Hermitian operator
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: August 12, 2011)

((Definition))

Hermite conjugate (definition): or Hermitian adjoint

$$
\langle\psi| \hat{A}|\varphi\rangle^{*}=\langle\varphi| \hat{A}^{+}|\psi\rangle
$$

1. Complex number

What is the Hermitian adjoint of the complex number?

$$
\langle\psi| c|\varphi\rangle^{*}=\langle\varphi| c^{+}|\psi\rangle
$$

or

$$
\begin{aligned}
\langle\psi| c|\varphi\rangle^{*} & =(c\langle\psi \mid \varphi\rangle)^{*}=c^{*}\langle\psi \mid \varphi\rangle^{*} \\
& =c^{*}\langle\varphi \mid \psi\rangle=\langle\varphi| c^{*}|\psi\rangle
\end{aligned}
$$

where c is the complex number. Then we have

$$
\langle\varphi| c^{+}|\psi\rangle=\langle\varphi| c^{*}|\psi\rangle
$$

or

$$
c^{+}=c^{*}
$$

When $c=i$ (pure imaginary),

$$
i^{+}=i^{*}=-i
$$

In the quantum mechanics, the expectation value is real, i.e.,

$$
\begin{equation*}
\langle\psi| \hat{A}|\psi\rangle^{*}=\langle\psi| \hat{A}|\psi\rangle \tag{1}
\end{equation*}
$$

In this case \hat{A} is called a Hermitian operator. From the definition, we have

$$
\begin{equation*}
\langle\psi| \hat{A}|\psi\rangle^{*}=\langle\psi| \hat{A}^{+}|\psi\rangle . \tag{2}
\end{equation*}
$$

Hermitian operator satisfies the following condition:

$$
\hat{A}^{+}=\hat{A}
$$

2. Dirac notation (bra vector)

$$
|\alpha\rangle=\hat{A}|\varphi\rangle \rightarrow\langle\alpha|=\langle\varphi| \hat{A}^{+}
$$

((Proof))

$$
\langle\psi| \hat{A}|\varphi\rangle^{*}=\langle\varphi| \hat{A}^{+}|\psi\rangle
$$

Then we have

$$
\langle\psi| \hat{A}|\varphi\rangle^{*}=\langle\psi \mid \alpha\rangle^{*}=\langle\alpha \mid \psi\rangle=\langle\varphi| \hat{A}^{+}|\psi\rangle
$$

Then

$$
\langle\alpha \mid \psi\rangle=\langle\varphi| \hat{A}^{+}|\psi\rangle
$$

or

$$
\langle\alpha|=\langle\varphi| \hat{A}^{+}
$$

3. The momentum operator is a Hermitian operator

$$
\hat{p}^{+}=\hat{p}
$$

((Proof))

$$
\begin{aligned}
\langle\psi| \hat{p}|\varphi\rangle^{*} & =\langle\varphi| \hat{p}^{+}|\psi\rangle \\
\langle\psi| \hat{p}|\varphi\rangle & =\int\langle\psi \mid x\rangle\langle x| \hat{p}|\varphi\rangle d x=\int\langle\psi \mid x\rangle \frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \varphi\rangle d x \\
& =\int \psi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \varphi(x) d x=-\int \frac{\hbar}{i} \frac{\partial}{\partial x} \psi^{*}(x) \varphi(x) d x
\end{aligned}
$$

Here we use the formula without proof

$$
\langle x| \hat{p}|\varphi\rangle=\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \varphi\rangle
$$

or

$$
\begin{aligned}
\langle\psi| \hat{p}|\varphi\rangle^{*} & =\int \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) \varphi^{*}(x) d x=\int \varphi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) d x \\
& =\int\langle\varphi \mid x\rangle\langle x| \hat{p}|\psi\rangle d x=\langle\varphi| \hat{p}|\psi\rangle
\end{aligned}
$$

Thus we have

$$
\langle\varphi| \hat{p}^{+}|\psi\rangle=\langle\varphi| \hat{p}|\psi\rangle
$$

or

$$
\hat{p}^{+}=\hat{p}
$$

4. Formula

$$
(\hat{A} \hat{B})^{+}=\hat{B}^{+} \hat{A}^{+}
$$

((Proof))

$$
\langle\psi|(\hat{A} \hat{B})^{+}|\varphi\rangle=\langle\varphi|(\hat{A} \hat{B})|\psi\rangle^{*}=\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle=\langle\psi| \hat{B}^{+} \hat{A}^{+}|\varphi\rangle
$$

where

$$
\langle\alpha|=\langle\varphi|(\hat{A} \quad \text { and } \quad|\beta\rangle=\hat{B}|\psi\rangle
$$

or

$$
|\alpha\rangle=\hat{A}^{+}|\varphi\rangle \quad \text { and } \quad\langle\beta|=\langle\psi| \hat{B}^{+}
$$

((Comments))

1. $\left(\hat{A}^{+}\right)^{+}=\hat{A}$
2. $(c \hat{A})^{+}=c^{*} \hat{A}^{+}$
3. $(\hat{A}+\hat{B})^{+}=\hat{A}^{+}+\hat{B}^{+}$
4. If $\hat{A}^{+}=\hat{A}$ and $\hat{B}^{+}=\hat{B}$,
$(\hat{A} \hat{B})^{+}=\hat{B}^{+} \hat{A}^{+}=\hat{B} \hat{A}$

So $\hat{A} \hat{B}$ is not Hermitian.
However,
5.

$$
(\hat{A} \hat{B}+\hat{B} \hat{A})^{+}=\hat{B} \hat{A}+\hat{A} \hat{B}
$$

is Hermitian.
6.

$$
\left(\hat{A}^{2}\right)^{+}=(\hat{A} \hat{A})^{+}=\hat{A}^{+} \hat{A}^{+}=\hat{A} \hat{A}=\hat{A}^{2}
$$

is Hermitian.
7. \hat{p} is Hermitian.

$$
\begin{aligned}
& \hat{p}=-i \hbar \hat{D} \quad \text { with } \hat{D}^{+}=-\hat{D} \\
& \hat{p}^{+}=(-i \hbar \hat{D})^{+}=-i^{+} \hbar \hat{D}^{+}=-i \hbar \hat{D}=\hat{p} \\
& |\alpha\rangle \Rightarrow-\hat{A}|\alpha\rangle
\end{aligned}
$$

Hermitian conjugate

$$
\langle\alpha| \Rightarrow\langle\alpha| \hat{A}^{+}
$$

Outer product of $|\beta\rangle$ and $\langle\alpha|$ is an operator

$$
\begin{aligned}
& \hat{A}=|\beta\rangle\langle\alpha| \\
& \hat{A}|\chi\rangle=(|\beta\rangle\langle\alpha|)|\chi\rangle=\langle\alpha \mid \chi\rangle|\beta\rangle \\
& \hat{A}^{+}=|\alpha\rangle\langle\beta|
\end{aligned}
$$

((Proof))

$$
\begin{aligned}
\langle\gamma| \hat{A}^{+}|\delta\rangle & =\langle\delta| \hat{A}|\gamma\rangle^{*} \\
& =(\langle\delta \mid \beta\rangle\langle\alpha \mid \gamma\rangle)^{*} \\
& =\langle\delta \mid \beta\rangle^{*}\langle\alpha \mid \gamma\rangle^{*} \\
& =\langle\beta \mid \delta\rangle\langle\gamma \mid \alpha\rangle \\
& =\langle\gamma \mid \alpha\rangle\langle\beta \mid \delta\rangle
\end{aligned}
$$

Thus we have

$$
\hat{A}^{+}=|\alpha\rangle\langle\beta|
$$

5. Properties of Hermitian

Eigenvalue problem:

$$
\hat{A}\left|\varphi_{n}\right\rangle=a_{n}\left|\varphi_{n}\right\rangle
$$

where
\hat{A} is the Hermitian: $\quad \hat{A}^{+}=\hat{A}$
$\left|\varphi_{n}\right\rangle$ is the eigenket
a_{n} is the eigenvalue
Since \hat{A} is the Hermitian,

$$
\begin{equation*}
\left\langle\varphi_{m}\right| \hat{A}\left|\varphi_{n}\right\rangle^{*}=\left\langle\varphi_{n}\right| \hat{A}^{+}\left|\varphi_{m}\right\rangle=\left\langle\varphi_{n}\right| \hat{A}\left|\varphi_{m}\right\rangle \tag{1}
\end{equation*}
$$

The matrix element

$$
\begin{aligned}
& A_{n m}=\left\langle\varphi_{n}\right| \hat{A}\left|\varphi_{m}\right\rangle \\
& A_{m n}{ }^{*}=A_{n m}
\end{aligned}
$$

The matrix element of \hat{A}^{+}is the complex conjugate of the matrix element for the transpose of the matrix \hat{A}.
$n \times n$ matrix elements

The diagonal elements are real.
From Eq.(1), we have

$$
\begin{equation*}
\left\langle\varphi_{m}\right| a_{n}\left|\varphi_{n}\right\rangle^{*}=a_{n}^{*}\left\langle\varphi_{n} \mid \varphi_{m}\right\rangle=\left\langle\varphi_{n}\right| \hat{A}\left|\varphi_{m}\right\rangle=a_{m}\left\langle\varphi_{n} \mid \varphi_{m}\right\rangle \tag{2}
\end{equation*}
$$

(1) Eigen value is real

$m=n$ in Eq.(2),

$$
\begin{aligned}
& \left(a_{n}^{*}-a_{n}\right)\left\langle\varphi_{n} \mid \varphi_{n}\right\rangle=0 \\
& a_{n}^{*}=a_{n}
\end{aligned}
$$

Thus a_{n} is real.
(2) The eigenkets are orthogonal

In Eq.(2),

$$
\begin{aligned}
& \left(a_{n}-a_{m}\right)\left\langle\varphi_{n} \mid \varphi_{m}\right\rangle=0 \\
& \text { If } a_{n} \neq a_{m} \text { (non-degenerate case), } \\
& \left\langle\varphi_{n} \mid \varphi_{m}\right\rangle=0 \text { (orthogonal) }
\end{aligned}
$$

(3) The eigenkets of \hat{A} form a complete set.

For any $|\psi\rangle$,

$$
|\psi\rangle=\sum_{n=1}^{\infty} c_{n}\left|\varphi_{n}\right\rangle
$$

with

$$
c_{n}=\left\langle\varphi_{n} \mid \psi\right\rangle
$$

6. Closure relation:

$$
|\psi\rangle=\sum_{n=1}^{\infty} c_{n}\left|\varphi_{n}\right\rangle=\sum_{n=1}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n} \mid \psi\right\rangle
$$

Because $|\psi\rangle$ is an arbitrary ket, we must have

$$
\sum_{n=1}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|=\hat{1}
$$

For \hat{A} with $\hat{A}\left|\varphi_{n}\right\rangle=a_{n}\left|\varphi_{n}\right\rangle$

$$
\hat{A}=\hat{A} \sum_{n=1}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|=\sum_{n=1}^{\infty} \hat{A}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|=\sum_{n=1}^{\infty} a_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

7. Principle of measurement

For any $|\psi\rangle$,

$$
|\psi\rangle=\left(\sum_{n=1}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right)|\psi\rangle=\sum_{n=1}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n} \mid \psi\right\rangle\right.
$$

Probability of finding $\left|\varphi_{n}\right\rangle$

$$
P\left(a_{n}\right)=\left|\left\langle\varphi_{n} \mid \psi\right\rangle\right|^{2}
$$

8. Commuting observables

The product of Hermitian operators \hat{A} and \hat{B}

$$
(\hat{A} \hat{B})^{+}=\hat{B}^{+} \hat{A}^{+}=\hat{B} \hat{A}
$$

If

$$
\begin{aligned}
& {[\hat{A}, \hat{B}]=0 \text { (commutable) }} \\
& (\hat{A} \hat{B})^{+}=\hat{B} \hat{A}=\hat{A} \hat{B}
\end{aligned}
$$

Thus $\hat{A} \hat{B}$ is Hermitian.

9. Simultaneous eigenkets

We may use $|a, b\rangle$ to characterize the simultaneous eigenket.

$$
\begin{aligned}
& \hat{A}|a, b\rangle=a|a, b\rangle \\
& \hat{B}|a, b\rangle=b|a, b\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
& \hat{A} \hat{B}|a, b\rangle=b \hat{A}|a, b\rangle=a b|a, b\rangle \\
& \hat{B} \hat{A}|a, b\rangle=a \hat{B}|a, b\rangle=a b|a, b\rangle
\end{aligned}
$$

or

$$
[\hat{A}, \hat{B}]|a, b\rangle=0
$$

