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What is a hydrogen molecule ion? 

The hydrogen molecular ion, or H2
+, is the simplest molecular ion. It is composed of two 

positively charged protons and one negatively charged electron, and can be formed from 
ionization of a neutral hydrogen molecule. It is of great historical and theoretical interest because, 
having only one electron, the Schrödinger equation for the system can be solved in a relatively 
straightforward way due to the lack of electron–electron repulsion (electron correlation). 
 
Linear combination of atomic orbitals (LCAO) 

In order to construct approximate energy eigenstates, we use the method of linear 
combination of atomic orbitals (LCAO), which assumes that we can use the atomic energy 
eigenstates as basis functions.  
 
1. Prediction for the ground state energy from the Bohr theory 

We first discuss the classical theory for the circular motion of one electron (with a charge -e) 
around the positive ion with the charge Ze. 
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where R is the Rydberg constant and  is the fine structure constant. 
_____________________________________________________________________________ 
We now consider the hydrogen molecule formed of one electron and two protons, where these 
two protons are widely separated. What is the lowest energy of this system? There are two 
possible states. 
(i) The electron is close to one of the proton, forming a hydrogen atom in the ground state. (ii) 
The electron is close to the other proton, forming a hydrogen atom in the ground state. 
 

 
 
Fig. The co-ordinates of the two protons and one electron used in the discussion of hydrogen 

molecule ion. R is the distance between two protons. 
 
(i) When R becomes very large and the electron is close to one of the proton, the total energy 

of the electron is close to the energy of the hydrogen atom.  
 

6.130 E  eV. 

 
(ii) When R becomes very small, the total energy of the electron is close to the energy of the 
He atom (system of the two protons and one electron), 
 

4.540 E  eV. 
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The Hamiltonian of the system is given by 
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We have the commutation relation for the parity operator as 
 

HH ˆˆˆˆ  , or 0]ˆ,ˆ[ H  

 
since 
 

pp ˆˆˆˆ  ,  rr ˆˆˆˆ  ,  1ˆˆˆ    . 

 

3. Properties of the kets 1  and 2  

A positively ionized hydrogen molecule consists of two protons with one electron worming 
its way around them. If two protons are very far apart, the electron will stay close to one proton 
and form a hydrogen atom in its lowest state, and the other proton will remain alone as a positive 
ion. If the two protons are far apart, we can visualize one physical state in which the electron is 
attached to one of protons. There is another state symmetric to the one, in which the electron is 
near the other proton, and the first proton is the one that is an ion. We will take these two states 

as our basis states, and we call these 1  and 2 . 
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Note that )(11 rr    is the wave function of the hydrogen atom when only proton 1 exists. 

)(22 rr    is the wave function of the hydrogen atom when only proton 2 exists. In practice, 

proton 1 or proton 2 does not exist alone, but the two protons exist with a finite separation. Even 

them if their separation is very large, we can consider either )(1 r  or )(2 r  as the eigenfunction 

of the whole system in a zeroth order approximation. Thus the state of this system is doubly 
degenerate in this approximation. 
 
_____________________________________________________________________________ 
((Note)) 
We use the properties of the parity operator 
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Suppose that 1  is the eigenket of 1Ĥ  with the eigenvalue sE1 ; 

 

1111
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2  is the eigenket of 2Ĥ  with the same eigenvalue sE1 ; 
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In the r  representation, we have 
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When the replacement ( rr  ) is made in Eq.(1), Eq,(1) is changed into 
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The comparison between Eqs.(2) and (3) leads to the relation 
 

)()( 21 rr    

 
or 
 

21  rr   

 
or 
 

21ˆ  rr   

 

where we use the parity operator; rr ̂  and rr ̂ . So that we get the final result 
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Note that 
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4. Even function and odd function 

Since 0]ˆ,ˆ[ H , there is a simultaneous eigenket of Ĥ  and ̂ . 
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The eigenkets of ̂  is as follows. 
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(ii) Odd parity (the ungerade (odd) state); eigenvalue (-1) 
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or 
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Note that constants eC  and oC  can be determined from the normalization condition later. 

 

5. Correlation function 21)( RS  

We consider the correlation function 
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cos222 rRRr  Rr  

 
We make a plot of S(R) as a function of R. 
 

 
 
Fig. S(R) vs R/a0. a0 = 0.53 Å. 0/)( dRRdS  at R/ a0 = 1.61803 (i.e. R = 0.8575 Å). 

 
((Mathematica)) Calculation of S(R) 
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6, Normalization: 111   and 122   
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7. Calculation of the expectation 
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Fig. Plot3D of the wave function )(ro . R/a0 = 2.49283. 

 
8. Matrix element of the Hamiltonian 
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((Mathematica)) Calculation of 1
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_____________________________________________________________________________ 

11. Calculation of 2
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((Mathematica)) Calculation of 

Clear"Global`"; p1  r2  2 r R Cos  R2 ;

f1  2  Sin 1

a03 
Exp 2 p1

a0
;

f2  Integratef1, , 0,  
FullSimplify, R  0, a0  0, r  0,

r  R2  0 &;

f21  r f2  Simplify, r  R &;

f22  r f2  Simplify, r  R &;

a1  Integrate f21, r, 0, R  Simplify;

a2  Integrate f22, r, R,  
Simplify, a0  0 &;

S  a1  a2  FullSimplify

1  
2 R

a0 a0R
a0

R
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______________________________________________________________ 
12. Bonding orbital and anti-bonding orbital 
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HHH
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
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
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, 

 
where 
 

)1(ˆ
0

22

111
0

a

R
e

R

e
EH a

R

s 


 , 

 

Clear"Global`"; p1  r2  2 r R Cos  R2 ;

f1  2  Sin e12

a03 
Exp p1

a0
;

f2  Integratef1, , 0,  
FullSimplify, R  0, a0  0, r  0,

r  R2  0 &;

f21  r Exp r

a0
 f2  Simplify, r  R &;

f22  r Exp r

a0
 f2  Simplify, r  R &;

a1  Integrate f21, r, 0, R  Simplify;

a2  Integrate f22, r, R,  
Simplify, a0  0 &;

S  a1  a2  FullSimplify


 R

a0 e12 a0  R
a02
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

. 

 

We make a plot of )(REe  and )(REo  below. Ee(R) has a local minimum at R/a0 = 2.49283. R = 

1.3212 Å. The local minimum value is -15.3634 eV.  

(i) For both e  and O  states, the energy at large R is simply the hydrogen atom as is 

expected. At very small R (<<a0), the energy of both states becomes positive and very 
large due to the strong proton-proton Coulomb repulsion. 

(ii) For intermediate inter-nuclear separation, the even-parity and odd-parity states have 
different energies. The minimum in the even-parity state energy is indicative of an 
attraction that leads to a stable molecule with a separation distance t R = 2.49283 a0 (or R 
= 1.3212 Å). The energy of the odd-parity state has no minimum and is repulsive at all 
distances R, implying that a system in this state will dissociate into a bound hydrogen 
atom and an isolated proton. 

 

We call the e  state as a bonding orbital and the odd-parity O  state as an antibonding 

orbital  
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Fig. Plot of Ee(R) and Eo(R) as a function of R/a0. Ee(R) has a local minimum at R/a0 = 
2.49283. R = 1.3212 Å. The local minimum value is -15.3634 eV. The dashed line 
denotes the ground-state energy of the hydrogen atom. 

 
13. ((Mathematica)) 

 

Clear"Global`"; E1s 
e12

2 a0
; S1 


 R

a0 3 a02  3 a0 R  R2
3 a02 ;

H11  E1s 
e12

R


2 R

a0 a0  R
a0

;

H12  E1s 
e12

R
S1 


 R

a0 e12 a0  R
a02 ;

rule1  R  a0 y, e1  1, a0  1;

ge 
H11  H12

1  S1
. rule1  Simplify;

go 
H11  H12

1  S1
. rule1  Simplify;

h1  Plot27.2 ge, 27.2 go, 13.6, y, 0, 10,

PlotStyle  Red, Thick, Blue, Thick,

Black, Dotted, Thick,

AxesLabel  "Ra0", "E eV",

PlotRange  0, 8, 17, 10;

h2  GraphicsTextStyle"EeR", Black, 12, 2, 15.5,

TextStyle"EoR", Black, 12, 4, 12, Purple,

Line2.49283, 17, 2.49283, 10;

Showh1, h2
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15. ContourPlot 

We make a ContourPlot of )(re  and )(rO  in the x-y plane, where R = 2.49283 a0. 

Ee R

Eo R

0 2 4 6 8
R a0-17

-16

-15

-14

-13

-12

-11

-10
E eV

eq1  Dge, y  FullSimplify;

eq2  FindRooteq1  0, y, 1, 4
y  2.49283

E1  0.53 y . eq21
1.3212

27.2 ge . eq21
15.3634
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Fig. ContourPlot of )(re  in the x-y plane, where R = 2.49283 a0. 
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Fig. ContourPlot of )(rO  in the x-y plane, where R = 2.49283 a0. 

 
15. Origin of the exchange force [Tomonaga’s discussion] 

Ee(R) and Eo(R) are the energy eigenvalues of the wave functions )(re  and )(ro , 

respectively. We note that 
 

)()( RERE ae  . 

 
We assume that 
 

)(2)( 1 RJERE sse  ,  )(2)( 1 RJERE asa  . 

 
For large values of R, we can say that 

xa0

ya0

R= 2.49283 a0
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)()( RJRJs  , )()( RJRJe  . 

 
where 0)( RJ , monotonically decreasing toward 0)( J as R increases. Thus we see that 

there is an attraction between proton 1 and proton 2 in the symmetric state and a repulsion 
between them. The system will be stable in the symmetric state but not in the antisymmetric state. 
The electron is visiting both protons equally, and if the way of visiting is symmetric, there will 
be an attraction between two protons, and if it is antisymmetric, there will be repulsion.  

We now consider a wave packet 
 

)](])(exp[)(])([exp[
2

1
),( rrr aass tRJ

i
tRJ

i
t 


 ] 

 
This is certainly a solution of the time-dependent Schrődinger equation. At t = 0, we have 
 

)]()([
2

1
)0,( rrr ast    

 
where 
 

)]()([
2

1
)()( 21 rrr   res , 

 

)]()([
2

1
)()( 21 rrr   roa  

 
and 
 

)()0,( 1 rr   t , )()0,( 2 rr   t . 

 
We obtain 
 

)]cos(1[)(
2

1
)]cos(1[)(

2

1
),(

2

2

2

1

2
ttt  rrr  . 

 
where 
 

)()( RJRJ sa  . 
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This means that the electron jumps back and forth from proton 1 to proton 2 and from 2 to 1 with 

the angular frequency . The exchange force originates in the shuttling of the electron. 
 
16. Feynman’s discussion 
 

 
 
Fig. Attractive potential energy for the electron in hydrogen molecule H2

+ 
 

From our solution, we see that if a proton and a hydrogen ion are put anywhere near together, 
the electron will not stay on one of the protons but will flip back and forth between the two 
protons (tunneling). If it starts on one of the proton, it will oscillate back and forth between the 

two states 1  and 2 , giving a time-varying solution. In order to have the lowest energy 

solution (which does not vary with time), it is necessary to start the system with equal amplitudes 
for the electron to be around each proton. Remember, there are not two electrons - we are not 
saying that there is an electron around each proton. There is only one electron, and it has the 

same amplitude 2/1  in magnitude – to be in either position. Now the amplitude A for an 
electron which is near one proton to get to the other one depends on the separation between the 
protons. The closer the protons are together, the larger the amplitude.  
 
17. Toy model of a covalent bond 

In order to show how covalent bonding works, we discuss a one-dimensional toy model 
which is not at all realistic but it is analytically tractable. We consider a particle of mass m that 
moves along the x axis in an attractive double-delta potential. Here we discuss the eigenvalue 
(the bound state) problem for the Schrödinger equation for the attractive double-delta potential, 

R2-R2

V

Tunneling
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Fig. )]()([)( 0 axaxVxV   ; attractive Dirac delta-type potential. 
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where the potential energy is an even function of x, 
 

)]()([)( 0 axaxVxV   , 

 
and the energy is given by 
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k
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for the bound state. Then we get 
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where 
 

2
0


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 . 

 
We note that the wave function )(x  is either an even function or an odd function of x. 
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Here we use the boundary condition: 
 

)(2|)( 0
0 ax

dx

d a
a  
 , 

 
for the even and odd function, respectively. Then we have 
 

)]tanh(1[2 kakaa    for the even parity 

 
)]coth(1[2 kakaa    for the odd parity 
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Fig. Plot of ay 2  vs ka  for the even parity and the odd parity. 
2

02



amV
y   

 

 
 

Fig. Even parity (red) and odd parity (blue) function for 
2

02



amV
y   = 1.5 (fixed). ka = 

0.8792 for the even parity, ka = 0.4371 for the odd parity. For simplicity we assume a = 1. 
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______________________________________________________________________________ 
APPENDIX Green function method 
Bound state under attractive double-delta potential 
We discuss the eigenvalue (the bound state) problem for the Schrodinger equation for the 
attractive double-delta potential, 
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where the potential energy is an even function of x, 
 

0)( VxV   )]()([ axax    

 
and the energy is given by 
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where 
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Using the 1D Green’s function (modified Helmholtz), the solution of this equation can be given 
by 
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  xexG   (Green’s function: modified Helmholtz equation). 

 
At x = a 
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We note that the wave function )(x  is either an even function or an odd function of x. 

 
(i) Even parity for the wave function 
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Fig. Even parity solution. Plot of 
q

y
2


  and  ey 1  where q is changed as a parameter. 

a 2 . aq  . The two curves intersect at a non-zero finite value of . When q = 1, 

we have  = 2.21772. y = 1.10886. 
 
The wave function (even parity) is given by 
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When aq   = 1, we have ax 2  =2.21772. For a = 1 and  = 1.10886, we make a plot of 

this function as a function of x. Clearly this function is an even function of x. 
 

 
 

Fig. Plot of 
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 as a function of x. 1 . a = 1 and  = 1.10886. 

 
(ii) Odd parity for the wave function 
 

)()( aa oo    

 
or 
 

)1(1 2   ae 




 

 
or 

-4 -2 2 4
x

0.5

1.0

1.5

yxya=1



 

35 
 

 

12   ae 




 

 

The value of  is obtained from the intersection of two curves 
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 ,  ey 1  

 
with a 2  and aq   (parameter). 

 

 
 

Fig. Odd parity solution. Plot of 
q

y
2


  and  ey 1  where q is changed as a parameter. 

a 2 . aq  .When q>0.5, there are two solutions including  = 0. When q<0.5, 

there is only one solution  = 0. When q = 1, we have = 1.59362. y = 0.796812. 
 
 
The wave function (odd parity) is given by 
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When aq   = 1, we have a 2  =1.59362. For a = 1 and  = 0.796812, we make a plot of 

this function as a function of x. Clearly this function is an odd function of x. 
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Fig. Plot of 
)1(

)(

a

x

o

o




 as a function of x. 1 . a = 1 and  = 1.10886. 
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