
((Sakurai 8-7)) 
This problem is taken from Quantum Mechanics II: A Second Course in Quantum Theory, 2nd 
edition, by Rubin H. Landau (1996) p.212. A spin-less electron is bound by the Coulomb 
potential  
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in a stationary state of total energy ( 2mcE  ). You can incorporate this interaction into the 
Klein-Gordon equation by using the covariant derivative with  eV  and 0A . 
 
(a)Assume that the radial and angular parts of the equation separate and that the wave function 
can be written as 
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Show that the radial equation becomes 
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where 2e , )(4 222 Em  , and r  . 

 
(b) Assume that this equation has a solution of the usual form of a power series times the 

  and 0  solutions, that is, 
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and show that 
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and that only for k  is the expectation value of the kinetic energy finite and that this 

solution has a nonrelativistic limit that agrees with the solution found for the Schrödinger 
equation.  

 



(c) Determine the recurrence relation among the sci '  for this to be a solution of the Klein-

Gordon equation, and show that unless the power series terminates, the wave function 
will have an incorrect asymptotic form. 

(d) In the case where the series terminates, show that the energy eigenvalue for the k  

solution is 
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where n is the principal quantum number. 
 

(e) Expand E in powers of 2)( Z  and show that the first-order term yields the Bohr formula. 

Connect the higher-order terms with relativistic corrections, and discuss the degree to 
which the degeneracy in l is removed. 

 
 
((Notation)) 
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where 
0A  is a scalar potential and A  is a vector potential, 
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((Solution)) 
We start with the Klein-Gordon equation 
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In the presence of the field,  
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where e is the charge of the particle (e<0 for electron) 
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(a) 
 
Klein-Gordon equation 
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with 
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Noting that 
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we have the second-order differential equation 
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We put  )()( rrRru ll   
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Using the fine structure constant   
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where 
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Finally, with 
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this becomes 
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(b) 
For  , this equation becomes 
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The solution is 
 

2




 eu  
 
So we can write the form of the solution for u as 
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Thus we have 
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((Series expansion)) We solve this differential equation using the series expansion. We use the 
Mathematica. 
 
(c) We assume that 
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where 0)0( C . Using the Mathematica, we get 
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In general we have the relation 
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The value of k can be determined from Eq.(1) as 
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We choose  kk  

 

We find the condition that 0)( rnC , but 0)1( rnC . If it is so, 0....)3()2(  rr nCnC . 

So the series terminates up to ).(nC  The condition for this is 
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Here we introduce the principal quantum number 1 lnn r . Then we have 
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The energy E can be expanded in a series of 2  
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This result is compared with the exact solution from the Dirac theory. 
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In the Dirac theory, the energy level depends only on n and j, but not l 
It is surprising that the energy level derived from the Klein-Gordon equation is the same as that 
derived from the Dirac theory when j is replaced by l in the Dirac theory. 
______________________________________________________________________________ 
((Solution)) Mathematica 
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