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The mass of neutrino is about 1/10” of the electron mass. Such a small mass of neutrino can be
measured experimentally by means of the neutrino oscillation. There are three kinds of neutrino;
electron neutrino, muon neutrino, and tau neutrino. For simplicity we have only two neutrinos,
electron neutrino v, and muon neutrino v,. Nuetrino generated by weak interaction can be
expressed in terms of the linear combination of . and v,.. If the masses of . and v, are different,
the probability of finding 1. in the system decreases, while the probability of finding v, increases
with increasing time. Such a phenomena is called the neutrino oscillation. Here the neutrino
oscillation is discussed in terms of quantum mechanics.

Observation of neutrino oscillation in a superKamiokande

Super-Kamiokande finds neutrinos apparently "disappearing". Since it is unlikely that
momentum and energy are actually vanishing from the universe, a more plausible explanation is
that the types of neutrinos we can detect are changing into types we cannot detect. This
phenomenon is known as neutrino oscillation.

The neutrinos observed by Super-Kamiokande are without exception produced at great
distances from the detector. Neutrinos produced in the atmosphere arrive at the detector from
distances of about 40 km (if produced above it) to 12,000 km (if produced on the other side of
the Earth, the radius of Earth = 6,371 km). These distances are significantly greater than any
measurements made to date with neutrinos from accelerators or nuclear reactors on Earth. Such
great distances not only allow one to detect effects which would be invisible with a closer
neutrino source. They also allow one to measure the behavior of neutrinos produced over a great
range of distances. These advantages lead to some of the most dramatic evidence that
oscillations are occurring.

The probability of a neutrino changing type is related to the distance travelled by the neutrino
from its point of production to its point of detection. As a general rule, neutrinos travelling
greater distances will exhibit greater depletion from oscillation. Moreover, the oscillation
probability varies smoothly over increasing distance.

The reason neutrino oscillation is relevant to the question of neutrino mass is that massless
neutrinos cannot oscillate. The observation of oscillation implies that the masses of the neutrinos
involved cannot be equal to one another. Since they cannot be equal to one another, they cannot
both be zero. In fact it is quite likely that if any neutrinos have non-zero mass, all of them do.

1. Introduction: significance of neutrino oscillation
In the standard model, neutrinos are assumed to be massless. Only the left-handed fields
appear while the right-hand counterparts have vanishing coupling constants are invisible in



standard model interactions. The experimental evidence indicates that neutrinos have tiny masses,
raising many questions about how the standard model must be extended to accommodate
neutrino mass. The evidence all concerns oscillation of neutrino flavor as neutrino propagates
through matter and vacuum over macroscopic distance. There are three neutrino flavors
described by a complex matrix; (i) the electron neutrino, (ii) the muon neutrino, and (iii) the tau
neutrino. The electron neutrinos sourced in solar fusion reactions in the core of the Sun disappear
in route to the Earth. They become muon and tau neutrinos. The oscillation is affected by
interaction of the neutrinos with the material of the Sun.
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Fig. The Standard Model of elementary particles (more schematic depiction), with the three
generations of matter, gauge bosons in the fourth column, and the Higgs boson in the
fifth.
https://en.wikipedia.org/wiki/Standard Model

2. Discoveryof v,, v ,and v,

The concept of the neutrino was introduced in 1930 by W. Pauli in order to explain the
energy spectrum of the P rays. In 1956, the existence of the neutrino was experimentally
confirmed. A team led by F. Reines and C.L. Cowan detected neutrinos from the Savanna River
Nuclear Reactor (South Carolina). In 1961, a Columbia Univ. and BNL group, led by L.M.
Lederman, M. Schwartz and J. Steinberger, carried out an experiment striking aluminum targets
with energetic neutrinos produced in m — p + v decay. They found that only muons were
produced in the neutrino induced reactions. This indicates that the neutrino produced in the pion
decay is different from the one produced in the f decays in reactor. This was the discovery of the



second neutrino, now called the muon neutrino (v, ). The neutrino produced from nuclear B

decay is now called the electron antineutrino (v, ). Around 1969, R. Davis successfully detected

solar neutrinos for the first time and found that the solar neutrino flux was significantly less than
the prediction obtained from the standard solar model (SSM). After this observation, a number of
experiments were carried out to measure the solar neutrinos with different energy thresholds and
all of them confirmed that the solar neutrino flux is significantly less than the predicted value.
The discrepancy between the measurements and the prediction was called the “solar neutrino
problem” and remained unsolved until the solar neutrino oscillation was established. In 1976, M.
Perl discovered the t lepton in the e+ e— collider experiment at SLAC and deduced the existence
of the third neutrino (v, ) from the large missing energy and momentum of its decay. The v, was

directly identified by DONUT (Direct Observation of Nu Tau; Fermi Lab) group using a nuclear
emulsion detector.

3. Experimental evidence

Neutrino oscillation is one of the most exciting subjects in elementary particle physics today.
It was first confirmed in 1998 by the Super-Kamiokande group from their studies of atmospheric
neutrinos. Experimental studies of neutrino oscillation have been rapidly progressing since then,
and a number of positive oscillation results have been observed in atmospheric, solar, accelerator,
and reactor neutrinos. The implication of the existence of neutrino oscillation is that neutrinos
have finite masses and mixings, which are not accounted for in the framework of the standard
model of elementary particles. Therefore, the standard model now must be extended to include
the new information. Because the neutrino masses are extremely small, it is considered to be
unnatural to be included in the standard model similar to the way quark and charged lepton
masses are. Therefore, the neutrino oscillation is believed to provide an important new concept
that will be a big step toward the unified understanding of elementary particle physics.

The neutrino oscillation is unique because neutrinos travel with ultra-relativistic velocity and
the oscillation length is very long. Using neutrino oscillations it is possible to study a very low
mass scale regime which other experiments struggle to reach. The neutrino oscillation is not
incorporated into the standard model. Like other oscillations and particle masses, the neutrino
oscillations and masses can be understood to be generated by the transitions between the neutrino
flavors. However, we do not know the origin of the very small observed transition amplitudes yet.
It is expected that new physics will evolve from studies of neutrino oscillations.

The evidence for neutrino mass first came in the 1990s from measurements in an enormous
underground detector in Japan called Super Kamiokande, and was reinforced in 2001 and 2002
by measurements at SNO (Sudbery Neutrino Observatory, Ontario Canada). The neutrinos are
created high in the atmosphere by cosmic rays. Because the earth is so nearly transparent to
neutrinos,

There is a deficit of muons from underfoot relative to those from overhead. Some of
neutrinos that travel farther — some eight thousand miles farther-are getting lost. How does this
imply the neutrinos have mass?



The quantum state of the neutrino is the linear combination of of two states |V1> and |V2>
where the mass of the particle in the state |V1> (denoted by mass m;) is different from that in the

state |V1> (denoted by mass m,). The amplitudes of the linear combinations are different

depending on the type of neutrinos such as the electron-neutrino, muon-neutrino, and the tau-
neutrino. The quantum waves associated with the two mixed particles oscillate at different
frequencies (the frequency is related to the mass). This makes the muon neutrino turn gradually
into an electron neutrino. This phenomenon is called the neutrino oscillation.

The Sun is emitting as many neutrinos. Through neutrino oscillation, electron neutrinos are
getting transformed into muon and tau neutrinos. The neutrinos have masses that are not zero and
not equal.

4. Flavor eigenstates and mass eigenstates

Part of the problem was that the standard model of particle physics assumed that neutrinos
were massless. If neutrinos are massless they must propagate at the speed of light, and all flavors
of neutrinos must then have the same speed. We now believe that neutrinos have very small but

V)

V2> , and |V3>); the flavor eigenstates are linear combinations of mass

finite masses. Furthermore, the flavor eigenstates ( VT> are not the same as the

vﬂ>, and

mass eigenstates ( |v1> ;

eigenstates. Since the different mass eigenstates have different masses, they can propagate at
different speeds. Neutrino oscillations arise from the fact that as a linear combination of mass
eigenstates propagates, the phase difference between the mass states changes, resulting in a
different linear combination.

Imagine the flavor eigenstate ve>, for example, being made up of a linear combination of

|V1> and |V2> . It is the mass eigenstates that are the energy eigenstates (more on this below), and

which propagate at particular speeds. A neutrino that starts as Ve> at the Sun may end up as

‘Vﬂ> on Earth because the original linear combination of |V1> and |V2> has changed on

propagation. If your detector is sensitive to v.’s, but not v,’s, you would perceive this as a deficit
of v.’s unless you account for the oscillations. If you think neutrinos are massless, you won’t
account for the oscillation because there shouldn’t be any. SNO was able to confirm the
observation of neutrino oscillations, and solve the solar neutrino problem, because it was
sensitive to all three neutrino

flavors.

(Mark Beck, Quantum Mechanics, Theory and Experiment (Oxford, 2012))

4. Two flavor approximation

A lovely example of quantum-mechanical dynamics leading to interference in a two-state
system, based on current physics research, is provided by the phenomenon known as neutrino
oscillations. Neutrinos are elementary particles with no charge and very small mass, much



smaller than that of an electron. They are known to occur in nature in three distinct "flavors,"
although for this discussion it suffices to consider only two of them. These two flavors are
identified by their interactions, which may be either with electrons, in which case we write v,, or

with muons, that is v,. These are in fact eigenstates of a Hamiltonian that controls those

interactions. On the other hand, it is possible (and, in fact, is now known to be true) that
neutrinos have some other interactions, in which case their energy eigenvalues correspond to
states that have a well-defined mass. These "mass eigenstates" would have eigenvalues E; and E»,

say, corresponding to masses m; and m,, and might be denoted as the mass eigenstates |V1> and

|V2> . The flavor eigenstates Ve> and ‘Vﬂ> .are related to these through a simple unitary

transformation, specified by some mixing angle &, as follows:

V€> = 5(9)|v1> = cosH|V1> —sin 0|V2>

‘vy> = §(9)|v2> = sin9|vl> + cosH|v2>

|va>
|v,>

[vi>

where
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where
2 2 2
Am," =m  —m,",

E is the neutrino energy, L is the distance between the neutrino source and detector, m; and m;

are the neutrino masses of the mass eigenstates and 6 is the mixing angle between flavor
eigenstates and mass eigenstates.

The probability for finding the system in a state ‘v #>,
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A= TR 6693 % 107,
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Am,’c* = a,x 10 (V)L

(Am,,’c*) A =0.1266934,



L(km)

P(v. > v.)=1-sin?(20)sin*(0.126693
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)

0=37°, Am,’c* = 0.70x 10 (eV)*.

((Mathematica)) Numerical calculation in the cgs units.

Clear["Global +"];
rulel = {c~»2.99792x 10", & » 1.054571628 107*", eV » 1.602176487 x 107,
MeV - 1.602176487 x 10°°, GeV - 1.602176487 x 10°% , km - 10°} ;

_ (eV)? km
Al = 15 C eV //. rulel
1266.93

©=37°; f1[a0 ] := 1-Sin[26]%Sin[a00.126693 x]?;

hl = Plot[Evaluate[Table[fl[a0], {a0, 0.65, 0.80, 0.05}]1171,
{x, 20, 100}, PlotStyle -» Table[{Hue[0.2 1], Thick}, {1, 0, 3}11;

h2 = Graphics[{Text[Style["P", Black, 15, Italic], {22, 0.95}1],
Text[Style["L/E (km/MeV)™, Black, 12, ltalic], {90, 0.05}1,
Text[Style["ap=0.65", Black, 10, Italic], {80, 1}],
Text[Style["0.70", Black, 10, Italic], {70, 1}1,
Text[Style["0.80", Black, 10, Italic], {60, 1}1}1;

Show[h1l, h2]
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6e=37°;
N P 142
gl[a0_] :=1-Sin[26] Sln[aO 0-126693)—/] .
hll = LogLinearPlot[Evaluate[Table[gl[a0O], {a0, 0.70, 0.70, 0.05}11,
{y, 0.005, 1}, PlotStyle » Table[{Hue[0.2 1], Thick}, {1, 0, 3}11;
h12 = Graphics[{Text[Style["P", Black, 15, Italic], {0.005, 0.95}],
Text[Style["E/L (MeV/km)"™, Black, 12, Italic], {0.08, 0.15}],
Text[Style["ap,=0.70", Black, 10, ltalic], {0.039, 0.8}1}1;
Show[h11l, h12]
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4. General case
|ve>:ljvl>, ‘vﬂ> :Uv2>, |VT>=UV3>
|v1> =U" Ve>, |v2> =U* V#>, |V2>:U+ v#>

where U is the unitary operator, UU =1 , and it is called as Pontecorvo—Maki—Nakagawa—
Sakata (PMNS) mixing matrix, in honor of the pioneering contributions of these physicists to
neutrino mixing and oscillations,

Ve> = U11|V1>+U21|V2>+U31|V3> >



‘Vﬂ> = U12|v1>+U22|v2>+U32|v3>

|Vr> = U13|V1> + U23|V2> +U33|V3>

and
Vi) =Uy v+ Uy |v,) + Ui )
v,y) = . ve>+U22*‘v#>+U23* v.)
v,)=U,, ve>+U32*‘vy>+U3; v,)
Note that

FI| Vl.> :E,»|Vi> , exp(—%ﬁ[t)| Vl.> = exp(—%Eit)|vi>

The mass eigenstates |v,.> (I=1, 2, 3), are the neutrino states that have definite mass m, .
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where
U+ U, + UL =1
U+ U +Us[" =1=20U, [ U] + 0o U]+ U3

2 2 2 2 2 2 2 2 2
Am,"=m —m,", Amy," =m,” —m;", Amy” =m;” —m,

REFERENCES

K. Ford The Quantum World, Quantum Physics for Everyone (Harvard University Press, 2004)

Y. Suzuki, M. Nakahara, Y. Itow, M. Shiozawa, and Y. Obayashi, The Fourth Workshop on
Neutron Oscillations and Their Origin (World Scientific, 2004)

F. Suekane, Neutrino Oscillation, A Practical Guide to Basics and Applications (Springer, 2015).

J.P. Ochoa-Ricoux, A Search for Muon Neutrino to Electron Neutrino Oscillations in the
MINOS Experiment (Springer, 2011).

T. Ahrens, From Dirac to Neutrino Oscillations (Springer, 2000).

M. Fukugita and Y. Yanagida, Physics of Nuetrinos and Applications to Astrophysics (Springer,
2003).

Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

J.A. Thomas and P.L. Vahle, Neutrino Oscillation Present Status and Future Plans (World
Scientific, 2008).

F. Boehm and P. Vogel, Physics of Massive Neutrinos (Cambridge, 1992).

S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos (Springer, 2010).

D. Carlsmith, Particle Physics (Pearson, 2010).

Mark Beck, Quantum Mechanics, Theory and Experiment (Oxford, 2012)

APPENDIX
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with

The time dependence of the state vector
iAo a
|a(t)) = exp(—%Ht)S(0)|vl>

Then we have the probabilities,
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((Mathematica))



Clear["Global +"];

exp_"* :=
exp /. {Complex[re_, im_] » Complex[re, -im]};

S = ( Cos[e] Sin[e] )
~ \-Sin[e] Cos[e] ]’
_ [ Cos[e] -Sin[e] ).
S1H = (Sin[e] Cos[o] )
EXp -iElt 0
EPH1 = [ ;
0 Exp[“‘l'fl2t
m12 c3 m22 ¢34 .
rulel:{El-»pc+W, E2-»>pc + 7D }

hl = S1IH.EPH1.S1 // FullSimplify;

pll=hi[[1, 111 h1i[[1, 1]11* /. rulel // FullSimplify
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2ph
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