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The mass of neutrino is about 1/107 of the electron mass. Such a small mass of neutrino can be 
measured experimentally by means of the neutrino oscillation. There are three kinds of neutrino; 
electron neutrino, muon neutrino, and tau neutrino. For simplicity we have only two neutrinos, 

electron neutrino e and muon neutrino . Nuetrino generated by weak interaction can be 

expressed in terms of the linear combination of e and . If the masses of e and  are different, 

the probability of finding e in the system decreases, while the probability of finding  increases 
with increasing time. Such a phenomena is called the neutrino oscillation. Here the neutrino 
oscillation is discussed in terms of quantum mechanics. 
 
Observation of neutrino oscillation in a superKamiokande 

Super-Kamiokande finds neutrinos apparently "disappearing". Since it is unlikely that 
momentum and energy are actually vanishing from the universe, a more plausible explanation is 
that the types of neutrinos we can detect are changing into types we cannot detect. This 
phenomenon is known as neutrino oscillation.  

The neutrinos observed by Super-Kamiokande are without exception produced at great 
distances from the detector. Neutrinos produced in the atmosphere arrive at the detector from 
distances of about 40 km (if produced above it) to 12,000 km (if produced on the other side of 
the Earth, the radius of Earth = 6,371 km). These distances are significantly greater than any 
measurements made to date with neutrinos from accelerators or nuclear reactors on Earth. Such 
great distances not only allow one to detect effects which would be invisible with a closer 
neutrino source. They also allow one to measure the behavior of neutrinos produced over a great 
range of distances. These advantages lead to some of the most dramatic evidence that 
oscillations are occurring. 

The probability of a neutrino changing type is related to the distance travelled by the neutrino 
from its point of production to its point of detection. As a general rule, neutrinos travelling 
greater distances will exhibit greater depletion from oscillation. Moreover, the oscillation 
probability varies smoothly over increasing distance.  

The reason neutrino oscillation is relevant to the question of neutrino mass is that massless 
neutrinos cannot oscillate. The observation of oscillation implies that the masses of the neutrinos 
involved cannot be equal to one another. Since they cannot be equal to one another, they cannot 
both be zero. In fact it is quite likely that if any neutrinos have non-zero mass, all of them do.  
 
 1. Introduction: significance of neutrino oscillation 

In the standard model, neutrinos are assumed to be massless. Only the left-handed fields 
appear while the right-hand counterparts have vanishing coupling constants are invisible in 
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second neutrino, now called the muon neutrino (  ). The neutrino produced from nuclear β 

decay is now called the electron antineutrino ( e ). Around 1969, R. Davis successfully detected 

solar neutrinos for the first time and found that the solar neutrino flux was significantly less than 
the prediction obtained from the standard solar model (SSM). After this observation, a number of 
experiments were carried out to measure the solar neutrinos with different energy thresholds and 
all of them confirmed that the solar neutrino flux is significantly less than the predicted value. 
The discrepancy between the measurements and the prediction was called the “solar neutrino 
problem” and remained unsolved until the solar neutrino oscillation was established. In 1976, M. 
Perl discovered the τ lepton in the e+ e− collider experiment at SLAC and deduced the existence 

of the third neutrino (  ) from the large missing energy and momentum of its decay. The   was 

directly identified by DONUT (Direct Observation of Nu Tau; Fermi Lab) group using a nuclear 
emulsion detector. 
 
3. Experimental evidence 

Neutrino oscillation is one of the most exciting subjects in elementary particle physics today. 
It was first confirmed in 1998 by the Super-Kamiokande group from their studies of atmospheric 
neutrinos. Experimental studies of neutrino oscillation have been rapidly progressing since then, 
and a number of positive oscillation results have been observed in atmospheric, solar, accelerator, 
and reactor neutrinos. The implication of the existence of neutrino oscillation is that neutrinos 
have finite masses and mixings, which are not accounted for in the framework of the standard 
model of elementary particles. Therefore, the standard model now must be extended to include 
the new information. Because the neutrino masses are extremely small, it is considered to be 
unnatural to be included in the standard model similar to the way quark and charged lepton 
masses are. Therefore, the neutrino oscillation is believed to provide an important new concept 
that will be a big step toward the unified understanding of elementary particle physics. 

The neutrino oscillation is unique because neutrinos travel with ultra-relativistic velocity and 
the oscillation length is very long. Using neutrino oscillations it is possible to study a very low 
mass scale regime which other experiments struggle to reach. The neutrino oscillation is not 
incorporated into the standard model. Like other oscillations and particle masses, the neutrino 
oscillations and masses can be understood to be generated by the transitions between the neutrino 
flavors. However, we do not know the origin of the very small observed transition amplitudes yet. 
It is expected that new physics will evolve from studies of neutrino oscillations. 

The evidence for neutrino mass first came in the 1990s from measurements in an enormous 
underground detector in Japan called Super Kamiokande, and was reinforced in 2001 and 2002 
by measurements at SNO (Sudbery Neutrino Observatory, Ontario Canada). The neutrinos are 
created high in the atmosphere by cosmic rays. Because the earth is so nearly transparent to 
neutrinos,  

There is a deficit of muons from underfoot relative to those from overhead. Some of 
neutrinos that travel farther – some eight thousand miles farther-are getting lost. How does this 
imply the neutrinos have mass? 



The quantum state of the neutrino is the linear combination of of two states 1  and 2

where the mass of the particle in the state 1  (denoted by mass m1) is different from that in the 

state 1  (denoted by mass m2). The amplitudes of the linear combinations are different 

depending on the type of neutrinos such as the electron-neutrino, muon-neutrino, and the tau-
neutrino. The quantum waves associated with the two mixed particles oscillate at different 
frequencies (the frequency is related to the mass). This makes the muon neutrino turn gradually 
into an electron neutrino. This phenomenon is called the neutrino oscillation. 

The Sun is emitting as many neutrinos. Through neutrino oscillation, electron neutrinos are 
getting transformed into muon and tau neutrinos. The neutrinos have masses that are not zero and 
not equal. 
 
4. Flavor eigenstates and mass eigenstates 

Part of the problem was that the standard model of particle physics assumed that neutrinos 
were massless. If neutrinos are massless they must propagate at the speed of light, and all flavors 
of neutrinos must then have the same speed. We now believe that neutrinos have very small but 

finite masses. Furthermore, the flavor eigenstates ( e ,  , and   are not the same as the 

mass eigenstates ( 1 , 2 , and 3 ); the flavor eigenstates are linear combinations of mass 

eigenstates. Since the different mass eigenstates have different masses, they can propagate at 
different speeds. Neutrino oscillations arise from the fact that as a linear combination of mass 
eigenstates propagates, the phase difference between the mass states changes, resulting in a 
different linear combination. 

Imagine the flavor eigenstate e , for example, being made up of a linear combination of 

1  and 2 . It is the mass eigenstates that are the energy eigenstates (more on this below), and 

which propagate at particular speeds. A neutrino that starts as e  at the Sun may end up as 

  on Earth because the original linear combination of 1  and 2  has changed on 

propagation. If your detector is sensitive to e’s, but not ’s, you would perceive this as a deficit 

of e’s unless you account for the oscillations. If you think neutrinos are massless, you won’t 
account for the oscillation because there shouldn’t be any. SNO was able to confirm the 
observation of neutrino oscillations, and solve the solar neutrino problem, because it was 
sensitive to all three neutrino 
flavors. 
(Mark Beck, Quantum Mechanics, Theory and Experiment (Oxford, 2012)) 
 
4. Two flavor approximation 

A lovely example of quantum-mechanical dynamics leading to interference in a two-state 
system, based on current physics research, is provided by the phenomenon known as neutrino 
oscillations. Neutrinos are elementary particles with no charge and very small mass, much 



smaller than that of an electron. They are known to occur in nature in three distinct "flavors," 
although for this discussion it suffices to consider only two of them. These two flavors are 
identified by their interactions, which may be either with electrons, in which case we write e , or 

with muons, that is  . These are in fact eigenstates of a Hamiltonian that controls those 

interactions. On the other hand, it is possible (and, in fact, is now known to be true) that 
neutrinos have some other interactions, in which case their energy eigenvalues correspond to 
states that have a well-defined mass. These "mass eigenstates" would have eigenvalues E1 and E2, 
say, corresponding to masses m1 and m2, and might be denoted as the mass eigenstates 1  and 

2 . The flavor eigenstates e  and  .are related to these through a simple unitary 

transformation, specified by some mixing angle , as follows: 
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Eigenvalue problem: 
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The energies E1 and E2 are given by 
 

)1( 2

22
2222

2

2

p

cm
pcmp

c

E
 , 

 
or 
 

p

cm
cp

p

cm
cp

p

cm
cpE

2
)

2
1()1(

32

2

22
2/1

2

22

 . 

 

We consider the time dependence of the state t, with the initial state e  
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The probability for finding the system in a state e , 
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then we have 
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E is the neutrino energy, L is the distance between the neutrino source and detector, m1 and m2 
are the neutrino masses of the mass eigenstates and θ is the mixing angle between flavor 
eigenstates and mass eigenstates. 

The probability for finding the system in a state  , 
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((Mathematica)) Numerical calculation in the cgs units. 
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eV 2 km
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. rule1
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37 ; f1 a0 : 1 Sin 2 2 Sin a0 0.126693 x 2;

h1 Plot Evaluate Table f1 a0 , a0, 0.65, 0.80, 0.05 ,

x, 20, 100 , PlotStyle Table Hue 0.2 i , Thick , i, 0, 3 ;

h2 Graphics Text Style "P", Black, 15, Italic , 22, 0.95 ,

Text Style "L E km MeV ", Black, 12, Italic , 90, 0.05 ,

Text Style "a0 0.65", Black, 10, Italic , 80, 1 ,

Text Style "0.70", Black, 10, Italic , 70, 1 ,
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4. General case 
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where Û is the unitary operator, 1ˆˆ UU , and it is called as Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) mixing matrix, in honor of the pioneering contributions of these physicists to 
neutrino mixing and oscillations, 
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y, 0.005, 1 , PlotStyle Table Hue 0.2 i , Thick , i, 0, 3 ;

h12 Graphics Text Style "P", Black, 15, Italic , 0.005, 0.95 ,

Text Style "E L MeV km ", Black, 12, Italic , 0.08, 0.15 ,

Text Style "a0 0.70", Black, 10, Italic , 0.039, 0.8 ;

Show h11, h12

P

E L MeV km

a0 0.70

10 2 0.02 0.05 0.20 0.50

0.2

0.4

0.6

0.8

1.0



332222112  UUU   

 

333223113  UUU   

 
and 
 

  *
13

*
12

*
111 UUU e  , 

 

  *
23

*
22

*
212 UUU e   

 

  *
33

*
32

*
313 UUU e   

 
Note that 
 

iii EH  ˆ ,  iii tE
i

tH
i  )exp()ˆexp(


  

 

The mass eigenstates i  (I = 1, 2, 3), are the neutrino states that have definite mass im . 

 

p

cm
cp

p

cm
cp

p

cm
cpE iii

i 2
)

2
1()1(

32

2

22
2/1

2

22

  

 
At t = 0, 
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The probability is calculated as 
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The time dependence of the state vector 
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Then we have the probabilities, 
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;
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h1 S1H.EPH1.S1 FullSimplify;
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