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Isospin was introduced by Werner Heisenberg in 1932 to explain symmetries of the then newly 

discovered neutron. The mass of the neutron and the proton are almost identical: they are nearly 
degenerate, and both are thus often called nucleons. Although the proton has a positive charge, and the 
neutron is neutral, they are almost identical in all other respects. The name isospin however, was 
introduced by Eugene Wigner in 1937. 

If two or more nucleons are treated as identical particles, the state vector describing then in a 
compound nucleus must refer not only to space and spin variables but also to isospins. The total state 
vector must be antisymmetric with respect to exchange. 
 
1. Introduction of the concept of isospin ((Tomonaga)) 

In his book on the Story of Spin, Tomonaga explained how Heisenberg got the idea of isospin. 
 
(a) Heisenberg’s explanation for the attractive interaction between proton and neutron  

It is an experimental fact that if the atomic number Z is not very large and therefore the charge Ze is 
not very large, then Z is approximately A/2 for many nuclei, where A is the mass number. This shows 
that nuclei with approximately equal numbers of neutrons and protons are most stable. 

From this fact, Heisenberg concluded that the attraction between neutrons and protons plays the 
biggest role in the nucleus. If the attraction between neutrons were stronger, then nuclei composed only 
of neutrons would be more stable, and therefore more such nuclei should exist. But this contradicts the 
facts. The same thing can be said if the attraction between protons is stronger- namely nuclei with only 
protons must be abundant.  
 
(b) Nuclear force is an exchange interaction 

Next Heisenberg noticed the experimental fact that the binding energies of nuclei are approximately 
proportional to the mass number A (the number of particles in nucleus). From this he was led to the idea 
that the nuclear force is not the usual attractive force but is an exchange force. He reasoned as follows. If 
the force acting between a neutron and a proton is the usual two-body force, then if the potential 
between the K-th neutron and the L-th proton is written as VK,L, and if the number of neutrons is written 
as N and the number of protons is written as P, then total potential is 
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and the total binding energy must approximately equal the number of combinations pf pairs (K, L), 
which is  
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In reality, it is proportional only to A. 
 
(c) Possibility of boson electron with spin zero 



In the case of a neutron and a proton, both are fermions, and statistics is constant. But if we can 
consider the neutron to composed of a proton and a particle with spin zero which may be called boson 
electron, then it is not impossible to imagine that this boson electron is going back and forth between the 
neutron and the proton. Heisenberg did refer to this idea. Nevertheless, he concluded that it was better to 
ignore the existence of the boson electron, perhaps because he was not sure whether he could use 
quantum mechanics for the shuttling of this particle even if this idea were adopted. He did not adopt this 
idea. 
 
(d) Introduction of the isospin  

Heisenberg introduced isospin. Instead of considering the neutron and proton as different elementary 
particles, he considered them as two different states of the same elementary particle; the proton state and 
the neutron state. Both the neutron and proton are the fermion with spin 1/2.  
 
(e) Exchange force 

There is no force if the nucleons are both neutrons of both protons. By using the wave packet 
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we find that the transformation from a neutron into a proton or a proton into a neutron occurs with the 
angular frequency, 
 



)(2
)]()([

1 rJ
rJrJ sa   

 

2. Isospin: proton state p  and neutron states n  

Because of the symmetry between the proton and the neutron, it is convenient to regard proton and 
neutron as two distinct states of the same particle, the nucleon. The state vector of a nucleon can be 
expressed by  
 
The proton state: 
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The neutron state 
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These states correspond to spin-up and spin-down .In analogy to the ordinary spin we introduce three 
matrices that connect neutron and proton states (the isotopic spin matrices) 
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with 
 

τττ ˆ2ˆˆ i . 
 
Heisenberg chose the state for which the eigenvalue of 3̂  is +1 to be the neutron state and the state for 

which the eigenvalue is -1 to be the proton state.  
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The charge operator: 
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The isospin is defined by 
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with the commutation relation 
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where 
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satisfying 
 

0ˆ  pt , pnt ̂ , npt ̂ , 0ˆ  nt . 

 

We introduce the charge-symmetry operator Ŝ , which interchanges neutron and proton. Among many 

possible choices of Ŝ , we take 
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Here  
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3. The system composed of two nucleons 

For a system of two interacting nucleons such as the combinations of (neutron-neutron, proton-
neutron), the total isospin operator is given by 
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If we neglect the electromagnetic interaction and the mass difference of proton and neutron, the 
interaction Hamiltonian conserves isospin and so commutes with all the components of isospin 
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Then since Ĥ  is invariant under rotation in isospin space, it can only depend on the isospin through 2T̂ , 
where 
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So Ĥ  can be a function of the operator 21 ˆˆ ττ  . The commutation relation 0]ˆˆ,ˆ[ 21  ττH  implies that 

there are simultaneous states of Ĥ  and 21 ˆˆ ττ  . 

 

4. Eigenvalue problem for 2T̂  

We consider the eigenvalue problem of 2T̂  
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We note that 
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The state in which nucleon 1 is a neutron and nucleon 2 is a proton can be expressed as the product, 
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The state in which nucleon 1 is a proton and nucleon 2 is a neutron can be expressed as the product, 
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Using the Mathematica we obtain the eigenstates and eigenvalues. 
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leading to T = 1 (triplet) and T = 0 (singlet). 
 
(i) The eigenvalue 2 [=T(T+1)]; T = +1. 
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(ii) The eigenvalue 0 [=T(T+1)]; T = 0. 
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Using the Dirac exchange operator )ˆˆ1̂(
2
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2112 ττ P , We note that 21 ˆˆ ττ   can be expressed as 
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5. Eigenstate of zT̂   
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We note that 0]ˆ,ˆ[ 2 TzT , which mean that there are simultaneous eigenkets of 2T̂  and zT̂ . 
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np  and 

21
pn  are the degenerate states with the same eigenvalue. These states are not the 

eigenstates of 2T̂ . However, from the two equations, we get the super-positions such that 
 

0)
2

(ˆ 2121 
 pnnp

Tz , 

 

0)
2

(ˆ 2121 
 pnnp

Tz , 

 

which means that 
2

2121
pnnp 

 and 
2

2121
pnnp 

are the simultaneous eigenkets of 2T̂  and 

zT̂ . 

 

6. Simultaneous eigenstate of 2T̂  and zT̂  

From the above discussion, we have the simultaneous eigenstate of 2T̂  and zT̂  which can be 

expressed by the kets zTT , . 

 
Eigenvalue:  Eigenkets 
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((Note)) Clebsch-Gordan coefficients 



 
 
7. Eigenstates of charge operator 

The charge operator is defined by 
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We note that 0]ˆ,ˆ[ 2 TQ , which mean that there are simultaneous eigenkets of 2T̂  and Q̂ . 
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np  and 

21
pn  are the degenerate states with the same eigenvalue. These states are not the 

eigenstates of 2T̂ . However, from the two equations, we get the super-positions such that 
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In summary, we have 
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8. The π-mesons, π+, π0, π- 

The pi mesons π+, π0, π- have zero spin and nearly equal masses 
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The relatively small mass difference is thought to be due to electromagnetic interaction, in the absence 
of which the pions would form a perfect isospin triplet with T = 1.  

The π-mesons, π+, π0, π- can be considered as constituting three states of a particle having an 
isotopic spin equal to unity, with base vectors 
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In this case the operations of the three components ( )ˆ,ˆ,ˆ(ˆ
321 θ  of the isotopic spin operator are 

given by the matrices for isospin T = 1. 

 
Isospin and scattering amplitude 
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Clebsch-Gordan coefficients 
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where N:nucleon and : meson. 
 

 
 

 
 
From these equations, we also get 
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((Mathematica)) Clebsch-Gordan co-efficient : T1 = 1 and t2 = 1/2. 
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We consider the reactions 
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(d) nn     

(e) nn  00   

(f) nn     
 
Charge exchange processes: 
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Other reactions are mixture (coefficients given by the Clebsch-Gordans), 
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With a proportionality constant K equal for all we obtain 
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If A12 = 0,  then we have 
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We define 
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Then the isospin symmetry predicts 
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Figure shows the two total cross-sections at low energies. There are clear peaks with Breit-Wigner forms 
at a mass of 1232 MeV corresponding to the production of the hadronic resonance D(1232) (I = 3/2) and 
the ratio of the peaks is in good agreement with the prediction (=3). 



 
 

Fig. Total cross-sections for p  and p  scattering. (B.R. Martin, Nuclear and Particle Physics). 

 
 
REFERENCES 
S. Tomonaga, The Story of Spin (University of Chicago Press, 1997). 
E.D. Commins, Quantum Mechanics: An Experimentalist’s Approach (Cambridge, 2014). 
M. Thomson, Modern Particle Physics (Cambridge, 2013). 
A. Das and T. Ferbel, Introduction to Nuclear and Particle Physics, 2nd edition (World Scientific, 2005). 
A. Bettini; Introduction to Elementary Particle Physics (Cambridge, 2008). 
B.R. Martin: Nuclear and Particle Physics: An Introduction (John Wiley & Sons, 2006) 
 
APPENDIX 



Table: Is
 

sotopic spin assignmentss of a represeentative grouup of relativ
 

vely long-liveed hadrons 


