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To speak roughly, the Born approximation may be useful when the energy of the incident
particle is high. There is another approach, known as the partial wave expansion (or partial phase
shift), that is most useful at low energies and is somewhat complementary to the Born
approximation.

Rayleigh's expansion
Optical theorem
Phase shift

1 Introduction

We now look for the solution of the Schrodinger equation for a particle in the presence of
potential energy V(r) (with spherical symmetry)
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and u 1s a reduced mass. Then u,,(r) =rR,,(r) satisfies the differential equation
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(1) Case-1
The radial equation for the external region 7>a, where the scattering potential vanishes, is
equal to

d_2”k1(7)+[k2 l(l-;-l)] u, (r)=0.
r r

where
U(r)=0.
The solution of Ry () is
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R,(r)= = a, j,(kr)+ B, (kr) for r>a (radiation zone)
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Fig.  Attractive potential, which becomes zero for » — 0.



Fig. Repulsive potential which becomes zero for » — 0.
(i1) Case-2 (free particle)

In the complete absence of a scattering potential (V' = 0 everywhere),
u, (r :
R, (r)= # =7,J,(kr)
The condition of the normalization:

4y [ drr L, (k)] =1
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2. Semi-classical argument for the angular momentum,
((Classical mechanics))
The particles with the impact parameter b possesses the angular momentum L given by
L=pb,

where p (=#k) is the linear momentum of the particles. Only particles with impact parameter b
less than or equal to the range R of the potential energy would interact with the target;

L<L_ =hkR

since b<R.



When energy is low, L,y is small. Partial waves for higher / are, in general, unimportant. That is
why the partial wave expansion is useful in the case of low energy incident particle. The main
contribution to the scattering is the S-wave (/ = 0). The P-wave (/ = 1) does not contribute in
typical cases.

((Quantum mechanics))
In quantum mechanics, we have

L=nJI(l+1) ~hl, p=hk

The potential of interaction is appreciable only over the range 7. If s > r;, the interaction is

negligible,
—=5>17
or
% >7, or [>rk

where s is comparable to the impact parameter b in the classical mechanics. The partial waves
with | values in excess of 7k will suffer little or no shift in phase.

3. Asymptotic form
Far from the interaction point, where the potential is negligible, the scattered wave function
has the general form

R, (r)= 1) = a,j,(kr) + B, (kr)
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since the position of the particle is far from the origin, where the function n,(kr)is poorly
behaved. We use

a, =a,coso,, B, =—a,sind,.
Then we have
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Note that & = 0 for free particle (the case-2). Since
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Suppose that the scattering amplitude " (,6) is independent of ¢. Since
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the magnetic quantum number m should be equal to zero. Thus we have
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where ¢, is constant. Note that
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The complete solution of the scattering wave function is

. i’(2[+l)sin(kr—l—”+5l)

v (0)=3q, 2 P(cost)
1=0 kr
ks i —l—ﬂ+ / —i(kr—
:Zalei(s’il(ﬂji[e g —e . ]P(cosé’)
= 2i )kr

where the replacement of the coefficient is made as

.1
c,a,l

Jar (20 +1)

((Note)) Spherical Hankel functions, 2" (x) and A (x)

—>a,.

h"(x) = j,(x) +in,(x), B (x) = j,(x) —in(x).

4. Partial wave expansion of the scattering amplitude
On the other hand, ' (r,0) has the form
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where we take K in the z axis. Since
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(Rayleigh's expansion)
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. —)Z 2 P (cosO)

kr

8

B ll(21+1j
1=

From Eq.(1),

Pv

7

O

2i

l(kr—l—”) —i(kr—l—”)
2 —e

>'1B(cos6)

2 1 i r—[—”Jr ) —i r—l—”
v (r, 9)%261, - ( 2+l jk 27 e P (cos ).
A

From Eq.(2),

l//u)(l”,@) ~ eikz +l€ikrf(6)

i[zl + lj z(kr—%”)
kr

=0

AN

Incident plane wave Scatterer

itk
—e

271P (cosO) +— e’k’f(é?)

Detector

cheN \pherical wave

Unscattered plane wave



Fig. Schematic layout for scattering experiment. The scattering angle is the laboratory angle.

Therefore we have
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The coefficient of the term e 2" is assumed to be equal to zero for the incoming spherical

wave. Then we have
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f,(k) is defined by
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where S, (k) is the phase shift given by

S, (k) =e*
The total cross section is given by
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where



| f,(k)| —sin’ 6,

((D. Bohm, Quantum Theory p.564))
This formula yields the angular-dependent cross section, once we know 9, . The value of ¢,

must be obtained by solving the Schrodinger’s equation. The angular dependence arises, in part,
from the interference of waves of different /.

5. Optical theorem
We can check the optical theorem. We start with the expression of f(8),
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This means that
4 .
=—Im[f(6=0)] (optical theorem)

What this theorem means? The probability conservation requirement indicates that the amplitude

of the incident wave (h—k) must ultimately be reduced in proportion to the total probability that
m

the particle is scattered in any way [ (7ik/m)o,, ].
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Fig. Optical theorem. The intensity of the incident wave is 7k/m . The intensity of the
forward wave is (fik/m)— (4zh/m)Im[ f(0)] . The waves with the total intensity

(471 / m)Im[f (0)] = (ik / m)o,

spherical waves.

is scattered for all the directions, as the scattering

ot

When scattering occurs, part of the energy carried by the incident wave is radiated into all
angles. This energy must be removed from the incident wave. Consequently the energy flowing
in the forward direction is reduced and this modifies the scattering amplitude in the forward
direction (€= 0).

We now consider the complex plane

/ 1 i1 s
Ek k — io; : 5 - 215,_1 — 4= 2
2=k () =¢" sin(6) =5 (™~ =2+

or

i1 ies-D)
z——=—e
2 2

This is a circle of radius 1/2 centered at (i/2) in the complex plane.
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Fig.  Argand diagram of z = kf,(k) ; The circle is called the unitary circle.

OP = k|f;(k)|, oCc=1/2, CcP=1/2
ZOCP =25,
(i) 8, ~0

kf, must stay near the bottom of the circle. kf, may be positive or negative, but kf, is almost
purely real.

kf (k) = € sin(5,) = &, .
(ii) 8, ~ 7 /2

kf, is almost purely imaginary and 4f, is maximal. Under such a condition the /-th partial wave
may be in resonance.

K(k)y=e?=i.
o _ A

qm_F@HWW@;gmH)

6. Expression of the Forward scattering (based on the book of Gasiorowicz)
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We show that the forward scattering is expressed by

@_@1 L/(0)]
m

((Proof))

We start with the wave function
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Probability current density is given by
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This can be rewritten as
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((Note)) The above calculations can be calculated using Mathematica (Vector analysis)

€, -component:
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So we get the final result as
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For convenience, we define
J=J,+J,+J;+J,
to the order of 1/7, with
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m m
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hk 1 ikr(1-cos * —ikr(1-cos
J3+ :__[f(e) ikr (1 9)+f (e)e kr(l 0)]

+ er 2_[f(6)eikr(l—cos6’) + f* (e)e—ikr(l—cosa)]
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We now consider the interference term which is defined by

hk (14 cos®)

J +J e — > f(g)eikr(l—cosﬁ)_l_f*(e)e—ikr(l—cosa)]
m

r

For 6~0,

nk 1 e
(M) =33+, =~ [[(@)e" "+ [ (0)e "]

since (1+cos®) is smoothly changing function at 8 =0.

(a) Contribution of J, +J, to the forward scattering
We now calculate the number of particles for the forward scattering for 0 <8 < 66

50
K =2m? jdesin 0[d. (r)-e ]

:2 2 h J.desu,le[f(e)ezkr(l cos6) +f (9) —ikr(1- cosé’)]
27Thkl" J.de nef(e)ezkz(l cosf) +f (0) —ikr(1- 0050)]
277hkr

jde sin@ f£(0)e™ =9 4 c.c.

where 06 is very small but is still finite. We assume that f(€) has a sharp peak only at 8= 0.
Then the first term of K can be rewritten as
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K- 2 hkr

j dOsin @ f()e™ ~?

We set the following notation such that
x=kr, u=cosé, h(u) =™, f(0)=F(u)
du =—sin6d 6

with
f(0=0)=F(u=1)

Then we have

k=2, [ du Fah@) = 27 G
m 7 m

with
1 ‘ 1
G(x) = [duF (w)e" "™ = [ duF (u)h(u)
-1 -1
We note that
Lieix(ku) :eix(l—u)’ or l dh(”) = h(u)
x du x du
or

( ] d’ — h(u) = h(u)
X

Now we calculate G(x) for the two cases; n =2 and n = 3.

(1) The choice of n =2
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d’ h(u

Gu)de(X) )
—()jdﬁ()th)
RIOE lwégﬁggl
SRIGOR ‘”Wh(n+jddFWM(»
This can be rewritten as
G = {[F @)~ Mnl[”wh<n1jdd2wh(»
Lran), -G hal, + <>jd‘1FWUm)

(i1))  The choice of n =3

Gu)de(X)th)

d’ h(u)

—()Idﬂ)

}

& ) (P )d h(u) jdu dF (u) d*h(u)

du du’?

-1

( TN h(u)] [dgiu) dZ(Llu)]1_1+:i-l " a’Zngu) dZiu)}
( ){F( )d h(u) [dFd(u)df;(u) dF(u)h( )]1 jd dF(u)h( )
u
or
G =@, -,
W iy, - ()LidFW%(»
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F(u) is strongly localized about u =1 and is infinitely differentiable. We may thus assume that
F(u) and all of its derivatives at u =—1 vanish. In this case, G,(x) vanishes faster than any
power of x.

G(x)=(i)[F(M)h(u)]l_1
=§[F(1)h(1) F(-Dh(-1)]

! ~/(0)

in the limit of x = 0.

27h 27h .
K =7xG(X)+C-C-=7[lf 0)—if " (0)] = ——I [£(0)]
nk |f O
(b) The contribution of J, =e, — —— to the forward scattering
m r

56 50 0 2
2 jd@sin O[J,(r)-e ]= 2m2@jdasin 9@
0

= 27z—| fO)f j dOsin
= 27z—| f(0)|[1 - cos(56)] —

We note that

J, = ﬂ:@(e cosd —e,sinb)
m m

Then the contribution of J, to the forward scattering is

J,-e, Z@COSHZ@
m

So we have the contribution of the current density to the forward scattering is

@_@1 L/(0)]
m
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7. The total scattering cross section (A. Das, lectures on Quantum mechanics)
For large r, we have

odr
v (r.0) = Z (21+1j lelez(k D _ T ]P(cos¢9)

2(21 + IJ 26 yikr (_1)/+‘ e_ikr]P, (cos®)
2ikr

Here we rewrite

120/ 125,
— 5, =ne

where 7, is real and 0 <7, <1. We discuss later about the meaning of the parameter 7,. Then we
have

l//(+)(l",0) — 2(21+ lj[Sleikr + (_1)l+le—ikr ]B(COSH)
T\ 2ikr
The radial current probability density is
h +* 0 + 0 +* +
=y 0y (.0 -y .0y (r,0)]
2mi or or

We note that

l//(+)(’,,6)22(21+1j S ikl‘+(_1)l+lefikr]Pl(cose)

tong
e

l

j(zk)S " + (=) (=ik)e 1P (cos 0)

js 7 —(=1)""e™ 1P (cos )

22



v (,0) Ly (0) - Ly (1,0) D (r,0)]
or or

— _2(221 Zl (21 +1j[Sl*e—ikr + (_1)l+l eikr][Slyeikr _ (_I)I'H e—ikr]B (COS Q)EV(COS 0)
LKr

_ z( 212+ 1)( 21 +1j[S (1) e[S, + (—1) e 1P (cos 8) Pu(cos )]
L r

= _Z( 2211;;1 (21 + jP (cos@)P.(cosb)

% {[Sl e—tki + (_1)l+1 elkr][Sl'eikr _ (_l)l'+le—ikr] + —lkr ( 1)l+1 +lkr][Sl'eikr + (_1)1'+le—ikr]}
—Z( 20+ 1)( 2 +1jP (cos@)P.(cos8)

2ikr
% {2Sl Sl' _ (_l)l +1S e*Zikr _ (_1)l+162ikrSlv _ 2(_1)l+l' + (_1)1'+1e72ikrSl* + (_1)l+1 eZikrSl'}

21 +1\ 2/'+1 * Il
_z( e j( p jP(cosH)P(cos@) x[=S,'S, +(~=1)"*"]

At fixed r = R (large sphere with a radius R), we have

[daj, =27 [sin6d0 j,

h 20+1Y 20'+1 . ,
=— 27R* = I-S'S. + (=D
2mi %‘(21‘1&)( R j[ 1S+ (=D

X IB(cos 0)P.(cosO)sinGdl
0

:i.zﬁ (2l+lj(1 |S|)

2mi

ﬂﬁ 0
= @+ (S [ - 1)
mk 1=
71_ o0
= 2> I+, -1
k =0
where v is the velocity of the incident particle and

z 2
inédo P, O)F, 0)=——9,,
l.sm )(cos@)P.(cosb) 710k

The scattering cross section for the inelastic scattering is obatined as
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1 o0
o, = —;k—”zv;(zz (s, -1

= —%i(zz (s -1

=§i(2i+1)(1—nﬁ)

When |S,|=77, =1, the net flux moving out of a large sphere is zero. This is simply the

conservation of probability. It states that the amount of particles that go in is the same as the
number of particles that are scattered. However, there occur, in nature, processes in which the
number of particles is not conserved in a scattering process. In fact, when a neutron is scattered
off a complex nucleus, two things may happen. The neutron may scatter elastically. It may also
scatter in-elastically by raising the nucleus to an excited state or may be absorbed by the nucleus.
Clearly, this mean that the net radial flux out of a large sphere would not vanish in such cases. In
fact, it should be negative since we are losing particles. Looking at the expression for the flux, it
is clear that for this to happen, we need to have

|S,|2 <1

8. Partial wave approximation for inelastic scattering
In the elastic scattering, we must have

Sl (k) — ezi&,

In the case where there is no flux loss, we must have |S ; (k)| =1. However, this requirement is not

valid whenever there is absorption of the incident beam. In this case, S,(k) is reduced by
S, (k) = n,(k)e™”

with
0<nk)<l.

Then we have
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1
Ji(k) = ﬁ[sz(k) —1]
1 2i8,
= ﬁ[ﬂl (k)e 1]
_ 2Lk[—m, (k) {cos(28,) +isin(28,)} +1]
- i[n,(k) sin(28,) +i(1-17,(k) cos(25,)]

The scattering amplitude is

FO) = Y 21+ 1RT5,(0 - 1R (cos0)

=0 i
_ iZ(zz 1), 5in(28,) + i(1— 1, c0s(28, )P (cos )
=0

The scattering cross section for the elastic scattering is

o, = %ZZO: QL+ 1), 1

- %Z(zz + 1[5, +1-27,008(25)]
=0

Thus the total scattering cross section for the inelastic scattering can be evaluated as
O-tot = O-el + Gin

- %Z(Zl + 1)[7712 +1- 21, c08(26,)] + %Z(Zl +1)(1—- 77]2)
1=0

=0

27T ~&
= ?Z(zz +1)[1-17,cos(26))]
=0
When 7, <1, o, 1.

From the optical theorem with

21 +1
2k

Im £ (0) = Y. 21—y, cos(268)1R cos )

so we get the total scattering cross section as
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6, =l /(0 =)

- k_’jz (21 + D)[1-17,cos(26))]

1=0

=i—f2(2z+ 1)(1-ReS))
1=0

This is in agreement with the expression of o, obtained above.

((Note))
Since we do not specify what the inelastic processes consist of, we can only say about the total
inelastic cross section, which describes the loss of flux.

Suppose that 7, =0 we have the total absorption. Nevertheless there is still elastic scattering in

that partial wave. This becomes evident in scattering by a black disc with a radius a. We consider
the scattering for short wavelength, that is large k-values. The maximum value of /'is /| =ka.

max

Then we have the cross section of the inelastic scattering
in :_2(21 2 max :mz
and the cross section of the elastic scattering
T I
o, =—ZZ (20+1) = m’
=0

So the total cross section is
_ _ 2
o, =0,+0,=2m".

which is larger than 7a”, partly because of the shadow scattering (see Gasiorowiz).
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Fig. Black disc scattering and the shadow effect.
References:

M.L. Bellac, Quantum Physics (Cambridge, 2006).
N. Zittili, Quantum Mechanics, Concepts and Applications, second edition (Wiley, 2009).
S. Gasiorowicz, Quantum Physics (John Wiley & Sons, 2003).

9. The phase shift and the Green function
We use the following formula,

(1)

ik|r—r
et

_4mkY Y KO e YO (0. 1)

|r—r'| 1=0 m—1I

where
r.=r forr<r’ and r’ for r’<r.
r. =r for r>r’ and r’ for r’>r.
and in the Cartesian co-ordinate,
r = (sin @ cos ¢, sin @sin ¢, cos 0)
r'=(sin @'cos ¢',sin @'sin ¢',cos 6')
(i)
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o0

e’ =i (21 +1)B(cosb) j, (kr)

Z ! : 2)
(iif)
v (r,0) = #Z‘ C,21+1)i'R, (r)P(cosh), (3)
and
v (r,0) = Qﬁe - drm v (.0, ©)
where

U(r) = i—é‘V(r)

Using the above relations, we can derive the integral equation for Ry(r)
C,R,"(r)P(cos0) = j,(kr)P,(cos )
—ikC, Y Z j P2 dr j, (ke )b (ke )U (PR, (R Y™ (6, §) j sin @' do' j Ay, (0',4 )P (cos ')

I' m'==1"

Here we note that

2z
jsina'de' j dgv," (0,4 P (cos ") = 276, j sin0'd0'Y" (cos0")P (cos ')
0

0
=270, 1/2“— J. in@'d@'P.(cos@")P (cosd")

=276, 2l 1 L
’ A 2I'+1
Ar
2l'+1 L' m',0
47
—5,,0 .
2041 PO
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where

2/ +1
4r

Y'(0,4) = P(cosb),

s

2
in 6d 6P, 0)P 0)y=———6, ..
!sm .(cos @) P (cos 0) 710

Then we have

or

or

or

or

CR," (r)B(cos0) = j,(kr)P(cos )

. C T2 o, (201
—ikC YD 8,80 [ driu (B (e YU ()R, ()
!

et 0 47

4r
B(COS (9) m

C.R," (r)P(cos8) = j,(kr)P(cos )

—ikC, [ r® drj, (kr )b (kr YU Ry (') P (cos 6)
0
C,R,"(r)= j,(kr)—ikC, j 2 dr'j, (k)R (ke YU (#)R, ™ (')
0

CRy " (r) = jy(hr) = ikC, 1" (k) [ £ drj (ke YU R, ()
0

—ikC, j,(kr) j ' drh® (kr' YU (r )R, ()

CR," (r) = jy () = ikC, [ j, (k) + in, (kr)]}r'z dr'j, (ke YU "R, ()
~ikC, (kr)f P2 drj, (') +im (U (PR, ()
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since

hl(l) (kr) = j,(kr)+in, (kr) _

Then we have
C.R, (r) = j,(kr)[1-ikC, j 2 dr'j, (ke U(R, ™ (7]
0
+ kCljr'z dr'j,(kr'yn, (kr)U ("R, ()
]
—ikC, j, (kr)T 2 dr'j, (ke U (r)R, ™ (')
+ kCITr'Z dr' j, (k) (kr')JU (PR, (')
or
C,R,(r)=j,(kr)[1 —ikC,Tr'z dr'j, (kr' YU (r R, (r")]
0
+kC, T ' dr'j, (kr ym, (ke YU (PR, ()
0
Here we choose Cj such that
C =1- ikC,Tr'z dr'j, (kr' YU (r"R,,"" (r)]
0

or

C = !

1+ik j P2 dr'j, (kYU (PR, ()]
0
Then we get

Rkl(+)(r) — jl(kr)+kjr'2 drvjl(kr<)nl(kr>)U(r')Rkl(+)(r|)
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10. Physical meaning of C and &
We consider the physical meaning of C;. For simplicity we assume that

U(r)=0, forr>a.

We get
R, (r>a) = j,(kr)+kn, (kr)j > dr'j, (kK YU(rR, ™ ()
0
+kj, (kr)T ' drn, (k' YU(F)R, ()
= j,(kr)+kn, (kr)T 77 dr'j, (ke YU(r )R, (1)
0

where we make use of our assumption that U(r) =0 for 7>a. The second term vanishes. The
upper limit of integral in the first term extends from 7 to oo.

If we choose
tan 5, = —k j 2 dr'j, (ke YU (PR, () » (5)
0

then we get

R, (r>a) = j,(kr) —tan &,n (kr)

1 ) .
= COSé‘/ [COSé}jl(kr) - Sll’lé}l’ll (kl")] (6)

and

1

Cl = 0
1+ik j P2 drj,(krYU(R,™ (7]
0

1 .
=—————=¢""cosd,
l1—-itanJ,

The wave function (for 7>a) given by Eq.(3) has the form
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o0

v (r,0 z (21 +1)i'[cos 8, j, (kr) —sin &,n, (kr)](r) P, (cos O)

=0

Z(Zn—z" (z”l)il[(#} Akr)_(#]mkm](rm(cos 0)

= e RS )+ ) s )

In the large limit of 7, this solution is approximated by

N 1 2041, 5 . Iz
w' )(1’,0)=(2”)3/2 > o )i'e™ s1n(kr—7+5,)P,(cos0)
l

The asymptotic form of the incident plane wave is given by

w I (2l +1)sin(kr — I—”)

(27[)3/2 Z = P(cosb)

L 20+1
(27r)3/2 = 2i

i(z”lj (kr——)P(cosH)
o\ kr

z(krfl—”) —i(kr—
2 —e ]P (cos®)
kr

(27[)3/2

We note that the phase of the scattered wave shifts from that of the incident plane wave by the
phase o, .

11. Born approximation from the phase shift
In the first Born approximation,

R, (r) = j, (kr)

Then we have
tan 5, ~ kJ.r'z dr' j, (kP PU ()

This approximation is good when the phase shift is small. The function j,(4r) is approximated
by
2'N
(21+1)!

Ji(x) = (x)".
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Then we have

2 (> 2

tan5(l) ~_ k21+1 ,21+2d UG
! (21 + )] !r roer)

For low energies and high angular momenta,
5(1) o k2l+1
} .

((Example)) The phase shift for / =0 (s wave).
We assume that

U(r)=-U, forr<a,0 for r>a.

Then we have

tans," ~ —kU, j P dr']j, (k)]
0

_ U02 [ak - sm(Zak)]
2k 2
When ak <<1, we get
2
tand," = 5" = Uo—a(ak)

We note that 51(1) >0 for the attractive potential and 5,(1) <0 for the repulsive potential.
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APPENDIX-I
((Mathematica))
Spherical Bessel function, spherical Neuman function, spherical Hankel function
1.0~
[ jn[x]
0.8 i n=
0.6}

04} \

i 2
02} \ 3
00’ Y \

. L ¥ N L /// L L L
I 2 4 8 10
02} \/

0.4

0.2

0.0

-0.2¢

—04l

APPENDIX-II Green function with spherical Bessel function

Free particle wave function y satisfies the Schrodinger equation
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hZ

—Viy=Ey,
2m

2
where m is the mass of particle, (E, = ;l—kz) is the energy of the particle, and £ is the wave
m

number. This equation can be rewritten as
(V> + k) =0.
This equation is solved in a formal way as

W = 0 (1,0,0) = (r 0| ktm)

1 L’
E(prz + ?)¢k/,m (r’ 07 ¢) = Ekgok({m (rﬁ 97 ¢)

(separation variables), where L is the angular momentum:

Piin(,0,0) = Ry, (r)Y,,,(0,0)
with

L*Y,,(6,¢4) = R (({ + )Y, (0,9)

Since p, =zl£r, we have
iror
hl1o hlo 1 &
PR, (r)=———r(=——r)R,(r )——h2 — 7R, ()]
iror iror -
or
1 &
__?[rsz(r)]"i' WH)RM(V) KR, (r)
or
1 6° , 1
—7[7Rk/,(”)]+[k —r—zf(f*rl)]sz(’”):O-
with
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n’k’

E, = .
2m

We put x = kr (dimensionless)

2 2
i:@i_ki a__k_(k_) ) 0
or Or Ox Oox or’ ox Ox Ox?

[—Ek2 (f)+k—2£(z+1)]R K2R
X

or
1 d2
( XR) + [1——£(£ +1)]R =0 (Spherical Bessel equation).
or
1 1
—[xR"2R"]+[1-— (L +1)]R =
X X
or
T O st
X
or

i(xZR') +[x* =0/ +1)]R=0.
dx

This is a Sturm-Liouville-type differential equation.
Here we suppose that

J(x)
R="72,
Jx
(041
d*J 1d Py
S A —2y—o.
dx X dx X

The solution of this differential equation is

J(x) =15 (X), or J(X)=N,y,(x).
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Then the solutions of R are obtained as the spherical Bessel functions defined by

|7
]z(x)—\/;*]ul/z(x)a

and spherical Neumann function defined by

n,(x)= \/gle/z(x) .

Since the spherical Neumann function diverges at x =0, it cannot be chosen as a solution. Finally

we have
2k
¢k€m(r999¢) = <I’,9,¢ k,l,m> = 7]((kr)yém(‘93¢) >

with

h2k?
2m

and

(k' | kim) = 5(k —k")3,,6

mm'*

We define the spherical Hankel functions as

hn(”(x) = \/gH::l(x) = j.(x)+in,(x)

b, (x) = \/%H;iﬂ (x) = Jj,(x) i, (x)

where the spherical Bessel function and spherical Neumann function are given by

jn (x) = \/%J’H;(X)
() = \%Nwi(x) - (—D"EJ”;()C)
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Asymptotic forms
The asymptotic values of the spherical Bessel functions and spherical Hankel functions may
be obtained from the Bessel asymptotic form.

. 1. Iz
Ji/(x) = =sin(x ——),
X 2

n,(x) = —lcos(x - l—”) ,
X 2

i(x—Iz/2)

hk(l)(x) ~—i& (outgoing spherical wave)

—i(x—Ix/2)
2 .€ . . .
hg( )(x) R——— (incoming spherical wave)
X

Now we consider the Green's function given by
(V2 +Ek5)G(r,r)y==5(r-r"),
The solution of the Green's function is given by

ik|r—r]
e [r=r1

Gr,r'y=————
(r.r) 4z |r—r|

with the boundary condition

G(r,r'y—> 0 forr — 0 and for r — .

where r is the variable and ' is fixed.

Within each region (region I (0<r<#') and region II ('<r), we have the simpler equation
(V2 +k)G(r,r) =0

The solution of the Green's function is given by the form

G =3 S 4, (rr.0.8)Y"(6.9).

1=0 m=-1

Then the differential equation of the Green's function is given by
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) 50910 a)-

S )+ (6 = E 4, 0 0.) = -

I',m'
Note that

= [[sin tdoa gy (6.6)Y" (0.9

5,6, de ,m'|n)(n

where

dQ =sin0dbd¢ .

Then
IU+D
r’

TJdorT @.px @, DL~ (A,m> (I == 5) ]

——[a0y 0.3 )a‘<¢— #)5(u— i)

or

l(l+1)

S a o+ @ -E D 4,06,5,,

I'm'

= -[dQY" (0.9) S(p—¢)S(u— i)

o(r—r' )
r2

or

Im

L2+ =, =22 [aoy (0,959 910 - )

: 5(” Sy 090 duad o - 9150 )

- 5(” Dy 0.9)

Since Y," (8',¢') is constant, we put

Alm(rar 50' ¢)

S g

Then we get
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1 ¢°
;y(’”@)"‘[lf—

I(+1) S(r—r")

]GI == 2

7

The possible solutions of Gy are j(kr), ni(kr), h(kr), hV(kr), or a linear combination of these
functions.

G,, = A4j,(kr) for r<r' (region I)
G,, = Bh (l)(kr) for r>r' (region 1)

where 4 and B are constant. Note that If we use the positive sign for G(r, r'), we need to choose

hl(l) (kr);

. i(kr—Im/2) eikr
b (kr)x —i——— =~
) kr r

(outgoing spherical wave)

(1) The continuity of G;at r =7
Aj, (k') = B (kr'
or

A B B B
B (k'Y (k'

(11) The discontinuity of dG,/dr atr=r".

r'+e r'+e

or
d , 1
— (G =——
[ e (rG)I.—; r,
or
(G, +rd—G) A
dG,"(k,r,r')| _dG,’(k,r,r')| 1
dr e dr e
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or

KCL, (k" (k) = i Y (kY] =~
r

We need to calculate the Wronskian

ey | i
J'(kry n (k') K

((Mathematica)) We can calculate 7 by using Mathematica.

Wronskian[ {SphericalBesselJ[Il, x],

SphericalHankelH1[l, x]}, X]
i

2

X
Thus we get
C=ik

In general, we have

GOrLr) =ik 3l " e )Y 0.9 (0.9

1=0 m=-1

This means that

r.=r . .
in the region I (r<r')
r=r
r=r . .
in the region II (»'<r)
r.=r
We also get
zk|r r o ] . *
C=iky, Z (k) (ke )Y (0,9)Y)" (0'.¢")
47Z'| r _ r | 1=0 m=—
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