((Sakurai 8-7))

This problem is taken from Quantum Mechanics II: A Second Course in Quantum Theory, 2™
edition, by Rubin H. Landau (1996) p.212. A spin-less electron is bound by the Coulomb
potential
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in a stationary state of total energy (E <mc®). You can incorporate this interaction into the
Klein-Gordon equation by using the covariant derivative with V =e® and A=0.

(a)Assume that the radial and angular parts of the equation separate and that the wave function
can be written as
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Show that the radial equation becomes
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where a =€°, y> =4(m*—E*),and p=yr.

(b) Assume that this equation has a solution of the usual form of a power series times the
p —> o and p — 0 solutions, that is,

U (p)=p (+cp+c,p’ +.)e7""

and show that
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and that only for Kk, is the expectation value of the kinetic energy finite and that this

solution has a nonrelativistic limit that agrees with the solution found for the Schrodinger
equation.



(c) Determine the recurrence relation among the ¢;'s for this to be a solution of the Klein-
Gordon equation, and show that unless the power series terminates, the wave function
will have an incorrect asymptotic form.

(d) In the case where the series terminates, show that the energy eigenvalue for the Kk,
solution is
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where n is the principal quantum number.

(e) Expand E in powers of (Za)* and show that the first-order term yields the Bohr formula.

Connect the higher-order terms with relativistic corrections, and discuss the degree to
which the degeneracy in | is removed.
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where A’ is a scalar potential and A is a vector potential,
A“ = (A, A) A, =(A"-A)

((Solution))
We start with the Klein-Gordon equation
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In the presence of the field,
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where € is the charge of the particle (e<0 for electron)
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Klein-Gordon equation
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Suppose that w(r,t) = e_7l//(r)

m’c?
hZ

{[%—V(rnz RV =0



or

[ E Ze)+V2 mc
Noting that
v la_zr_|(|+1)
r or’ r’

we have the second-order differential equation
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Finally, with
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this becomes
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For p — o0, this equation becomes
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The solution is
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So we can write the form of the solution for u as
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Thus we have
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((Series expansion)) We solve this differential equation using the series expansion. We use the
Mathematica.

(©) We assume that
wW(p) = p*[C(0)+C(D)p+CQR)p* +......]
where C(0) # 0. Using the Mathematica, we get
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In general we have the relation
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The value of k can be determined from Eq.(1) as
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We choose k =k,

We find the condition that C(n,) #0, but C(n, +1)=0. If itis so, C(n, +2)=C(n, +3) =....

So the series terminates up to C(n). The condition for this is
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Here we introduce the principal quantum number n=n, +1+1. Then we have
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The energy E can be expanded in a series of o’
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This result is compared with the exact solution from the Dirac theory.
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In the Dirac theory, the energy level depends only on n and j, but not |

It is surprising that the energy level derived from the Klein-Gordon equation is the same as that

derived from the Dirac theory when | is replaced by | in the Dirac theory.

((Solution)) Mathematica

Clear["Global™ ="];
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rulel = {u > ( Exp[—g] w[#] &)};

eq2 = eql /. rulel // Simplify
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rule2 = {w—» [i(:[s] 7 &]};
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listl = Table[{s, Coefficient[eq4, p, 5]}, {s, O, 5}] // FullSimplify; listl // TableForm
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Determination of recursion formula

rule3 = {w—» [qzﬁl C[s] #5*"&]};

s=q-3

3
eq5 = a /. rule3 // Expand;

list2 = Table[{s, Coefficient[eq5, p, 5]}, {s, 2, 7}] // Simplify;
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Solve[eq6 -- 8, C[q+1]]
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Determination of k from the first term of the series expansion

sl=(-k+k’-L1-11"+2"a’); s11=Solve[sl=@, k] // Simplify
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kp=k /.s11[[2]]; km=k /. s11[[1]];

We choose kp as k. Determination of the energy eigenvalue under the condition that C[1 + q] = - 7 — ':fjﬂjf‘k Fr ,f;z ——=0
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APPENDIX
Sommerfeld

for an eleotron of rest mass 7, moving in the Coulomb field of a hydro-
gen nucleus (Schrodinger did not use the symbol h). The equation gave
a fine structure for the hydrogen spectrum, but not the correct one. The
hydrogen fine structure was first given a theoretical explanation in 1915
by Sommerfeld, who worked with a relativistic extension of Bohr’s



atomic theory. In his celebrated work, Sommerfeld found that the energy
levels of the hydrogen atom were given by the expression
1
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where « is the fine structure constant (equal to e/hc), n the principal
quantum number, and k the azimuthal quantum number. Sommerfeld’s
fine structure formula, or rather its first-order approximation

However, there are reasons to believe that Dirac’s retrospection, based
on his hope-and-fear moral, is not quite correct. When he created the the-
ory, he was guided by a strong belief in formal beauty and had every rea-
son to be confident that his theory was true. It seems unlikely that he
really would have feared that the theory might break down when applied
to the hydrogen atom. After all, the Sommerfeld formula had never been
tested beyond its first or second approximation; if relativistic quantum
mechanics did not reproduce that formula exactly, it could justifiably be
argued that it was not exactly true. Dirac’s hurry in publication may have
been motivated simply by competition, the fear of not being first to pub-
lish. Several other physicists were working hard to construct a relativistic
spin theory, a fact of which Dirac must have been aware. Naturally he
felt that the credit belonged to him. He did not want to be beaten in the
race, a fate he had experienced several times already. If agreement with
the fine structure formula had the crucial importance that Dirac later
asserted, one would expect that he would have attempted to derive the
exact fine structure after he submitted his paper for publication. He did



not. I think Dirac was quite satisfied with the approximate agreement and
had full confidence that his theory would also provide an exact agree-
ment. He simply did not see any point in engaging in the complicated
mathematical analysis required for the exact solution.

Other physicists who at the time tried to construct a relativistic spin
theory included Hendrik Kramers in Utrecht; Eugene Wigner and Pas-
cual Jordan in Gottingen; and Yakov Frenkel, Dmitri Iwanenko, and Lev
Landau in Leningrad. Kramers obtained an approximate quantum
description of a relativistic spinning electron in terms of a second-order
wave equation and later proved that his equations were equivalent to
Dirac’s equation. When he got news of Dirac’s theory, he was deeply dis-
appointed, and this feeling evolved into a continuing frustration with
regard to Dirac’s physics. It is unknown in what direction Jordan and
Wigner worked (they never published their work), but it seems to have
been toward a relativistic extension of Pauli’s spin theory. “We were very
near to it,” Jordan is supposed to have said, “and I cannot forgive myself
that I didn’t see that the point was linearization.”* Although disap-
pointed, Jordan recognized the greatness of Dirac’s work. “It would have
been better had we found the equation but the derivation is so beautiful,
and the equation so concise, that we must be happy to have it.”* Frenkel,
Iwanenko, and Landau engaged in laborious tensor calculations and suc-
ceeded in working out theories that in some respects were similar to
Dirac’s. But apart from being published after Dirac’s work, they lacked,
like Kramers’s theory, the beauty and surprising simplicity that charac-
terized Dirac’s theory.” Still, there can be little doubt that had Dirac not
published his theory in January 1928, an equivalent theory would have
been published by other physicists within a few months. Dirac later said

that if he had not obtained the wave equation of the electron, Kramers
would have."



