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We consider the inversion transformation, which consists in simultaneously changing the 

sign of all the coordinates, i.e., a reversal of the direction of each coordinate axis; a right-handed 
coordinate system then becomes left-handed, and vice versa. The invariance of the Hamiltonian 
under this transformation expresses the symmetry of space under mirror reflections. In classical 
mechanics, the invariance of Hamiltonian's function with respect to inversion does not lead to a 
conservation law, but the situation is different in quantum mechanics. 
((Landau and Lifshits, Quantum Mechanics, Pergamon Press). 
 
1 Property of parity operator 
 

y

z

x

new x

new y

new z

RH 
(right-handed)

LH 
(left-handed)

 
 
̂ : parity operator (unitary operator) 
 

 ˆ'   

 
or 
 

  ˆ'  

 
 
Definition: the average of x̂  in the new state '  is opposite to that in the old state    

 
 xx ˆ'ˆ'   

 
or 
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 xx ˆˆˆˆ   

 
or 
 

xx ˆˆˆˆ    (1) 
 
The position vector is called a polar vector. 

From the normalization condition  
 

1ˆˆ''     

 
we have 
 

1̂ˆˆ   (2) 
 
Thus the parity operator is a unitary operator. From Eqs.(1) and (2), 
 

0ˆˆˆˆ  xx   
 
We apply the ket vector x  on this operator, 

 
xxxxxx  ˆˆˆˆˆ  . 

 
Thus x̂  is the eigenket of x̂  with the eigenvalue (x). 

 
xx ̂  

 
Since 
 

xxx   ˆˆˆ  

 
we have 
 

1̂ˆ 2   
 

Since 1̂ˆˆ   and 1̂ˆ 2  , 
 

 ˆˆˆˆ   
 
or 
 

 ˆˆ   
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which means that ̂  is the Hermite operator. 
 
2. The linear momentum p̂  

The average of p̂  in the new state '  is opposite to that in the old state    

 
 pp ˆ'ˆ'   

 
or 
 

 pp ˆˆˆˆ   

 
or 
 

pp ˆˆˆˆ   . 
 
or 
 

pp ˆˆˆˆ   . 
 
Thus the linear momentum is called a polar vector. 

Now we apply the ket vector p  on this from the right side 

 
pppppp  ˆˆˆˆˆ  . 

 
Then p̂  is the eigenket of p̂  with the eigenvalue (p). 

 
pp ̂  

 
This relation can be also derived as follows. 
 

p

pxxdx
ipx

xdx
ipx

xdx

pxxdxpxxdxpxxdxp


































)exp(
2

1
)
'

exp(
2

1
''

'''''ˆ''''ˆˆ

 
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Note that x' = -x and dx' = dx. 
 

pp ̂  
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3. Polar vectors and pseudovectors 

The vectors that are odd under parity, are called polar vectors. The vectors that are even 
under parity, are called axial vectors, or pseudovectors. 
 
(a) Position vector r̂   (polar vector) 
 

rr ˆˆˆˆ   
 
(b) Linear momentum p̂  (polar vector) 
 

pp ˆˆˆˆ   
 

(c) Orbital angular momentum prL ˆˆˆ   (axial vectors, or pseudovectors) 
 

xy

yy

xy

xyz

pypx

xppx

xpypx

pypxL

ˆˆˆˆ

)ˆ)(ˆ()ˆ)(ˆ(

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆ)ˆˆˆˆ(ˆˆˆˆ













 

 
or 
 

zz LL ˆˆˆˆ   
 
Similarly we have 
 

yy LL ˆˆˆˆ  , and xx LL ˆˆˆˆ  . 

 

(d) Infinitesimal translation operator: xp
i

xT x ˆ1̂)(ˆ


  

We have the relation for the infinitesimal translation operator as 
 

)(ˆˆ)(ˆˆ xTxT    
 
since 
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xp
i

xp
i

xp
i

xT

x

x

x







ˆ1̂

ˆˆˆ1̂

ˆ)ˆ1̂(ˆˆ)(ˆˆ













 

 

(e) Translation operator )(ˆ aT  
We have the relation for the translation operator as 

 

)(ˆˆ)(ˆˆ aTaT    
 
since 
 

)(ˆ)(ˆˆ axaxxaT    

 

)()(ˆˆ)(ˆ axxaTxaT    

 

(f) Rotation operator R̂  and the angular momentum Ĵ  
 
We start with the relation 
 

rr R̂  

 
Then we get 
 

rrr  ˆˆˆR  

 
and 
 

)(ˆˆˆ rrr  RR  

 
Since 
 

rr  )(  
 
we have 
 

 ˆˆˆˆ RR   
 
or 
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0]ˆ,ˆ[ R  
 
We now consider the infinitesimal rotation operator around the i axis (i = x, y, and z), 
 

iii J
i

R ˆ1̂ˆ


  (i = x, y, and z) 

 
Using the above commutation relation we have 
 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[  zyx JJJ  . 

 

Then the angular momentum Ĵ  is even under parity (axial vector, or pseudovector). We note 

that Ĵ  is an general angular momentum operator including the spin angular momentum Ŝ  and 

the orbital angular momentum L̂ . 
 
((Note)) 
 

rr  )(  
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where for example, 
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
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

 
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around the z axis by a rotation angle  . 
Then we get 
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













































































z

y

x

z

y

x

333231

232221

131211

333231

232221

131211

)( . 

 

(g) Spin vector Ŝ : axial vector 
 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[  zyx SSS  . 
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(h) The scalar rS ˆˆ  : pseudoscalar 
 

rSrSrS ˆˆˆˆˆˆˆˆˆ)ˆˆ(ˆ   . 
 

(i) The spin-orbit interaction SL ˆˆ  : an ordinary scalar 
 

SLSLSL ˆˆˆˆˆˆˆˆˆ)ˆˆ(ˆ   . 
 
4. Eigenvalue problem for the parity operator 

We consider the eigenvalue problem for the parity operator. 
 

  ˆ  

 

   22 ˆˆˆ  

 
Thus we have 
 

2 = 1  or  = ±1. 
 
We define   and   such that 

 

  ̂  

 
Note that 
 

xx ̂  

 
or 
 

xxx   ˆˆ  

 

   xx ˆ  

 
or 
 

   xx  

 
or 
 

(x)   (x) 



Parity operator  9/3/2017 8

 
(x)  is an even function with respect to x. (x) is an odd function with respect to x. 
 
5. Commutation relation between the Hamiltonian and parity operator 

Suppose that the potential energy is )(xV  is an even function such that 
 

)()( xVxV  : symmetric potential 
 
We consider the Hamiltonian given by 

)ˆ(ˆ
2

1ˆ 2 xVp
m

H   

 
Note that 
 

)ˆ()ˆ(ˆ)ˆ(ˆ xVxVxV    
 

222 ˆ)ˆ(ˆˆˆ ppp    
 
Thus we have 
 

HH ˆˆˆˆ   ,  or HH ˆˆˆˆ   
 
In other words, we have the commutation relation. 
 

0]ˆ,ˆ[ H . 
 

This means that the average of Ĥ  is invariant under the parity operation, 
 

 HHH ˆˆˆˆ'ˆ'   

 

The Hamiltonian Ĥ  is invariant under parity. Since 0]ˆ,ˆ[ H ,   is the simultaneous 

eigenket of Ĥ  and ̂ . 
 

  EH ˆ  

 
and 
 

  ˆ  

 
with  = ±1:  = 1, symmetric state (even parity) and  = 1, antisymmetric state (odd parity). 
 
6. Projection Operartor 



Parity operator  9/3/2017 9

Any function  (x) can be expressed by an addition of even function (x)  and odd function 
(x). 
 

)()()( xxx     
 
with 
 

2

)()(
)(

xx
x




  

 

2

)()(
)(

xx
x




  

 
Since 
 

xx ̂  

 
or 
 

xxx   ˆˆ  

 
xx ̂  

 
Then we get 
 

2

)()(
)(

xx
x




  

 
or 
 

]ˆ[
2

1

]ˆ[
2

1

][
2

1







xx

xx

xxx











 

 
or 
 

   P̂)ˆ1̂(
2

1
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



ˆ[
2

1

][
2

1

xx

xxx





 

 

   P̂)ˆ1̂(
2

1
 

 
We define the following operators (projection operators) 
 

ˆ P  
1

2
(ˆ 1  ˆ ) 

 
ˆ P  

1

2
(ˆ 1  ˆ ) 

 
We have 
 

   P̂)ˆ1̂(
2

1
)ˆ1̂(ˆ

2

1
ˆ  

 
Thus   is the eigenket of ˆ  with the eigenvalue +1. We also have 

 

   P̂)ˆ1̂(
2

1
)ˆ1̂(ˆ

2

1
ˆ  

 
Thus   is the eigenket of ˆ  with the eigenvalue -1. In summary, the projection operators 

satisfy the following properties. 
 
1. ˆ P   ˆ P   ˆ 1  
 
2. [ ˆ P ,

ˆ P  ]  ˆ 0  
 
3. ˆ P 

2  ˆ P   
 
4. ˆ P 

ˆ P   ˆ 0 , ˆ P 
ˆ P   ˆ 0  

 
5. ˆ ̂  P   ˆ P  , ˆ ̂  P    ˆ P   
 
 
((Proof)) 
2. 
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0̂)ˆ1̂)(ˆ1̂(
4

1ˆˆ  PP  

 
ˆ P 

ˆ P  
1

4
(ˆ 1  ˆ )(ˆ 1  ˆ )  ˆ 0  

 
[ ˆ P ,

ˆ P  ]  ˆ 0  
 
7. Parity Selection Rule (Even and Odd parity Operators) 

We define a new operator as 
 

ˆ  ˆ A  ˆ  ˆ A   
 
for operator with even parity 
 

ˆ  ˆ A  ˆ   ˆ A   
 
and for operator with odd parity. 
 
((Example)) 
 

xx JJ ˆˆˆˆ    (even parity). 

 
ˆ  ˆ x ˆ   ˆ x  (odd parity) 

 
ˆ  ˆ p ˆ   ˆ p  (odd parity) 

 

Suppose that   and   (parity eigenstate,  = ±1,  = ±1) 

 

  ˆ ,   ˆ  

 
with  = ± 1 and = ±1. 
 

  
  AAA ˆˆˆˆˆ  

 

When = - (different parity) the matrix element   Â  is equal to zero. 

 

  
  AAA ˆˆˆˆˆ

 

 

When  =  (the same parity), the matrix element   Â  is equal to zero. 
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((Example)) 

Simple harmonics 
 

nn n)1(ˆ  , nn n)1(ˆ   

 
mxnmxnmxn mn ˆ)1(ˆˆˆˆ    

 
or 
 

mxnmxn mn ˆ)1(ˆ 1  

 
8. Applications to the Simple Harmonics 

Suppose that [ ˆ H , ˆ ]  ˆ 0 . The Hamiltonian ˆ H  and ˆ  are commutable and n  is 

nondegererate eigenket of ˆ H  with the energy En. 
 

 nEnH nˆ .  

 
Then n  is also a parity eigenket. 

 
((Proof)) 
 

nP̂  (even parity)  and nP̂  (odd parity) are the eigenkets of ˆ  with eigenvalues ±1. 

 
Since [ ˆ H , ˆ ]  ˆ 0 ,  
 

 nPEnHPnPH n   ˆˆˆˆˆ  

 

nP̂  is the eigenket of ˆ H  with the eigenvalue En. n  and nP̂  must represent the same 

energy. Otherwise there could be two states with the same energy-contradiction of our 
nondegenerate assumption. 
 

nP̂  should be proportional to n . 

 
or 
 

nanP  ˆ  

 

nanPnP  ˆˆˆˆ    
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or 
 

nana ̂   

 
or 
 

nn ̂  

 
n  must be a parity eigenket with the parity ±1. 

 
9. ((Example)) Simple harmonic oscillator (nondegenerate) 
 
Since 
 

000ˆ xxx   (even function), 

 
00ˆ   

 

10ˆ0ˆˆ0)
ˆ

ˆ(ˆ
2

0ˆˆ1ˆ
0

  aa
m

pi
xa 


  

 

Then 1  must have an odd parity. Similarly n  has a  n1  parity. 

 
10. Parity of spherical harmonics 
 

[ ˆ , ˆ J x]  [ ˆ , ˆ J y]  [ ˆ , ˆ J z ]  ˆ 0  

 
[ ˆ , ˆ J x

2]  [ ˆ , ˆ J y
2 ]  [ ˆ , ˆ J z

2 ]  ˆ 0  

 
 
((Proof)) 
 
Note that  
 

ˆ  ˆ J x ˆ  ˆ J x  or [ ˆ , ˆ J x]  ˆ 0  
 

[ ˆ , ˆ J x
2]  ˆ ̂  J x

ˆ J x  ˆ J x
ˆ J x ˆ  [ ˆ , ˆ J x ] ˆ J x  ˆ 0  

 
We now use the following relations: 
 

[ ˆ , ˆ J z ]  ˆ 0 , [ ˆ , ˆ J 2 ]  ˆ 0   
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lm  is an eigenket of ˆ : 

 
lmlm l)1(ˆ   

 
From the definition of the spherical harmonics 
 

),( mYm  n  

 
  ,ˆ,ˆn  

 

 
 
(Note that rr ̂ ) 
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),(,ˆ   m
lYlmlmn  

 
Here  
 

l
ml

ml

m
im

l

l
m

l d

d
e

ml

mll

l
Y 2

)(

)(

)(sin
)(cossin

1

)!(

)!(

4

)12(

!2

)1(
),( 


 








  

 
for m≥ 0. 
 
and 
 

*)],([)1(),(  m
l

mm
l YY   

 
Note that 
 
for    , cos  cos , 
 
and 
 
for    , eim  (1)meim  
 

),()1(

),()1()1(

),(,







m
l

l

m
l

mlm

m
l

Y

Y

Ylm






  

 
Therefore  
 

lmlm l nn )1(ˆ   

 
or 
 

lmlm )1(ˆ   

 
11. The state for NH3 molecules 
 

N

H

H

H
: electric  
    dipole  
    moment   1  when the nitrogen is up. 
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N

H
H

H

   2  when the nitrogen is down. 

 
The property of the parity operator: 
 

rr ̂ ,  rrr   ˆˆ  

 

1̂ˆ 2  ,  ˆˆ   
 

rr ˆˆˆˆ    
 
It is appropriate to assume that 
 

1ˆ12 rrr  . 

 
Then we get 
 

1ˆ2  , 11ˆ2ˆ 2    

 
We consider the parity operator ̂ , such that 
 

21ˆ    12ˆ   

 
Therefore the kets 1  and 2  are not the eigenkets of ̂ . Since 

 

x ˆ
01

10
ˆ 








 , 

 
we have the eigenkets as 
 

xxx x   ˆˆ  

 
xxx x   ˆˆ  

 
with 
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)21(
2

1

1

1

2

1









 x  (eigenvalue +1) 

 
and 
 

)21(
2

1

1

1

2

1











 x  (eigenvalue -1) 

 
When rrr  ' , 
 

 ˆ'  , or   ˆ'   

 

We assume that the Hamiltonian Ĥ  is invariant under the parity change.  
 

 HH ˆ'ˆ'   

 
or 
 

HH ˆˆˆˆ    
 
or 
 

 ˆˆˆˆ HH  . 
 

Thus x  and x  are simultaneous eigenkets of Ĥ  and ̂ . 

For NH3 maser, the Hamiltonian Ĥ  can be described by 
 

xAE
EA

AE
H ̂1̂ˆ

0
0

0 










  

 

In fact, Ĥ  commutates with the parity operator ̂ , since 
 

0]ˆ,ˆ1̂[]ˆ,ˆ[ 0  xxAEH   
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