnetic, a result he continued to regard as 
significant; it also implies that the system must become paramagnetic again at low 
temperature, but he did not "believe that this result has physical meaning. It arises 
mathematically through the assumed Gaussian distribution of the energy values."  
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APPEDIX-I Origin of ferromagnetism (Tomonaga’s comment) 

“The effect of the apparently large interaction between electron spins is not limited to 
spectral term values. In order to explain the ferromagnetism of Fe, as you may know, P. 
Weiss proposed long ago that there is a large interaction between molecular magnets 
based on the then-accepted concept of the molecular magnet. By using this idea, Weiss 
could explain a wide variety of experimental results related to ferromagnetism. However, 
the origin of such a strong interaction between molecular magnets was entirely unknown. 

Then there appeared the new interpretation of the spectral terms of alkaline earths. 
This new interpretation was given by Heisenberg in 1926; he not only discovered that the 
symmetry properties of the wave function has a close connection to a particle’s statistics 
in a many-electron system but also found that it plays an important role in a variety of 
problems and for the first time gave a clear explanation of the spectral terms of two-
electron systems. Furthermore, immediately after this work he applied the same idea to 
the problem of ferromagnetism.” 
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[S. Tomonaga, The Story of Spins (University of Chicago Press, 1997). The original 
book (in Japanese) was published from Chuokoron-sha (1974). It was translated from 
Japanese to English by Prof. Takeshi Oka]. 
 
APPENDIX-II Origin of ferromagnetism (Wannier’s comment) 

The discovery of the correct nature for the ferromagnetic coupling force came as a 
by-product of quantum mechanics. Dirac showed that the electronic spin and the Pauli 
exclusion principle combine in such a way as to produce between the spins of two 
neighboring electrons a coupling of the form 21 ˆˆ σσ J . Here 1σ̂  and 2σ̂  are the two spins 
and J is a function of distance called the exchange energy or exchange coupling. It can be 
of either sign. If the wave functions of the two electrons interpenetrate substantially the 
exchange energy is of the same order as the electrostatic interaction, but at larger 
distances it falls exponentially as the wave functions themselves. We may therefore think 
of J as being of electrostatic order, but only acting between close neighbors. Heisenberg 
was the first to realize that this exchange energy J, if of negative sign, offers a natural 
explanation for the phenomenon of ferromagnetism.  
[G.H. Wannier, Elements of Solid State Theory (Cambridge, 1960)]. 
 
APPENDIX –III Heisenberg (1963) 
M. Longair, Quantum Concepts in Physics (Cambridge, 2013). 
 

‘For a long time, I continued to mix up Bose–Einstein and Fermi–Dirac statistics. I 
did not know Fermi–Dirac statistics at that time; I knew only the Pauli exclusion 
principle. I was always confused between Bose–Einstein statistics and the Pauli exclusion 
principle which produce different ways of counting states. When I wrote the equations for 
two identical electrons, there were two solutions, one symmetrical and the other anti-
symmetrical. First I thought that I had to take the anti-symmetrical solution to obtain the 
Bose statistics and that must be the one that gave the Pauli principle. Later, I saw that it 
was the other way around. One must take the symmetrical solution to get Bose statistics, 
and the antisymmetrical solution to get Pauli’s exclusion principle.’ (Heisenberg, 1963). 
 


