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Laser: Light Amplification by Stimulated Emission of Radiation 
________________________________________________________________________ 
Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning 
physicist and educator. Townes is known for his work on the theory and application of 
the maser, on which he got the fundamental patent, and other work in quantum 
electronics connected with both maser and laser devices. He shared the Nobel Prize in 
Physics in 1964 with Nikolay Basov and Alexander Prokhorov. The Japanese FM Towns 
computer and game console is named in his honor. 
http://en.wikipedia.org/wiki/Charles_Hard_Townes 
 

 
http://physics.aps.org/assets/ab8dcdddc4c2309c?1321836906 
________________________________________________________________________ 
 
Nikolay Gennadiyevich Basov (Russian: Никола́й Генна́диевич Ба́сов; 14 December 
1922 – 1 July 2001) was a Soviet physicist and educator. For his fundamental work in the 
field of quantum electronics that led to the development of laser and maser, Basov shared 
the 1964 Nobel Prize in Physics with Alexander Prokhorov and Charles Hard Townes.  
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http://en.wikipedia.org/wiki/Nikolay_Basov 
 
________________________________________________________________________ 
Alexander Mikhaylovich Prokhorov (Russian: Алекса́ндр Миха́йлович Про́хоров) 
(11 July 1916– 8 January 2002) was a Russian physicist known for his pioneering 
research on lasers and masers for which he shared the Nobel Prize in Physics in 1964 
with Charles Hard Townes and Nikolay Basov. 

 
 
http://en.wikipedia.org/wiki/Alexander_Prokhorov 
 
 
Nobel prizes related to laser physics 
 
1964 

Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for developing 
masers (1951–1952) and lasers. 
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1981  

Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spectroscopy 
and Kai M. Siegbahn for developing high-resolution electron spectroscopy 
(1958). 

 
1989  

Norman Ramsay for various techniques in atomic physics; and Hans Dehmelt and 
Wolfgang Paul for the development of techniques for trapping single 
charge particles. 

 
________________________________________________________________________ 
1. Type of transition in atoms due to radiation 

We consider the transitions between two energy states of an atom in the presence of 
an electromagnetic field. There are three types of transitions, spontaneous emission, 
stimulated emission , and absorption.  
 
(i) Spontaneous emission 

In the spontaneous emission, process, the atom is initially in the upper state of energy 
E2 and decays to the lower state of energy E1 by the emission of a photon with the energy 
 , 
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We consider the case of thermal equilibrium. There is no contribution from the external 
source. We use the following notation, 
Then we have 
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The level populations N1 and N2 are related in thermal equilibrium by the Boltzmann’s 
law 
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In the Black body problem, we show that the Planck’s law for the radiative energy 
density is given by 
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where the Bose-Einstein distribution function is given by 
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___________________________________________________ 
((Example)) Suppose that TkB  

 

For T = 300 K, T = 6  1012 Hz = 6 THz. 
 

For  « kBT,  A21 « B21WT ()  ( « T) 

 

For  » kBT,  A21 » B21WT ()  ( » T) 

 
For optical experiments that use electromagnetic radiation in the near-infrared, we have 

visible, ultraviolet region of the spectrum ( » 5 THz). 

 
Then we have 
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(i) A21 » B21WT () 

 
A21: spontaneous emission rate 
B21: rate of thermally stimulated emission 

 

(ii) W() WT ( )WE ( ) WE ()  

 
Therefore the radioactive process of interest involve the absorption and stimulated 
emission associated with the external source. 
 

 
((Note)) 
The unit of the Einstein A and B coefficients: 

A: [1/s] 
B [m3/Js2] 

________________________________________________________________________ 
4. Determination of the Einstein  A coefficient 
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If the incident beam is now turned off, the excited atoms return to their ground state. 

When )(W =0 (the beam energy density is zero), 
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where 21  is called the fluorescent or radioactive life time of the transition. The 

observation of the fluorescent emission is an experimental means of measuring the 
Einstein A coefficient. 
 

 
 

Fig. Plot of N2(t)/N2
0 vs t. Exponential decay of the form exp(-t/). 

 
5. The time dependence of N1 and N2 for the two levels 

The rate of change of N1 and N2 is given by 
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where 
 

NN 1 ,  02 N  at t = 0   (initial condition), 
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When WBA  , the most of atoms remain in their ground state. 
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When 1
A
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, the dependence of N2 on the beam intensity becomes nonlinear. This 

nonlinear behavior is called saturation of the atomic transition. 
 
In the steady state (t = ∞), we have 
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We make a plot of N2/N as a function of 
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. In the limit of 

A

WB
, N2/N becomes 

1/2. Which means that the population inversion (N2>N1) does not occur in the two-level 
system. 
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Fig. Plot of N2/N vs 
A

WB
. 

 
6. Population inversion and negative temperature 

In thermal equilibrium, N2<N1. If we have a means of inverting the normal population 
of states so that N2>N1 (negative temperature, population inversion). Then the emission 
would exceed the absorption rate. This means that the applied radiation of the energy   
will be amplified in intensity by the interaction process.  
 
7. Three-level laser (I) 

To achieve non-equilibrium conditions, an indirect method of populating the excited 
state must be used. To understand how this is done, we may use a slightly more realistic 
model, that of a three-level laser. Again consider a group of N atoms, this time with each 
atom able to exist in any of three energy states, levels 1, 2 and 3, with energies E1, E2, 
and E3, and populations N1, N2, and N3, respectively. Note that E1 < E2 < E3; that is, the 
energy of level 2 lies between that of the ground state and level 3. The population 
inversion can be achieved for levels 1 and 2 by experiments that make use of the other 
energy levels (level 3). 
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In summary, atoms in the ground state (E1) are pumped to a higher state (E3) by some 
external source of energy. The atom then decay quickly to the state (E2). A large number 
of atoms can exist for a relatively long time at E2, where they just waiting for a photon to 
come along and stimulate the transition to E1. In the normal operation many more atoms 
will be in the excited (metastable state) than in the ground state: a population inversion, 
which is the essential feature for the lasing. 
 
((Potential difficulty)) 

There is a potential difficulty with the three-level system. What happens to an atom 
after it has been returned to the ground state E1 by the stimulated emission. The level 1 
(E1) is the ground state. In thermal equilibrium, a large fraction of atoms is in the ground 
state. Since N1>N2 in thermal equilibrium, sufficiently strong power supply is needed for 
the pumping, leading to the population inversion (N2>N1). This is a disadvantage for the 
three-level laser. 
 
8. Ruby laser 

The first laser was built by Theiredore Maiman. It consists of small rod of ruby ( a 
few cm) surrounded by a helical gaseous flashtube. The ends of ruby rod are flat and 
perpendicular to the axis of the rod. Ruby is a transparent crystal of Al2O3 containing a 
small amount of Cr. It appears red because of Cr3+. 
 

 
 
Fig. The first laser invented (in 1960). Pump source: flash lamp. Classic 3-level laser. 

Very low repetition rate ~1 pulse/min.  Since its repetition rate is so slow, nobody 
wants to use this type of laser these days. Laser wavelength 694.3 nm, pulse width 
~ 10-8 sec. 
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It is found that the population inversion (N3>N2) occurs in this system, since 
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((Discussion)) 

For simplification, we assume the relaxation times  
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short enough that the pumped atoms to E4 immediately decay to E3 and that atoms at E2 
decay so fast. 
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The levels 2 and 3 are not the ground state. The population inversion (N3>N2) can occur 
readily in comparison with the case of three-level laser, since the population of N3 and N4 
are much smaller than that of the ground state. 
 
________________________________________________________________________ 
12. Amplification of laser 

We consider the two levels where the population of atoms in the upper state is larger 
than that in the lower state. The inversion population occurs in this system. 
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Substitution of the above relations into the origional equation yields 
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13. Amplification for the two-level laser 

We consider the case of the two-level laser, where no population inversion occurs. 
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Fig. Plot of I(z)/Ic as a function of Kz, where I(z=0)/Ic = 1. The intensity falls with 

increasing the distance z. 
 
14. Amplification for the three-level laser 

Next we discuss the z dependence of the intensity I(z) for the three-level laser where a 
population inversion occurs. From the above discussion, it is found that that 
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Then we have a nonlinear differential equation 
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A light amplifier of the type described above is called three level laser. The laser can also 

act as a self-sustaining oscillator, since even if no W  is present initially, some radiation 
at w can appear owing to A21. 
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The solution of this equation is obtained as 
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and 
 

xyy 01  for x>>1 

 

 
 

Fig. Plot of 
cI

I
y   vs x = Gz. 

cI

I
y 0  at t = 0, is changed as a parameter between 

0.001 and 0.01. The intensity increases with increasing the distance z. 
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APPENDIX 
A.1 Interaction with the classical radiation field (cgs units) 
classical radiation field 
 

 electric or magnetic field derivable from a classical radiation field as opposed to 
quantized field 
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A  0. 

 
We work with a monochromatic field of the plane wave 
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(Fermi’s golden rule) 
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2. Stimulated emission and absorption (cgs units) 
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A.3. Electric dipole approximation 
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