Projection operator for the photon polarization Masatsugu Sei Suzuki Department of Physics, State University of New York at Binghamton (Date: September 08, 2014).

For the Stern-Gerlach experiment with spin 1/2, after the measurement of the spin direction Sz, the state of the system collapses into one of two states, $|+z\rangle$ and $|-z\rangle$. The situation is rather different for the light polarization, the state of the system collapses into one state depending on the direction of polarizer such as x-axis polarizer; the eigenket $|x\rangle$ for the x-polarizer, and the eigenket $|y\rangle$ for the y-polarizer. The final state is given by the projection operator which is applied to the initial state $|\psi\rangle$. Here we discuss the role of the projection operator for the photon polarization.

1. Stern-Gerlach experiment for the spin 1/2 (as an example)

First we consider the Stern-Gerlach experiment (SG_z). We have two eigenkets of the spin operator \hat{S}_z , $|+z\rangle$ and $|-z\rangle$.

$$\hat{S}_{z}|+z\rangle = \frac{\hbar}{2}|+z\rangle, \qquad \hat{S}_{z}|-z\rangle = -\frac{\hbar}{2}|-z\rangle$$

The projection operators are defined by

$$\hat{P}_{+z} = \left| + z \right\rangle \left\langle + z \right|, \qquad \hat{P}_{-z} = \left| -z \right\rangle \left\langle -z \right|$$

The spin operator \hat{S}_z can be expressed by

$$\hat{S}_{z} = \frac{\hbar}{2} (|+z\rangle\langle+z|-|-z\rangle\langle-z|) = \frac{\hbar}{2} (\hat{P}_{+z} - \hat{P}_{-z})$$

(a) The measurements: eigenvalue problem

The eigenkets $|+z\rangle$ and $|-z\rangle$ are determined from the eigenvalue problem. After the measurements the system collapses

(b) **Projection operator**

When the initial state of the system is is given by $|\psi\rangle$, the final states after the SG_z are

$$\hat{P}_{_{+z}}|\psi
angle, \qquad \hat{P}_{_{-z}}|\psi
angle$$

using the projection operators.

(c) The probability

The probability of finding the system in the state $|+z\rangle$ is

$$\langle + z | \hat{P}_{+z} | \psi \rangle = \langle + z | \psi \rangle$$

The probability of finding the system in the state $\left|-z\right\rangle$ is

$$\langle -z|\hat{P}_{-z}|\psi\rangle = \langle -z|\psi\rangle$$

2. Photon polarization

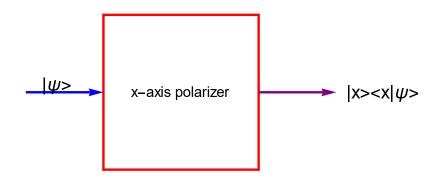
(a) **Projection operator**

The final state of the light after passing the *x*-axis polarizer is given by

$$\hat{P}_{x}|\psi\rangle = |x\rangle\langle x|\psi\rangle.$$

The probability of finding the system in the state $|x\rangle$ is

$$\left|\left\langle x|\hat{P}_{x}|\psi\rangle\right|^{2}=\left|\left\langle x|\psi\rangle\right|^{2}$$

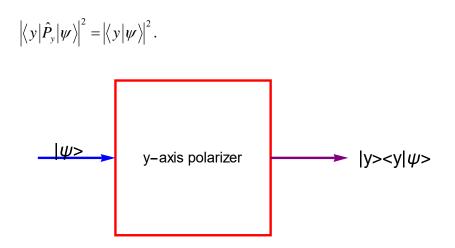


(b) The use of *y*-axis polarizer

The final state of the light after passing the y-axis polarizer is given by

$$\hat{P}_{y}|\psi\rangle = |y\rangle\langle y|\psi\rangle.$$

The probability of finding the system in the state $|y\rangle$ is

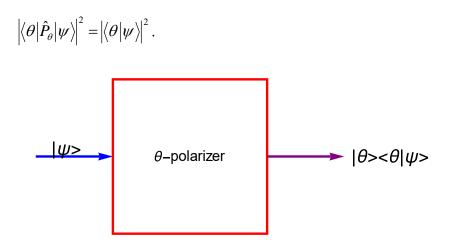


(c) Th polarizer with the angle θ

The final state of the light after passing the angle θ polarizer is given by

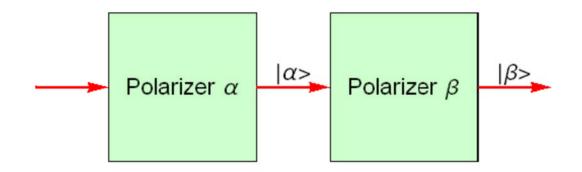
$$\hat{P}_{\theta} | \psi \rangle = | \theta \rangle \langle \theta | \psi \rangle.$$

The probability of finding the system in the state | heta
angle is



3. Examples-1

Suppose we use two polarizers (angles α and β) in series; $\alpha - \beta$



The projection operators for the polarizers α and β are

$$\hat{P}_{\alpha} = |\alpha\rangle\langle\alpha| = \begin{pmatrix}\cos\alpha\\\sin\alpha\end{pmatrix}(\cos\alpha & \sin\alpha) = \begin{pmatrix}\cos^{2}\alpha & \sin\alpha\cos\alpha\\\sin\alpha\cos\alpha & \sin^{2}\alpha\end{pmatrix}$$

and

$$\hat{P}_{\beta} = |\beta\rangle\langle\beta| = \begin{pmatrix}\cos\beta\\\sin\beta\end{pmatrix}(\cos\beta & \sin\beta) = \begin{pmatrix}\cos^{2}\beta & \sin\beta\cos\beta\\\sin\beta\cos\beta & \sin^{2}\beta\end{pmatrix}$$

where

$$|\alpha\rangle = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}, \qquad |\beta\rangle = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$$

The initial state is given by $|\psi\rangle$. After passing through two polarizers α and β , the final state is obtained as

$$\hat{P}_{\beta}\hat{P}_{\alpha}|\psi\rangle$$

The probability amplitude for the system in the final state $\left| \beta \right\rangle$, is given by

$$\langle \beta | \hat{P}_{\beta} \hat{P}_{\alpha} | \psi \rangle = \langle \beta | \alpha \rangle \langle \alpha | \psi \rangle$$

The corresponding probability is

$$P_{\alpha\beta} = \left| \left\langle \beta \left| \alpha \right\rangle \right|^2 \left| \left\langle \alpha \left| \psi \right\rangle \right|^2 = \left| \left\langle \alpha \left| \psi \right\rangle \right|^2 \cos^2(\beta - \alpha) \,. \tag{Malus' law}$$

where

$$\langle \beta | \alpha \rangle = (\cos \beta \quad \sin \beta) (\cos \alpha) = \cos(\beta - \alpha)$$

4. Example-II

Next we consider n polarizers (angles α_1 , α_2 , α_3 , ..., α_{n-1} , α_n) in series. The initial state is given by $|\psi\rangle$. After passing through *n* polarizers (angles α_1 , α_2 , α_3 , ..., α_{n-1} , α_n) in series, the final state can be obtained as

$$\hat{P}_{lpha_n}\hat{P}_{lpha_{n-1}}\cdots\hat{P}_{lpha_4}\hat{P}_{lpha_3}\hat{P}_{lpha_2}\hat{P}_{lpha_1}ig|\psiig
angle$$

The probability amplitude for the system in the final state $|lpha_n
angle$, is given by

$$\langle \alpha_{n} | \hat{P}_{\alpha_{n}} \hat{P}_{\alpha_{n-1}} \cdots \hat{P}_{\alpha_{4}} \hat{P}_{\alpha_{3}} \hat{P}_{\alpha_{2}} \hat{P}_{\alpha_{1}} | \psi \rangle = \langle \alpha_{n} | \alpha_{n-1} \rangle \cdots \langle \alpha_{3} | \alpha_{2} \rangle \langle \alpha_{2} | \alpha_{1} \rangle \langle \alpha_{1} | \psi \rangle$$

where

$$\hat{P}_{\alpha_{k}} = |\alpha_{k}\rangle\langle\alpha_{k}| = \begin{pmatrix}\cos^{2}\alpha_{k} & \sin\alpha_{k}\cos\alpha_{k}\\\sin\alpha_{k}\cos\alpha_{k} & \sin^{2}\alpha_{k}\end{pmatrix}$$

The corresponding probability is

$$P = \left| \left\langle \alpha_1 \left| \psi \right\rangle \right|^2 \cos^2(\alpha_n - \alpha_{n-1}) \cos^2(\alpha_{n-1} - \alpha_{n-2}) \cdots \cos^2(\alpha_3 - \alpha_2) \cos^2(\alpha_2 - \alpha_1).$$

REFERENCES

Richard P. Feynman and Albert R. Hibbs, *Quantum Mechanics and Path Integrals*, emended by Daniel F. Styer, Emended edition (Dover Publications, Inc. New York, 2010).