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1. Landau gauge 
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Hamiltonian H [q = -e (e>0)] 
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In the presence of the magnetic field B (constant), we can choose the vector potential as 
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(symmetric gauge) 

Gauge transformation 
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Therefore the new vector potential 'A  is obtained as 
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Gauge transformation: q = -e (e>0) 
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2. Qunatum mechanics 
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Similarly we have 
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Since A commute with r̂ , 
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When B = (0,0,B) or Bz = B, 
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Note that 
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The Hamiltonian Ĥ is given by 
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We define the creation and annihilation operators, 
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Thus we have 
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When Naa ˆˆˆ  , the Hamiltonian is described by 
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We have thus find the energy levels for the free electrons in a homogeneous magnetic 
field- also known as Landau levels. 
 
3. Schrödinger equation 

In the absence of an electric field 
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This Hamiltonian Ĥ  commutes with yp̂  and zp̂ . 
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Schrödinger equation 
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We assume the periodic boundary condition along the y axis. 
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Then we have 
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(Landau level) 
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Finally we get a differential equation for )( . 
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The solution of this differential equation is 
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The coordinate x0 is the center of orbits. Suppose that the size of the sysyem along the x 
axis is Lx. The coordinate x0 should satisfy the condition, 0<x0<Lx. Since the eneygy of 
the system is independent of x0, this state is degenerate. 
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Thus the degeneracy is given by the number of allowed ky values for the system. 
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The value of g is the total magnetic flux. There is one state per a quantum magnetic flux 
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((Another method)) 
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Then we have 
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Since 0 A , 
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The first and second terms of this Hamiltonian are that of the simple harmonics along the 
x axis. Thus the wave function is described by the form, 
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