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What is a hydrogen molecule ion?

The hydrogen molecular ion, or H,", is the simplest molecular ion. It is composed of two
positively charged protons and one negatively charged electron, and can be formed from
ionization of a neutral hydrogen molecule. It is of great historical and theoretical interest because,
having only one electron, the Schrodinger equation for the system can be solved in a relatively
straightforward way due to the lack of electron—electron repulsion (electron correlation).

Linear combination of atomic orbitals (LCAO)

In order to construct approximate energy eigenstates, we use the method of linear
combination of atomic orbitals (LCAO), which assumes that we can use the atomic energy
eigenstates as basis functions.

1. Prediction for the ground state energy from the Bohr theory
We first discuss the classical theory for the circular motion of one electron (with a charge -€)
around the positive ion with the charge Ze.
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The total energy:
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where R is the Rydberg constant and « is the fine structure constant.

We now consider the hydrogen molecule formed of one electron and two protons, where these
two protons are widely separated. What is the lowest energy of this system? There are two
possible states.

(1) The electron is close to one of the proton, forming a hydrogen atom in the ground state. (ii)
The electron is close to the other proton, forming a hydrogen atom in the ground state.
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Fig. The co-ordinates of the two protons and one electron used in the discussion of hydrogen
molecule ion. R is the distance between two protons.

(1) When R becomes very large and the electron is close to one of the proton, the total energy
of the electron is close to the energy of the hydrogen atom.

E,=—13.6 eV.

(i)  When R becomes very small, the total energy of the electron is close to the energy of the
He atom (system of the two protons and one electron),

E,=-54.4 V.
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Fig. Rough prediction of Ej vs R. R increases with increasing R from -54.4 eV at R = 0 [He
atom (system of the two protons and one electron)) to -13.6 eV at R = co (hydrogen atom)

2. Wave function and Hamiltonian
We consider the wave function of the system of one electron and two protons.
The wave function of electron is given by
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where a9 (=0.53 A) is a Bohr radius,
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We have the commutation relation for the parity operator as

¥,

Z2=H, or [#,H]=0
since

Mzt =-p, s =—rf, T=7

3. Properties of the kets |1//1> and |1//2>

A positively ionized hydrogen molecule consists of two protons with one electron worming
its way around them. If two protons are very far apart, the electron will stay close to one proton
and form a hydrogen atom in its lowest state, and the other proton will remain alone as a positive

ion. If the two protons are far apart, we can visualize one physical state in which the electron is

attached to one of protons. There is another state symmetric to the one, in which the electron is

near the other proton, and the first proton is the one that is an ion. We will take these two states

as our basis states, and we call these |W1> and |l//2>.
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Fig. The state |1//1> for the two protons and one electron.
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Fig. The state |w2> for the two protons and one electron

|l//1> and |l//2> are the eigenkets such that
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Note that <r|l//1> =y,(r) is the wave function of the hydrogen atom when only proton 1 exists.

<r |1//2> =y,(r) is the wave function of the hydrogen atom when only proton 2 exists. In practice,
proton 1 or proton 2 does not exist alone, but the two protons exist with a finite separation. Even
them if their separation is very large, we can consider either y,(r) or y,(r) as the eigenfunction

of the whole system in a zeroth order approximation. Thus the state of this system is doubly
degenerate in this approximation.

((Note))
We use the properties of the parity operator
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We have the relation such that
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Suppose that |t//1> is the eigenket of I-A|1 with the eigenvalue E,;

Is >

I:|1|‘//1>: Els|'/’1>

|y/2> is the eigenket of I—A|2 with the same eigenvalue E
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In the |r> representation, we have
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When the replacement (r — —r ) is made in Eq.(1), Eq,(1) is changed into
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The comparison between Eqs.(2) and (3) leads to the relation
w,(=1)=y,(r)

or

(=rlw)={rly2)

(rfly) =(rly2)

where we use the parity operator; 7%| r) = |— r> and <r |fr = <— r| . So that we get the final result
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Note that
(rl#lw) = (=rlw)=(rlv2). or  wi(N=wy(n)
(rl#lys) = (=rlywa) =(rlw)soror pa(-n)=p(1)

4. Even function and odd function

Since [#,H]=0, there is a simultaneous eigenket of H and 7.

Hly) = Elw), Aw) = Ay
We use the relation
7%|V/1>=|V/2>7 7%|‘//2>=|'//1>

The matrix of 7 under the basis of {| v, >,

. (0 1Y) .
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The eigenkets of 7 is as follows.

1//2>} is given by

(1) Even parity (the gerade (even) state); eigenvalue (+1)
we)=Collvi)+|v2))

or
ve(r)=(rly.) =Cly, (N +y,(1)]

(i1) Odd parity (the ungerade (odd) state); eigenvalue (-1)

|‘//o> = C0(|l//1>—|l//2>)



or

Vo) =(rlya) = Coly (1)~ po(1)]
Note that constants C, and C, can be determined from the normalization condition later.

5. Correlation function S(R) = (v, |y,)

We consider the correlation function
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Ir—R|=+/r’ +R* - 2rRcosd

We make a plot of S(R) as a function of R.
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Fig. S(R)vsR/a. a=0.53 A. dS(R)/dR =0 atR/ay= 1.61803 (i.c. R = 0.8575 A).

((Mathematica)) Calculation of S(R)
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Clear["Global «"]; pl = \/r2 -2rRCos[6] +R? ;

fl=2nSIn[6]

EXIO[—— ;

T2 = Integrate[f1, {6, 0, w}] //
FullSimplify[#, {R>0,a0>0, r>0,

(r -R)? >0}] &;

._r.

21 = Exp _O 2 // Simplify[#, r <R] &;
L a0 A
._r.

22 = Exp _O 2 // Simplify[#, r >R] &;
L a0 A

al = Integrate[r® f21, {r, 0, R}] // Simplify;

a2 = Integrate[r2 22, {r, R, o}] //
Simplify[#, a0 > 0] &;

S=al+a2//FullSimplify

R
e a0 (3a0?+3a0R +R?)
3 a0?

Normalization: <l//l |%> =1 and <l//2 |1//2> =1

<‘//1 |W1> = J‘d3rW1*(r)l//1(r)
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where r'=r —B .
2

or
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<W1|W1>:;;Jd3re K =ﬂa3jr2dre vo=1

0

or
Wilv) =1

Similarly we have
(Walw,) =1

((Mathematica)) Calculation of (v, |y, )

Clear["Global +"];

al = Integrate[fl, {r, 0, ©»}] //
Simplify[#, a0 > 0] &

7. Calculation of the expectation

welw.) =C. (v |+ (o lw) +|v,))
= Ce2[2 +<‘//1 |‘/’2> +<V/z |l//1>]
=C,[2+2S(R)]

Wolwo) = Co (v |- (wa D(w) - |w2))
= C02[2_<V/1|V/2>_<W2|W1>]
=C,’[2-25(R)]
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(Welwo) = CCollyr |+ v Dvi) = |w2)

=C.C, [_<'//1 |'//2> + <l//2 |‘//1>]
=0

(Welwa) = (valve) =0.
From the normalization condition <1//e |1//e> = <¢//o |1//o> =1, we get the constants C. and C, as

B 1

C. J2+2S(R)

3 1

° J2-25(R)

We have

w, (1) +y,(r)

veD=" 3sR)

W, (1) —w,(r)

wo(r) = /—Z—ZS(R)

with

_R 2
SRy=e = (145 437 )

0 aO
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Fig.  Plot3D of the wave function y,(r). R/ag = 2.49283.
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Fig.  Plot3D of the wave function y,(r) . R/ag = 2.49283.

8. Matrix element of the Hamiltonian
The matrix element of the Hamiltonian is given by

<V/e H ‘//e>:Ce2(<l//1|+<l//2 |)|:|(|‘//1>+|'//2>)
:Ce2[<l//1 H ‘//1>+<‘//1 H l//2>+<‘//2 H V/1>+<V/2 H V/2>]
where
- p2 ) o? ) o2 i
"o T R‘ : R‘+|R|
P—| [P+
2 2

Here we note that

<‘//2||:||‘//1> = <W1 |7%|:|7%|W2> = <W1||:I|W2>

<‘//2||:||'//2> = <V/1 |7’ﬂ:|7%|‘//1> = <l//1||:||l//1>

Then we have

<We||:||We> = 2Ce2[<W1 ||:||'//1>+<'//1 ||:||‘//2>]
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Similarly, we get

(wo|Hlwy) =C. (v |- (v, DH(w,) —|w,))

)
= 2C,"[{wi|H|w1)— (v [H|w,)]
Then
(we[Hlve) _ lHlw)+ i Rlws)
Welwe) 1+S(R)
and

wo|Alwy) (v [Hlw) = (v |H|w,)

(W,|ws) 1-S(R)

9. Calculation of <1//1 |I:||y/1> and <1//1 |I:||gy2>

Since
R -
W1>_[2me . R . R +|R|]|l//1>
2
pr e e e
[2me - R]|‘//1> R R‘|W1>+|R|]|‘//1>
2 2
we have
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10.  Calculation of <1//1 |
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2 2 -2

Wil—lw) == [dre " ——
f+R‘ 1 ﬂao3j r+E
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_ e 3J‘d3re a, l
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|r— R|:\/r2 +R?*=2rRcosé
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((Mathematica)) Calculation of (, |e—|1//1>
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Clear["Global " +"]; pl = \/r2 -2rRCos[6] +R?;

fl=2nSIn[6]

T2 = Integrate[fl, {6, 0, «w}] //

Fullsimplify[#, {R>0,a0>0, r>0,
(r-R)? >0}] &;

21 = r 2 // Simplify[#, r <R] &;

22 =rf2 // Simplify[#, r >R] &;

al = Integrate[ 21, {r, 0, R}] // Simplify;

a2 = Integrate[ f22, {r, R, ©}] //
Simplify[#, a0 > 0] &;

S=al+a2// FullSimplify

2R

1 - e a0 (a0+R)
a0
R

2
11.  Calculation of <1//1|e—R|t//2>
T2
R R
e’ e’ R :
<‘//1|A R|‘//2>_ 3Id3re K Re K
F—— 0 r——
2 2
¢ o, = A
= . jd re Fe
7e? 'z [r+R|
=—3J'rdre a"jsin@dae %
aO 0
2 R
LN L
0 a'0

((Mathematica)) Calculation of



fl=2nSIn[O]

EXIO[—— ;

T2 = Integrate[Tl, {6, 0, w}] //
Fullsimplify[#, {R>0,a0>0, r>0,
(r -R)? >0}] &;

r
f21=r Exp[——o] 2 // Simplify[#, r <R] &;
a

r
22 =r Exp[——o] 2 // Simplify[#, r >R] &;
a

al = Integrate[ 21, {r, 0, R}] // Simplify;

a2 = Integrate[ 22, {r, R, »}] //
Simplify[#, a0 > 0] &;

S=al+a2//FullSimplify

R
e a0 el” (a0 + R)
a0?

12. Bonding orbital and anti-bonding orbital

A

£ (ry= WelHlve) _ wilAlv) + v Hlvs)

v.|w.) 1+S(R)

E.(R)= <l//0||:||l//o> _ <'//1|I:||l//1>_<l//1|l:||‘//2> ’

(W,|ws) 1-S(R)

where

, 2R

A T R
<‘//1|H|W1> =E, +%e ’ (1+a_0)a
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SRy =e 1+ 135,
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We make a plot of E,(R) and E (R) below. E.(R) has a local minimum at R/ay = 2.49283. R =

1.3212 A. The local minimum value is -15.3634 eV.

(1) For both |we> and |l//o> states, the energy at large R is simply the hydrogen atom as is
expected. At very small R (<<ay), the energy of both states becomes positive and very
large due to the strong proton-proton Coulomb repulsion.

(11) For intermediate inter-nuclear separation, the even-parity and odd-parity states have
different energies. The minimum in the even-parity state energy is indicative of an
attraction that leads to a stable molecule with a separation distance t R = 2.49283 a, (or R
= 1.3212 A). The energy of the odd-parity state has no minimum and is repulsive at all
distances R, implying that a system in this state will dissociate into a bound hydrogen
atom and an isolated proton.

We call the |1//e> state as a bonding orbital and the odd-parity |1//O> state as an antibonding

orbital

E (V)
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—12F
130
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—15;

—-16+
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0 2 4 6 8
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Fig. Plot of E«(R) and E,(R) as a function of R/ay. E«(R) has a local minimum at R/ay =
2.49283. R = 1.3212 A. The local minimum value is -15.3634 eV. The dashed line
denotes the ground-state energy of the hydrogen atom.

13. ((Mathematica))
_e12 e 20 (3a02+3a0R +R?)

Clear["Global +"]; Els = ; Sl = :
2a0 3 a0?

2R
e1? e"a0 (a0 +R) )
a0 ’

H11l = Els +

R
12 "a0 e12 (a0 + R

H12=(Els+e—)Sl—ea el” (a0 +R)
R a0?

rulel={R-aly, el>1, a0- 1};

H11 + H12

1+S1
H11 - H12

1-S1

//- rulel // Simplify;

go //-rulel// Simplify;

hl =Plot[{27.2ge, 27.29g0, -13.6}, {y, 0, 10},
PlotStyle » {{Red, Thick}, {Blue, Thick},

{Black, Dotted, Thick}},

AxeslLabel » {""R/ap', "E (eV)"},
PlotRange -» {{O, 8}, {-17, -10}}1;

h2 = Graphics[{Text[Style["E: (R) ", Black, 12], {2, -15.5}],
Text[Style["Ey (R)™, Black, 12], {4, -12}], Purple,
Line[{{2.49283, -17}, {2.49283, -10}}1}1;

Show[h1l, h2]
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E (V)
~10,

—12F

i3]

—14f

~15}F

_177 . . . | . . | . . . | . . . ] R/ao
8

eql = D[ge, y] // FullSimplify;

eg2 = FindRoot[eql == 0, {y, 1, 4}]
{y > 2.49283)

E1=0.53y /. eqg2[[1]]
1.3212

27.29e /. eq2[[1]]
-15.3634

15. ContourPlot
We make a ContourPlot of y,(r) and y,(r) in the X-y plane, where R = 2.49283 a,.
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Fig.  ContourPlot of y,(r) in the X-y plane, where R = 2.49283 a,.
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Fig.  ContourPlot of y/,(r) in the X-y plane, where R = 2.49283 a,.

15. Origin of the exchange force [Tomonaga’s discussion]
E«(R) and E,(R) are the energy eigenvalues of the wave functions y,(r) and w,(r),

respectively. We note that
E.(R)<E,(R).
We assume that
E.(R)=2E,+J.(R), E.(R)=2E,+J,(R).

For large values of R, we can say that
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J(R)=-J(R), J.(R)=J(R).

where J(R) >0, monotonically decreasing toward J(o0) =0as R increases. Thus we see that

there is an attraction between proton 1 and proton 2 in the symmetric state and a repulsion
between them. The system will be stable in the symmetric state but not in the antisymmetric state.
The electron is visiting both protons equally, and if the way of visiting is symmetric, there will
be an attraction between two protons, and if it is antisymmetric, there will be repulsion.

We now consider a wave packet

1 i i
L(r)y=—+ —J,(Rtly (r)+ ——J, (R)tly, (r
w.(r,t) ﬁ[eXp[ s (Rt () £ expl——J, (R)tly (N]]
This is certainly a solution of the time-dependent Schrédinger equation. At t = 0, we have
(1.t =0) = [y, (N £y, (1]
vl NG YTy,

where

wo(1) =y (r) =%wr)+wz<r)1,

V(D) =y, (1) =%wl(r)—wz(r)]

and

p. (Lt=0)=y,(r), w. (rt=0)=w,(r).
We obtain

|wi(r,t) = %|l//l(l’)|2[l * cos(mt)]+ %|l//2(r)|2[1 F cos(wt)].
where

ho=J,(R)-J,(R).
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This means that the electron jumps back and forth from proton 1 to proton 2 and from 2 to 1 with
the angular frequency @. The exchange force originates in the shuttling of the electron.

16. Feynman’s discussion

=
0
Y

Fig.  Attractive potential energy for the electron in hydrogen molecule H,"

From our solution, we see that if a proton and a hydrogen ion are put anywhere near together,
the electron will not stay on one of the protons but will flip back and forth between the two
protons (tunneling). If it starts on one of the proton, it will oscillate back and forth between the

two states |1//1> and |1//2> , giving a time-varying solution. In order to have the lowest energy

solution (which does not vary with time), it is necessary to start the system with equal amplitudes
for the electron to be around each proton. Remember, there are not two electrons - we are not
saying that there is an electron around each proton. There is only one electron, and it has the

same amplitude 1/42 in magnitude — to be in either position. Now the amplitude A for an
electron which is near one proton to get to the other one depends on the separation between the
protons. The closer the protons are together, the larger the amplitude.

17.  Toy model of a covalent bond

In order to show how covalent bonding works, we discuss a one-dimensional toy model
which is not at all realistic but it is analytically tractable. We consider a particle of mass m that
moves along the x axis in an attractive double-delta potential. Here we discuss the eigenvalue
(the bound state) problem for the Schrodinger equation for the attractive double-delta potential,
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V(x)
A
Boynd state

Fig. V(X)=-V,[6(Xx—a)+(Xx+a)]; attractive Dirac delta-type potential.

—f—d—zw(m SV, [5(x—a) + S(x+ )l () = Epr(x) = — X
m dx 2m

w(X)

where the potential energy is an even function of X,

V(X)=-V,[d(x—-a)+(x+a)],

and the energy is given by

h2k2
2m

E=-

(<0)
for the bound state. Then we get
d 2
(37K W00 =-2a[5(x~a) + S(x + @)y ()
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where

mV,

a:hz.

We note that the wave function y(X) is either an even function or an odd function of x.

ek(x+a) X < —a

e (X) _ cosh(kx) ’ _a<x<a
wi " feodgar L
- ek(x+a) X < —a

¥, (X) _ s?nh(kx) Ca<x<a
yu(@) | sinh(ka) o

e

Here we use the boundary condition:

d as
&V/(X) fo=—2ay(a),

for the even and odd function, respectively. Then we have

20@ =ka[l + tanh(ka)] for the even parity

2@ =ka[l + coth(ka)] for the odd parity
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y =2cA //

: odd pasity”
| _—

! e
: /Ven parity

0.5 1.0 1.5 2.0

2amV,
h2

Fig. Plotof y=2aa vs ka for the even parity and the odd parity. y =

Y(x)
1.0}

0.5+

0.5 -

-1.0-

2amV,

hZ

Fig. Even parity (red) and odd parity (blue) function for y = = 1.5 (fixed). ka =

0.8792 for the even parity, ka = 0.4371 for the odd parity. For simplicity we assume a = 1.
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APPENDIX Green function method
Bound state under attractive double-delta potential

We discuss the eigenvalue (the bound state) problem for the Schrodinger equation for the
attractive double-delta potential,
V(x)
A
Boynd state

—f—d—zw(x)—vo[a(x—aw5(x+a>]w(x> —Ep(0=-"~
m dx 2m

w(X)

where the potential energy is an even function of x,
V(X)=V, [6(x—a)+o(x+a)]

and the energy is given by

2

e__p
2m

(<0)

for the bound state. Then we get

31



2

o PV (X) = Ly ()= -2a[5(x-a) + S(x+a)ly (x) == (x)

where

mV,

o= hz .

Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given
by

w(x)=[G(x.&) f(&)dg

= j le*ﬂ'**f'za[é(x —a)+o(x+a)lw(Hds
2p

= z[l//(a)e—plx—a\ + l//(_a)e—p\ma\]
1%

where

LG(X,&) ==6(x=¢)

(d —p2je<x,cf>=—5(x—§)

x>
U
1
G(x,¢&) = 2—e'p =l (Green’s function: modified Helmholtz equation).
P
Atx=a
_ a -2 pa
y(@)=—[y(a)+y(-a)e ]
P
Atx=-a

w(-a)= %[w(a)e”’a +y(-a)]
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We note that the wave function y/(X) is either an even function or an odd function of X.
(1) Even parity for the wave function
Ve (_a) =Y. (a)

or

1=%Ee 11y
or

Loolsem

(04

For simplicity we put

X=2pa
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Fig. Even parity solution. Plot of y = 2£ and y =1+e° where q is changed as a parameter.
q

&=2pa. q=aa. The two curves intersect at a non-zero finite value of & When q = 1,
we have £=2.21772.y = 1.10886.

The wave function (even parity) is given by

We(x) :g[ —p|x-a| +e—p|x+a|]
v.(a p

When g=aa =1, we have x=2pa =2.21772. Fora=1 and p = 1.10886, we make a plot of

this function as a function of X. Clearly this function is an even function of X.

Y a=1)

¢ ¥ (X)

Fig. Ploto
y.(a=1)

as a function of X. « =1.a=1 and p = 1.10886.

(i1) Odd parity for the wave function
Vo (_a) =V, (a)

or

1= (—e 2 41

or
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P gy
(24

The value of pis obtained from the intersection of two curves

y==, y=1-e~

29

with £ =2pa and q=aa (parameter).

Fig. Odd parity solution. Plot of y :% and y=1-€ where  is changed as a parameter.

&=2pa. g=aa .When g>0.5, there are two solutions including & = 0. When (<0.5,
there is only one solution &= 0. When q = 1, we have £=1.59362.y = 0.796812.

The wave function (odd parity) is given by

¥, (X) _ g[e—p\x—m _ e7p|x+a|]
yv.(a) p

When g=aa =1, we have & =2pa =1.59362. For a= 1 and p = 0.796812, we make a plot of

this function as a function of X. Clearly this function is an odd function of X.
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Y@M a=1)
100

05|

0.5

¢ ¥, (X)
yo(a=1)

Plot o as a function of X. « =1.a=1 and p=1.10886.
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