
1 
 

Linear potential: Neutron Bouncing problem 
Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 
(Date: September 16, 2015) 

 
The basic idea of the experiment is to let neutrons‘‘flow’’—with a certain horizontal 
velocity—between a mirror below and an absorber/scatterer above. The absorber acts as a 
selector for the vertical velocity component. Then one measures the number N of 
transmitted neutrons as a function of the absorber height h. This measurement should 
allow the identification of the neutron quantum states because a clear ‘‘signature’’ should 
appear: the classical dependence NClassical(h) is modified into a stepwise quantum-
mechanical dependence NQM(h) at small absorber heights h.  
 
1. Theory 

We consider a neutron particle in the presence of a potential energy given by 
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where g (>0) is the gravitational acceleration. The Schrödinger equation is given by 
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where  is the energy of a particle with a mass m. Then the Schrödinger equation is 
expressed by 
 

0)()(
2)(

2

2

2

2

 xaxg
m

dx

xd 


   

 
where 
 

mgaE   
 
and ax   is a classical turning point. Since the potential xmgxV )(  is even function 

of x, the wavefunction should be either an even function of x (even parity), or an odd 
function of x. The boundary condition for the wavefunction is as follows. 
 

0)0( x   for the wavefunction with the odd parity 
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0)0(' x   for the wavefunction with the even parity 

 
Here we put 
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where z is the dimensionless variable. We note that 
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Then we get 
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The solution of this equation is given by 
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where C1 and C2.  
 

z

Ai z

15 10 5 5

0.4

0.2

0.2

0.4

 
 
Fig. Plot of the Ai(z) (red) as a function of z. 
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Fig. Plot of the Bi(z) (blue) as a function of z. 
 
 
Since z , Bi(z) becomes infinity. So we have C2 = 0. 
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We determine the energy eigenvalue from the boundary condition. 
 
(i) Odd parity case 
 

0)0( x   for the wavefunction with the odd parity 
 
When the n-th zero points of )(zAi  is zn,  
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The energy eigenvalue can be expressed by 
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where nzz  , x = 0, and naa   in the expression 
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The characteristic length hc is given by 
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The value of zn for the odd parity: 
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The normalized wave function is obtained as follows. 
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(ii) Even parity case 
 

0)0(' x   for the wavefunction with the even parity 
 
The n-th zero points of )(' zAi  is yn. Then the value of the height na  and the energy 

eigenvalue are given by 
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The value of yn vs n for the even parity: 
 

n  yn (even parity) an (m) 
1  -1.01879  5.978896 
2  -3.2482  19.06247 
3  -4.8201  28.28736 
4  -6.16331  36.17016 
5  -7.37218  43.26456 
6  -8.48849  49.81576 
7  -9.53545  55.96000 
8  -10.5277  61.78312 
9  -11.4751  67.34306 
10  -12.3841  72.67764 
11  -13.2622  77.83088 
12  -14.1115  82.81510 
13  -14.9359  87.65320 
14  -15.7382  92.36160 
15  -16.5205  96.95262 

 
2. Experiment 

We consider a neutron with mass m at a height x above the floor. The potential energy 
is given by mgx. We note that the potential energy becomes infinity at x = 0, since the 
neutron bounces at x = 0. So the wavefunction becomes zero at x = 0. This means that the 
odd parity solution of the wavefunction is allowed.  
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Fig. Probability amplitude )(2 xn  for the n-th state (n = 1, 2, 3,…). The blue lines 

denote the turning point in the classical limit. The energy eigenvalue of the n-th 
state is given by mgan where an is the height of the turning point. The wave 
function has an odd parity since it should be zero at x = 0 because of the infinite 
potential at x = 0. 
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APPENDIX 
 

 
 
Fig: A simplified scheme of measuring gravitational quantum states of neutrons. 
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1: neutron collimator. 2: illustration of classical trajectories of neutrons upstream 
entrance of installation. 3: mirror. 4: absorber/scatterer. 5: illustration of 
horizontal component of neutron velocity in quantum regime of motion. 6: 
neutron detector. (From Nesvizhevsky and Voronin). 
 

 
 
Fig. A typical result of first experiments for gravitational quantum states of neutrons. 

The measured neutron count in the detector is shown, with circles as a function of 
the size of slit between a flat polished horizontal mirror on bottom and an 
absorber with microscopically rough and macroscopically flat surface on top. A 
theoretical curve fits the data. One clearly observes the main feature of the 
measured data, which consists of the fact that neutrons do not pass through the slit 
as long as the slit size is smaller than the characteristic size of the gravitational 
quantum state. One also observes irregularities corresponding to second and third 
quantum states. Predicted probability density is shown in the insert for first and 
second quantum states. 
(From Nesvizhevsky and Voronin). 

 


