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The photoelectric effect was discovered by Heinrich Hertz in 1887 during the course of 

the experiment that discovered radio waves. It remained unexplained until 1905 when Albert 
Einstein postulated the existence of quanta of light - photons - which, when absorbed by an 
electron near the surface of a metal, could give the electron enough energy to escape from the 
metal. Robert Milliken carried out a careful set of experiments and that verified the 
predictions of Einstein’s photon theory of light. Einstein was awarded the 1921 Nobel Prize 
in physics for his discovery of the law of the photoelectric effect. Milliken received the Prize 
in 1923 for his work on the elementary charge of electricity (the oil drop experiment) and on 
the photoelectric effect. 

Here the photoelectric effect is discussed using the time dependent perturbation. Note 
that the photoelectric effect can be explained in a semi-classical approach without the 
quantization of the electromagnetic field, 
 
1. Sinusoidal perturbation 

We consider the case of interaction between photon and electron. The perturbation 
can be given by 
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where 0A  is the vector potential. The matrix element is given by 
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In conclusion, the transition probability is proportional to 
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The absorption cross section abs  is 
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abs = absorption cross section 
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Note that the energy flux (energy per area per unit time) is given by 
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The fine structure constant is defined by 
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2. Photoelectric effect 

In the photoelectric effect, electrons are emitted from metals when they absorb energy 
from light. Electrons emitted in this manner may be called photoelectrons. 
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Fig. Photoelectric effect in metal. Electron potential energy across the metal surface. 

An electron with the highest energy in the metal absorps a photon of energy   
Conservation of energy requires that its kinetic energy after leaving the surface be 

BE , where BE  is the work function of metal (the energy difference between 
the vacuum state and the Fermi energy of the metal. 
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Fig. Our model on the photoelectric effect. The binding energy EB. The kinetic energy 

Ef of free electron.   is the energy of photon absorbed,  
 
 
((Note)) 

The energy conservation: 
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is the bound energy. 
________________________________________________________________________ 
Ejection of an electron when an atom is placed in the radiation field. 
 

i : atomic (bound) state 

n : continum state (E > 0) 

 

Plane-wave state fk , an approximation that is valid if the final electron is not too slow. 
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with the periodic boundary condition 
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Fig. Density of states in the 3D k-space. There is one state per (2/L)3. We use the 

periodic boundary condition for the wave function. 
 
The number of states for k~ k+dk and solid angle element d 
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3. Fermi's golden rule 

We note that  
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Using the Fermi’s golden rule, we have the differential cross section as 
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To be specific, let us consider the ejection of a K-shell (the innermost shell) electron 
caused by absorption of light. i : essentially the same as the ground state hydrogen atom 

wave function except that the Bohr radius a0 is replaced by a0/Z; 
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The matrix element is given by 
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Here note that 
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with 
 

kkq  f .  (scattering vector) 

 
All we need to do is to take the Fourier transform of the atomic wave function. 
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Here we calculate 
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Using the Mathematica, we get 
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______________________________________________________________________ 
((Mathematica)) 
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the differential cross section is obtained as 
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Fig. Experimental configuration for the photoelectric effect.  is the polarization 

vector. n is the unit vector is k of incident photon. kf is the wavevector of the 
outgoing electron. fkkq  . q  is the momentum transfer between the initial 

photon and the final electron. 
 
2. Energy conservation in the photoelectric effect 

Energy is conserved in the system, 
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Fig. The energy (eV) vs wave length (nm) for visible light. 
 
Note that kf is only dependent on k. kf is constant when k is fixed. We use the following 
approximation, for simplicity, 
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where the binding energy is given by 
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 is the fine structure constant: 
 

c

e



2

  

 
The Bohr radius is 
 



13 
 

2

2

me
aB


  

 
(ii) In the nonrelativistic case: 
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If the incident wave is not polarized, the contributions of the polarization in the x and y 
directions must be incoherently and averaged over . 
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which is proportional to /5Z  in the high energy photon. 
 
For simplicity we put 
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3. Angular dependence of 
d

d
 

((Mathematica)) We make a plot of a part of 
d

d
 using the SphericalPlot3D  

The cross section vanishes in the forward direction. This is a consequence of the fact 
that photons are transversely polarized. The matrix element is proportional to 2)( εk f . 

When kf is parallel to the photon momentum nk k , this factor vanishes. 
 
We assume that the formula 
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is valid for cv f  . We make a plot of 
d

d
 using Mathematica, where fv  is changed as a 

parameter. 
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Fig. cv f /  = 0. Angular distribution of photoelectric electrons. The green line (the 

direction of photon). The red line (the direction of polarization vector for photon). 
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Fig. The case of cv f /  = 0.6. 

 

 
 
Fig. The case of cv f /  = 0.8. 
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Fig. The case of cv f / = 0.95. 

 
((David Park QM))) 
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Fig. Angular distribution of photons at (a) low and (b) high photon energies. The 

electrons are ejected into two lobes whose maximum line lie in the plane of the 
polarization vector . k is the wave vector of incident photon. 
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APPENDIX 
A1. Free electron gas in three dimensions 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
 

kkkkk

p   2
22

22 mm
H


. 

 
It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
 

),,(),,( zyxzyLx kk   , 

),,(),,( zyxzLyx kk   , 

),,(),,( zyxLzyx kk   . 
 
The wavefunctions are of the form of a traveling plane wave. 
 

rk
k r  ie)( , 

 
with 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 

 
The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
 

2
2

222
2

2
)(

2
)( kk

m
kkk

m zyx


 . 

Here 



20 
 

 

)()()( rkrrp k kkk i
 


 . 

 
So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

A2. The Pauli’s exclusion principle 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
 

,k , ,k . 

 
In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
 

3

2

3

3

3

33

4

)2(
2 FF k

V
k

L
N





  

 
A3 Density of states 

There is one state per volume of k-space (2/L)3. We consider the number of one-
electron levels in the energy range from  to +d; D()d  
 

 
dkk

L
dD 2

3

3

4
2

2)( 


  , 

 

where D() is called a density of states. Since 2/12 )/2( mk  , we have 

)2/()/2( 2/12 dmdk  . Then we get the density of states 
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mV
D . (14) 

 
___________________________________________________________________ 
B. Pythagorean relationship (relativistic dynamics) 
 
Relativistic dynamics 
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with 
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Kinetic energy K is defined by 
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When 2mcE  , K is equal to 
 

m
K
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Pythagorean relationship  
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Fig. Pythagorean relationship. 222
2

2

p cm
c

E
 

 



22 
 

 
C. Application  interaction with the classical radiation field 

We consider the absorption and emission of light which is caused through the interaction 
between atoms and electromagnetic fields. The light is the electromagnetic field which 
periodically varies with time. Here we discuss the absorption and stimulated emission, where the 
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated. 
There is another emission, so-called the spontaneous emission, where the electromagnetic field 
should be quantum-mechanically treated.  
 
Classical radiation field 
 

 electric or magnetic field derivable from a classical radiation field as opposed to 
quantized field 

 

pArp ˆ)ˆ(ˆ
2

1ˆ 2 
mc

e
e

m
H   

 
which is justified if 
 

0 A .  (Coulomb gauge) 
 
We work with a monochromatic field of the plane wave 
 

 t rkεAA cos2 0  

 

nk
c


 , 0kε  

 
(ε  and n  are the (linear) polarization and propagation directions.) 
 
or 
 

    titi ee    rkrkεAA 0  

 
The Hamiltonian is given by 
 

10
ˆˆˆ HHH   

 

where 1Ĥ is the time dependent perturbation 
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The first term: responsible for stimulated emission, 
The second term: responsible for absorption 
 

  i
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ffi e
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A rk ˆˆ 0
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and 
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((Fermi’s golden rule)) 

 
where the energy is conserved during the process; Ef  Ei    
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