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The photoelectric effect was discovered by Heinrich Hertz in 1887 during the course of
the experiment that discovered radio waves. It remained unexplained until 1905 when Albert
Einstein postulated the existence of quanta of light - photons - which, when absorbed by an
electron near the surface of a metal, could give the electron enough energy to escape from the
metal. Robert Milliken carried out a careful set of experiments and that verified the
predictions of Einstein’s photon theory of light. Einstein was awarded the 1921 Nobel Prize
in physics for his discovery of the law of the photoelectric effect. Milliken received the Prize
in 1923 for his work on the elementary charge of electricity (the oil drop experiment) and on
the photoelectric effect.

Here the photoelectric effect is discussed using the time dependent perturbation. Note
that the photoelectric effect can be explained in a semi-classical approach without the
quantization of the electromagnetic field,

1. Sinusoidal perturbation
We consider the case of interaction between photon and electron. The perturbation
can be given by
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where A, is the vector potential. The matrix element is given by
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The absorption cross section o, is
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2. Photoelectric effect
In the photoelectric effect, electrons are emitted from metals when they absorb energy
from light. Electrons emitted in this manner may be called photoelectrons.
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Photoelectric effect in metal. Electron potential energy across the metal surface.
An electron with the highest energy in the metal absorps a photon of energy 7o
Conservation of energy requires that its kinetic energy after leaving the surface be
ho—E,, where E, is the work function of metal (the energy difference between

the vacuum state and the Fermi energy of the metal.
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Fig. Our model on the photoelectric effect. The binding energy Eg. The kinetic energy
Ey of free electron. Ziw 1is the energy of photon absorbed,

((Note))
The energy conservation:

1
ho = Emvf2 +E,
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where % is the photon energy, Emvf2 = —/_ is the kinetic energy of free electron,
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is the bound energy.

Ejection of an electron when an atom is placed in the radiation field.
|i> : atomic (bound) state

n>: continum state (£ > 0)

Plane-wave state ‘k f> , an approximation that is valid if the final electron is not too slow.
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with the periodic boundary condition
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space. There is one state per (21/L)’. We use the

periodic boundary condition for the wave function.

Density of states in the 3D k-

Fig.

The number of states for ki~ k+dk and solid angle element d(2
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3. Fermi's golden rule
We note that
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Using the Fermi’s golden rule, we have the differential cross section as
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To be specific, let us consider the ejection of a K-shell (the innermost shell) electron
caused by absorption of light. |z> : essentially the same as the ground state hydrogen atom

wave function except that the Bohr radius ay is replaced by ay/Z;
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The matrix element is given by
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Here note that



We have
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q=k ;- k. (scattering vector)

All we need to do is to take the Fourier transform of the atomic wave function.
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Using the Mathematica, we get
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((Mathematica))

Clear["Global %"7];

Zr
fl=2nr?Sin[e] Exp[- i q r Cos[e] ] Exp[—— ];
a0
Integrate[Integrate[fl, {6, 0, x}], {r, O, ©}] //
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the differential cross section is obtained as
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Fig. Experimental configuration for the photoelectric effect. ¢ is the polarization
vector. n is the unit vector is k of incident photon. kr is the wavevector of the
outgoing electron. g =k —k,. g is the momentum transfer between the initial

photon and the final electron.

2. Energy conservation in the photoelectric effect
Energy is conserved in the system,
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q’ =k’ +k,’ = 2kk, cos 6
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Fig. The energy (eV) vs wave length (nm) for visible light.

Note that k; is only dependent on k. k; is constant when £ is fixed. We use the following
approximation, for simplicity,

(1)

2
hck >> E, or 2”;16k >> [ij
ag

nk 2 ’
hek ~—L—>>E, iz
2m 2m\ a,

2
kf2 >> (EJ
ag

where the binding energy is given by
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a 1s the fine structure constant:
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The Bohr radius is
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(11) In the nonrelativistic case:
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Then we have
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If the incident wave is not polarized, the contributions of the polarization in the x and y

directions must be incoherently and averaged over 4.

<cos2 ¢> = i fd¢cosz ¢ = %

Then we get

do _ 16ah £5 sin 6°
dQ  mak,’

v
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c

which is proportional to Z° /@ in the high energy photon.
For simplicity we put
sin” @

f(@=

%
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The derivative of f(6) with respect to dis
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In the limit of small Y , f(0) has alocal maximum when
c
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or

v,
0 = arccos[2—]
c

v Vv, .
When —L << 1, cos@= 0, or 8= /2. As —L increases, 0 decreases.
c c

3. Angular dependence of do
dQ

((Mathematica)) We make a plot of a part of Z—g using the SphericalPlot3D

The cross section vanishes in the forward direction. This is a consequence of the fact
that photons are transversely polarized. The matrix element is proportional to (k, &)’

When k; is parallel to the photon momentum k = kn , this factor vanishes.

We assume that the formula

d_O'_ 160k (st sin 6?
= sl
dQ ma)kf (l—v—fcose)“
c

ap

is valid for v, <c. We make a plot of do using Mathematica, where v, is changed as a
dQ

parameter.

15



Fig.  v,/c = 0. Angular distribution of photoelectric electrons. The green line (the

direction of photon). The red line (the direction of polarization vector for photon).
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The case of v, /¢ =0.6.

The case of v, /c =0.8.
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Fig.  The case of v, /c=0.95.
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Fig. Angular distribution of photons at (a) low and (b) high photon energies. The
electrons are ejected into two lobes whose maximum line lie in the plane of the
polarization vector &. k is the wave vector of incident photon.
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APPENDIX
Al.  Free electron gas in three dimensions
We consider the Schrodinger equation of an electron confined to a cube of edge L.

2 2

Hy, =——y, =———Vy, =ay,.
m m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

1//k(x+L,y,z) =l//k(x’y5z) >
1//k(x,y+L,z) :Wk(xayaz) >
v (L, y,z+ L) =y, (x,y,2).

The wavefunctions are of the form of a traveling plane wave.

l//k (r) = eik'r D)

with
kx = 2n/L) ny, (nx =0, £1,£2, £3,.....),
ky=(2n/L) ny, (ny=0,+1,£2,£3,....),
k,=Q2n/L) n,, (n,=0, %1, £2,£3,....).

The components of the wavevector k are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

2 2
c) =T k2 kP k)=

k2
2m 7 : 2m

Here
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PYL) = Vi () =k, (1),

So that the plane wave function , (r) is an eigenfunction of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in k-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

A2.  The Pauli’s exclusion principle

The one-electron levels are specified by the wavevectors k& and by the projection of
the electron’s spin along an arbitrary axis, which can take either of the two values +7/2.
Therefore associated with each allowed wave vector k are two levels:

k,T>, k,¢>.

In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k£ = 0, which has the lowest possible one-electron energy €= 0. We have

L 4z 5 vV

N=2 k=
Qzy 3 "7 37

3
k.,

A3 Density of states
There is one state per volume of k-space (277L)°. We consider the number of one-
electron levels in the energy range from ¢to et+de; D(g)de

L3
D(e)de =2-——4nk’dk,

(27}

where D(g) is called a density of states. Since k=(2m/h*)"*Je, we have
dk =(2m/h*) *de /(2\/;) . Then we get the density of states

v o(2m)"
D(g)=—| 55| e. 14
() =5 ( hzj (14)
B. Pythagorean relationship (relativistic dynamics)

Relativistic dynamics
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c
with
2
mc mv
E= 2’ P= 2
-V -V
T2 T2
c* c
2 2 2 2.2
E 22 _ MC 22 22 1 mvy 2
— - = S—mc =mc 1= =D
c Y %
1——2 1——2 1——2
c c c

Kinetic energy K is defined by

2 2 4 2
E-—mc c )

K=FE-mc* = = 3
E +mc E +mc

When E ~mc”, K is equal to

Pythagorean relationship

cp

mc?

. E?
Fig.  Pythagorean relationship. —- = m’c’ + p’
c

21



C. Application — interaction with the classical radiation field

We consider the absorption and emission of light which is caused through the interaction
between atoms and electromagnetic fields. The light is the electromagnetic field which
periodically varies with time. Here we discuss the absorption and stimulated emission, where the
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated.
There is another emission, so-called the spontaneous emission, where the electromagnetic field
should be quantum-mechanically treated.
Classical radiation field

= electric or magnetic field derivable from a classical radiation field as opposed to
quantized field

ﬁ=ﬁjf +e¢(f)+iA~j)
which is justified if
V-A=0. (Coulomb gauge)
We work with a monochromatic field of the plane wave

A= 2|Ao|s cos(k -r —awt)

k=—n, e k=0
c

(¢ and n are the (linear) polarization and propagation directions.)

or
A= |A0|8[ei(k-r—w¢) + e_i(k"—ax)]

The Hamiltonian is given by

where H ,1s the time dependent perturbation
3 € i(k-r—a ~i(k-r-w ~
H, =—|A0|[e’(k ) 4 ik ’)kap)
mc
— ]:Il+e—ia)t +1:]leiwt
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The first term: responsible for stimulated emission,
The second term: responsible for absorption
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((Fermi’s golden rule))

where the energy is conserved during the process; £, — E; = ho

Absorption
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